Ti-Al层状复合电极材料制备工艺与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电极是湿法电解冶金和电化学工业(氯碱工业、海水电解污水处理、电镀、有机电合成等)重要的装备器件,电极材料的选择直接关系到电解和电化学过程的稳定性、产品的产率和质量、运行成本、电能消耗和对周边环境的污染性等。因此,电极材料一直是该领域关注的研究热点。
     目前应用于有色金属提取工业的不溶性阳极主要有铅基合金阳极和涂层钛电极(以下简称钛阳极)。钛阳极与铅基合金电极相比,具有尺寸稳定、析氯析氧过电位低、耐蚀性好、质量轻、强度高等优点,自1965年问世以来,钛阳极迅速成功地应用与氯碱工业、被誉为氯碱工业的一项重大技术革命。然而,目前对钛阳极的研究仅限于涂层配方、制备工艺、涂层结构设计、涂层电极应用方面,虽然取得了一定的研究成果。但是,钛阳极基体材料电阻率大,造成电极电位高、表面电势分布不均匀的弱点成为进一步提高钛阳极综合性能的主要瓶颈。
     本文从电极基体材料内部的组成结构入手,改变传统电极基体材料结构模式,提出铝为内芯、外层由钛包覆的层状复合结构基体材料设计方案。其技术思想是:电极内芯有效利用铝的优良导电性,将起到降低内阻、均化电流分布的作用,外层采用钛包覆,仍保持原有的电化学性质。通过阅读相关文献,对Ti-Al的复合采用了镀覆法、真空上引法、热压扩散焊等制备方法,成功的制备出了Ti-Al层状复合电极材料,利用扫描电子显微镜、能谱仪、电化学工作站等分析测试手段,对Ti-A1层状复合电极材料的界面和性能进行表征。
     研究结果表明三种方法均能制备出Ti-Al层状复合材料,并使Ti与Al实现了冶金式结合;同时制备出的Ti-A1层状复合材料实现冶金式结合的情况下,与纯Ti相比,电阻明显降低,降幅达50%-90%;电化学性能明显提高,在同一电极电位下,极化电流大于纯Ti基阳极,且制备工艺条件对电化学性能的影响与对电阻率的影响是一致的。这也说明金属基体的导电性能将直接影响着电极材料的电化学催化性能,因此,改变电极基体材料的组成结构不但降低了电阻成本、改善了电极的性能、也达到了节能降耗的目的。
The electrode is the most important equipment component in the area of hydrometallurgy and the electrochemistry industry (chlorine alkali industry, sea water electrolysis sewage treatment, galvanization, organic electro-synthesis and so on), electrode material choice directly relative to the reaction stability of electrolysis and electrochemical, the production rate and the quality, the run cost, the electrical energy consumption, the peripheral environment pollution, and so on. Therefore, the electrode material is a hot spot of this research domain.
     At present, in the non-ferrous metal extraction industry, the insoluble electrode mainly used the lead base alloy electrode and the coating titanium electrode (titanium anode). Compared to lead base alloy electrode, titanium anode has the higher size stably, lower chlorine and oxygen evolution potential, good corrosion resistance, light quality and higher strength.Since been published by 1965, the titanium anode applies in chlorine alkali industry successfully rapidly and be honored as a significant technological revolution of the chlorine alkali industry. However, Existing research was only restricted in the coating formula, the preparation technology, the coating structural design, the coating electrode application aspect to the titanium anode's research and obtain fruitful research result. But, the titanium anode matrix material electronic resistivity is big, cause electrode to high and surface potential distribution becomes non-uniform further enhances the main bottleneck of titanium anode overall performance.
     From the internal composition structure of the electrode matrix material, in order to change the tactic pattern of tradition electrode matrix material, the design proposal was proposed that the aluminum for in core, the outer layer by the titanium gable layered composite construction matrix material, which in the electrode the core as aluminum for fine electrical conductivity, to play an important part of reducing the interface resistance and the equalization current distribution, and the outer layer using the titanium gable, to still maintain the original electrochemistry nature. On the base of th related literature, Ti-Al layered composite electrode material was prepared by the means of Plating, Vacuum Upward, Hot-pressure welding and so on. And the interface and related properties of Ti-Al layered composite electrode material were studied by the means of SEM, EDS, electrochemistry workstation and so on.
