碱式醋酸铜前体法铜锰复合氧化物催化剂的控制合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以醋酸铜为原料,氢氧化钠为沉淀剂,采用共沉淀法和水热法合成碱式醋酸铜(Cu_2(OH)_3(OCOCH_3)·H_2O),并以碱式醋酸铜为前驱体,用高锰酸钾进行离子交换制备铜锰复合氧化物。利用XRD、TG-DTA、SEM、TEM、TPR、低温氮气吸脱附、微反色谱等表征测试手段对碱式醋酸铜及离子交换产物的织构进行了研究,着重考察了M[OH~-]/M[Cu~(2+)]对碱式醋酸铜制备过程的影响以及焙烧温度对铜锰复合氧化物织构和催化活性的影响。
     碱式醋酸铜合成的研究结果表明,碱量是影响碱式醋酸铜结构生成的关键因素,当M[OH~-]/M[Cu~(2+)]=0.8~1.7,滴定终点pH值在6.29~7.33之间时,能够制得碱式醋酸铜,且M[OH~-]/M[Cu~(2+)]=1.2时,碱式醋酸铜晶型最好,衍射峰强度最高。SEM扫描电镜研究结果表明,碱式醋酸铜是一种粒径约7μm的圆形颗粒,这种颗粒是由多层碱式醋酸铜层板堆积而成,其形状呈卷心菜状。
     铜锰复合氧化物制备的研究结果表明,焙烧温度对碱式高锰酸铜的织构有很大的影响,XRD和TG-DTA表明400℃焙烧温度后铜锰复合氧化物的主晶相为CuO , 600℃和800℃焙烧温度后铜锰复合氧化物的主晶相为CuO和CuMn_2O_4 ,随着焙烧温度升高, 1000℃焙烧温度后铜锰复合氧化物的主晶相为CuO和Cu_2O。TPR研究结果表明,随着焙烧温度的升高,还原温度向高温区移动。活性测试结果表明,焙烧温度对铜锰复合氧化物的活性有较大影响,1000℃焙烧后样品的活性在300℃能达到82%。
In this paper, basic copper acetate (Cu_2(OH)_3(OCOCH_3)·H_2O) was prepared by the co-precipitation method and hydrothermal method ,which based upon copper acetate was the raw material and sodium hydroxide was the precipitating agent, and then the ion-exchange method was used to the preparation of Cu-Mn Based catalyst with basic copper acetate as precursor. The synthesized samples were characterized by XRD, TG-DTA, SEM, TEM, H2-TPR , low temperature nitrogen absorption and Micro-Reactor-Chromatography. The effect of prepared of basic copper acetate was M[OH~-]/M[Cu~(2+)] molar ratios and the effect of texture and catalytic activity of copper manganese oxide was the calcinations temperature.
     The study of synthesis of basic copper acetate showed that the crystallizations of basic copper acetate structure could be affecting on M[OH~-]/M[Cu~(2+)] molar ratios. At M [OH~-] / M [Cu~(2+)] = 0.8~1.7 and pH = 6.29~7.33, basic copper acetate could be obtained, and M[OH~-] / M [Cu(~2+)] = 1.2, the crystallizations of basic copper acetate was best. The results of Scanning Electron Microscopy showed that basic copper acetate was a rounded particle size about 7μm , and this particle was made up of stacked layers that was made of basic copper acetate and were cabbage-like.
     The study of synthesis of Copper manganese oxide showed that the influence of baking temperature to the copper manganese oxide was considerable. The results of XRD and TG-DTA showed that the main crystal phase of Copper manganese oxide was CuO at baking temperature of 400℃and CuO and CuMn_2O_4 at baking temperatures of 600℃and 800℃, and then main crystal phase of Copper manganese oxide were CuO and Cu_2O at baking temperature of 400℃. The results of TPR showed that with the baking temperature increased, combination of Cu-Mn became stronger and reduction temperature moved in the high temperature zone. The results of activity tests showed that the influence of the high baking temperature to the activity of alkaline manganese was considerable, the activity of copper manganese oxide at baking temperature of 1000℃was the best and its activity attained to 82% at reaction temperature of 300℃
引文
[1]朱继平,程继贵. Cx+·HSO4-插层化合物的水热法合成[J].合肥工业大学学报. 2000, 23(6): 1076-1078
    [2] Costantino, U., V. Bugatti, G. Gorrasi etc. New polymeric composites based on poly(-caprolactone) and layered double hydroxides containing antimicrobial species[J]. ACS Appl Mater Interfaces. 2009, 1(3): 668-677
    [3]樊明德,陈天虎,刘景丽等.即时合成Zn-Mg-Al层状双氢氧化物处理含Zn2+废水实验研究[J].矿物学报. 2006, 26(3): 261-266
    [4]苟国敬,许红平,鲍凤娟.层状复合氢氧化物对硫酸钠的阴离子交换作用[J].盐湖研究. 2008, 16(4): 9-14
    [5]张莉莉,陆路德.无机层状化合物及其应用述评[J].化工新型材料. 2004, 32(3): 1-4
    [6]杨小丽,杨金香.类水滑石化合物的制备及应用[J].化工中间体. 2010(1): 7-11
    [7] Bareno, J., C.H. Lei, J.G. Wen etc. Local structure of layered oxide electrode materials for lithium-ion batteries[J]. Adv Mater. 2010, 22(10): 1122-1127
    [8]张萱.新型有机—无机夹层化合物的设计、合成与性能[D].武汉:武汉大学硕士学位论文. 2004
    [9] Nalwa, H.S., Handbook of nanostructured material and nanotechnology[M]. Academic Press, 1999
    [10]孙继红,曹景慧,解鲜梅.层状金属氧化物的离子交换性能研究[J].太原工业大学学报. 1996, 27(1): 50-53
    [11]邹永存,付爽,郭阳虹等.层状化合物K0.81Li0.27Ti1.73O4的合成[J].吉林大学学报(理学版). 2010, 48(1): 133-136
    [12]赵芸,梁吉,李峰等.层状双金属氢氧化物的热分解及动力学研究[J].清华大学学报(自然科学版). 2004, 44(2): 149-152
    [13]赵维,齐暑华.聚合物/层状双羟基氧化物纳米复合材料的研究进展[J].应用化工. 2007, 36(07) : 715-728
    [14]张波,郑遗凡,卢晗锋等. Mg/Zn/Al类水滑石的热性质和水化性能研究[J].化学通报. 2006(5): 351-354
    [15]曾虹燕,冯震,廖凯波等. Mg-Al水滑石的制备及其催化合成丙二醇单甲醚的性能[J].石油化工. 2008, 37(8): 788-792
    [16]何天白,胡汉杰,功能高分子与新技术[M].化学工业出版社, 2001
    [17]张莉莉,张维光,杨娟等.系列层状K2La2Ti3O10的制备及光催化性能[J].稀土. 2005, 26(5): 9-12
    [18]常铮.含稀土水滑石的可控制备、结构表征及其催化应用[D]. 2006
    [19]夏亚穆,尤佳,王伟.层状材料的催化作用[J].工业催化. 2009, 17(4): 10-14
    [20]任玲玲,何静,段雪.阴离子型层柱材料的插层组装[J].化学通报. 2001(11): 686-691
    [21]苟国敬,马培华.层状复合氢氧化物的制备改性及其对热塑性硫化胶的阻燃作用[J].化学研究与应用. 2009, 21(4): 463-467
    [22]杨静,马辉,马淑兰等.镁锰双金属氢氧化物共沉淀法合成和离子交换[J].北京师范大学学报(自然科学版). 2008, 44(6): 602-604
    [23]位建华,雷立旭.层状氢氧化物阻燃剂[J].塑料工业. 2007, 35(增刊): 305-308
    [24]李新禄,康飞宇.从第13届国际插层化合物大会看插层化合物的最新发展趋势[J].新型炭材料. 2005, 20(3): 286-288
    [25]赵正鹏,王海增,郭鲁钢等.焙烧层状氢氧化镁铝对溴离子吸附性能研究[J].盐业与化工. 2007, 36(2): 4-7
    [26]罗水源,何杰,赵俊斌.层状铌酸盐MxNb6O17(M=K,Fe,Ni)的合成及对甲硫醇的吸附与光催化性能研究[J].广东化工. 2009, 36(6): 14-16
    [27]陆军,刘晓磊,史文颖等.水滑石类插层组装功能材料[J].石油化工. 2008, 37(6): 539-547
    [28] Pereira, D.C., D.L.A.d. Faria, V.R.L. Constantino. CuII hydroxy salts: characterization of layered compounds by vibrational spectroscopy[J]. Journal of the Brazilian Chemical Society. 2006, 17(8): 1651-1657
    [29] Fujita, W., K. Awaga, T. Yokoyama. Controllable magnetic properties of layered copper hydroxides, Cu2(OH)3X (X=carboxylates)[J]. Applied Clay Science. 1999, 15(1-2): 281-303
    [30] Masciocchi, N., E. Corradi, A. Sironi etc. Preparation, Characterization, and ab initio X-Ray Powder Diffraction Study of Cu2(OH)3(CH3COO)·H2O[J]. Journal of Solid State Chemistry. 1997, 131: 252-262
    [31] Dvininov, E., M. Ignat, P. Barvinschi etc. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching[J]. J Hazard Mater. 2010, 177(1-3): 150-158
    [32]赵奎行. LDHs基无机—有机复合材料的制备及其光致变色性质研究[D].北京:北京化工大学博士学位论文. 2006
    [33]严菁,马建新,万钢.用于燃料电池汽车重整器的CO脱除技术[J].天然气化工. 2002, 27(5): 35-38
    [34]佘享濂,周莲凤. SX-1型铜系高变催化剂的研究[J].石化技术与应用. 1999, 17(2): 71-74
    [35] L, L., R.D. E, T.M. V, Catalysis Handbook[M]. .London:Wolfe Scientific Book, 1989
    [36]董跃,赵钰琼,张永发. CO催化变换制氢反应机理及传统变换催化剂研究进展[J].山西能源与节能. 2009, (2): 67-75
    [37]李速延,周晓奇. CO变换催化剂的研究进展[J].煤化工. 2007, 129(2): 31-34
    [38]李锦卫,郑远辉,林性贻等.焙烧温度对Au/ Fe2O3-ZrO2水煤气变换催化剂的影响[J].工业催化. 2004, 12(5): 28-52
    [39]宋海燕,杨平,华南平等.负载型无铬超细铁基变换催化剂的制备和催化性能[J].催化学报. 2003, 24(5): 374-378
    [40]华金铭,郑起,魏可镁等.负载纳米金对氧化铁载体结构和水煤气变换催化性能的影响[J].分子催化. 2006, 20(5): 399-404
    [41]陈五平,无机化工工艺学(一)[M].化学工业出版社, 1981
    [42]刘军生.中孔材料Cu-Zn-Al2O3的合成及其在CO水煤气变换反应中的应用[J].应用科技. 2009, 17(14): 13-15
    [43]冯雪风,金卫根,陈昌林.稀土镧,铈对Cu/ZnO/Al2O3催化剂水汽变换性能的影响[J].天然气化工. 2007, 32(6): 1-3
    [44]李金云,罗来涛,王菊枝.过渡金属对Cu60-Zn30-Al10变换催化剂性能的影响[J].江西科学. 2004, 22(3): 167-170
    [45] Che, M., Bennett, C. O. The Influence of Particle Size on the Catalytic Properties of Supported Metals [J]. Advances in Catalysis. 1989, 36: 55-172
    [46] Mason, M.G. Electronic structure of supported small metal clusters[J]. Physical Review B. 1983, 27(2): 748
    [47]张文朴.含钼催化剂研究新进展[J].中国钼业. 2001, 25(4): 23-31
    [48]连奕新,王会芳,方维平等.载体焙烧温度对Co-Mo/MgO-Al2O3变换催化剂性能的影响[J].催化学报. 2009, 30(6): 549-554
    [49]李玉敏,耿云峰,王日杰等.以ZrO2-Al2O3为载体的Co-Mo-K耐硫水煤气变换催化剂[J].应用化学. 2000, 17(3): 276-279
    [50]谭永放,郝树仁,张新堂等. Co-Mo/Al2O3-MgO耐硫变换催化剂的表征研究[J].齐鲁石油化工. 2003, 31(3): 181-184
    [51]衣宝廉.燃料电池的原理、技术状态与展望[J].电池工业. 2003, 8(1): 16-22
    [52] Alonso, L., J.M. Palacios, E. Garcia etc. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization[J]. Fuel Processing Technology. 2000, 62: 31-44
    [53]刘全生,张前程,马文平等.变换催化剂研究进展[J].化学进展. 2005, 17(3): 389-398
    [54]王贵昌,石全珍,杨作银等. Cu (111)、Ni(111)和Pd(111)催化水煤气变换反应活性的反应能学分析[J].南开大学学报. 2001, 34(1): 41-44
    [55] Yamamoto, JP 63/77546. 1988.
    [56]冯树波,梁瑞娥,刘洪杰.铜锰氧化物水煤气变换催化剂的进一步研究[J].河北轻化工学院学报. 1995, 16(4): 68-72
    [57] H, C.J., H.J. B, P.P. S. New Developments in High Tempera- ture Shift Catalyst Technology Solve the Fishscher-Tropsch Problem [D]. San Francisco. 1989
    [58] Morales, M.a.R., B.P. Barbero, L.E.C. s. Evaluation and characterization of Mn–Cu mixed oxidecatalysts for ethanol total oxidation: Influence of copper content[J]. Fuel. 2008, 87: 1177-1186
    [59] Larabi-Gruet, N., S. Peulon, A. Lacroix etc. Studies of electrodeposition from Mn(II) species of thin layers of birnessite onto transparent semiconductor[J]. Electrochimica Acta. 2008: 1-7
    [60] Du, X., Z. Yuan, L. Cao etc. Water gas shift reaction over Cu–Mn mixed oxides catalysts:Effects of the third metal[J]. Fuel processing Technology. 2008, 89: 131-138
    [61] Morales, M.a.R., B.P. Barbero, L.E.C. s. Evaluation and characterization of Mn–Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content[J]. Fuel. 2007: 1-10
    [62] Tanaka, Y., T. Takeguchi, R. Kikuchi etc. Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels[J]. Applied Catalysis A: General. 2005, 279(1-2): 59-66
    [63]冯树波,董献登.高温变换催化剂新进展[J].化肥工业. 1996, 23(2): 11-16
    [64]严新宇,岑树琼,项立平等. Cu-Mn复合氧化物的结构表征及丙酮氧化性能[J].科技通报. 2005, 21(5): 521-523
    [65]张兆春,章启贤,殷亚青等.铜锰氧化物水煤气变换催化剂的还原与催化性能[J].工业催化. 2008, 16(7): 30-35
    [66]杨海贤,贾立山.焙烧温度对催化剂Cu-Mn-Si/HZSM-5催化性能的影响[J].洛阳理工学院学报(自然科学版). 2009, 19(1): 12-14
    [67] Wu, J., M. Saito. Improvement of Stability of a Cu/ZnO/Al2O3 Catalyst for the CO Shift Reaction[J]. Journal of Catalysis. 2000, 195(2): 420-422
    [68] M, K.E.G., T.R. B, V.d.W.W. J. Appl. Catal. 1986, 25: 139-147
    [69] Regina Oliveira de Souza, T., S. Modesto de Oliveira Brito, H. Martins Carvalho Andrade. Zeolite catalysts for the water gas shift reaction[J]. Applied Catalysis A: General. 1999, 178(1): 7-15
    [70] Li, Y., Q. Fu, M. Flytzani-Stephanopoulos. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts[J]. Applied Catalysis B: Environmental. 2000, 27(3): 179-191
    [71]吴贵升,陈小平,任杰等.焙烧温度对Cu/MnO2/ZrO2催化剂性能影响[J].燃料化学学报1999, 27(增刊): 90-93
    [72] Pereira, D.C., D.L.A.d. Faria, V.R.L. Constantino. CuII Hydroxy Salts: Characterization of Layered Compounds by Vibrational Spectroscopy[J]. J. Braz. Chem. Soc. 2006, 17(8): 1651-1657

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700