     The results indicated that the Ti-Al layered compound material was prepared by the above three methods, and the metallurgy union was formed in the surface of Ti and Al; meanwhile, the resistance of it reduced by 50%-90% obviously and the electrochemistry performance distinct enhancement. under the identical electrode potential, the polarization current was bigger than the pure Ti base anode, and the preparation technological conditions to the electrochemistry performance's influence with to the electronic resistivity the influence are consistent, which the electric conductivity of metal matrix influenced the electrochemistry catalysis performance of electrode material, therefore, the change of the electrode matrix material not only improved electrode's performance, but also attained the purpose of saving energy and reducing consumption.
引文
[1]马福康,等.稀有金属手册[M].冶金工业出版社,2008.
    [2]电镀手册编写组.电镀手册[M].北京:国防工业出版社,1980.
    [3]陈家镛.湿法冶金手册[M].冶金工业出版社,2005.
    [4]王林山,汪礼敏,张景怀.一种钛/铜复合板及其制备方法:中国200710098514.5[P].2007-4-19.
    [5]张招贤.电解冶金中新型涂层钛阳极的研究和应用:广东有色金属学报,1997,7(2):117-124.
    [6]张招贤.钛阳极40年[J].氯碱工业,2007,(1):15-20.
    [7]张招贤.涂层钛阳极的研究和应用[J].稀有金属快报,2004,3(4),1-7.
    [8]张厚德,唐电,邵艳群.含Pd-PdO纳米涂层钛阳极的电催化活性研究[J].中国粉体技术,2008,14(4),13-15.
    [9]Beer H B.The invention and industrial development of mental anodes[J].J Electrochem Soc,1980,127(8):303-3-7
    [10]潘会波.我国钛阳极开发应用现状及水平[J].稀有金属材料与工程,1999,28(6),337-339.
    [11]胡耀红,陈力格.DSA涂层钛阳极及其应用[J].电镀与涂饰,2003,22(5):58-59.
    [12]张招贤.钛电极工学[M].北京:冶金工业.出版社,2003
    [13]Comninellis CH, Vercesi G P. Characterization of DSA-type oxygen evolving electrodes:choice of coating[J]. J Appl Electrochem,1991,21(4):335-345.
    [14]张招贤,赵国鹏,罗小军,等.钛电极学导论[M].北京:冶金工业出版社,2008
    [15]张招贤.涂层电极的40年[J].电镀与涂饰,2006,26(1):50-52
    [16]陈康宁.金属阳极[M].上海:华东师范大学出版社,1989:7-9.
    [17]Hayfield P C S. Platinum Metals Rev.1998,42(1):29-33
    [18]Hayfield P C S. Platinum Metals Rev.1998,42(2):46-55
    [19]V Pamic,[J]. Electrochimica Acta,2000,46:415-421.
    [20]郝成强.DSA钛阳极在电镀行业中的应用[J].印制电路信息,2006,(3):22-24.
    [21]屠海令.有色金属进展(第七卷)[M].长沙:中南工业出版社,1995.216
    [22]季小鹏,庞玉华,袁家伟.浅析层状复合板轧制新工艺[J].甘肃冶金,2008,30(1):41-43.
    [23]周俊杰,庞玉华,苏晓莉等.金属层状复合技术的研究现状与发展[J].材料导报,2005,19(V):220-223.
    [24]彭大暑,刘浪飞,朱旭霞.金属层状复合材料的研究状况与展望[J].材料导报,2000,14(4):23-24.
    [25]张胜华.层状金属复合材料的研究现状[J].铝加工高新技术文集,423-432.
    [26]李正华.生产复合板的主要方法及其基本特点[J].稀有金属材料与工程,1991(1):71-73.
    [27]刘晓涛,张廷安,崔建忠.层状金属复合材料生产工艺及其新进展[J].材料导报,2002,16(7):41-44.
    [28]Pan D, Gao K, Yu J. Gold Roll Bonding of Bimetallic Sheets And Strips[J]. Material Science and Technology,1989(5):934-939.
    [29]林大超.双金属轧制复合技术及其研究的进展[J].云南冶金,1998,27(5):32-36
    [30]Bay N. Cross Shear Roll Bonding [J]. J Mater Process Tech, 1994,(45):1
    [31]王旭东,张迎晖,徐高磊.轧制法制备金属层状复合材料的研究与应用[J].铝加工,2008,(3):22-25.
    [32]左孝青,欧阳德莱,潘晓亮.金属层状复合材料研究现状[J],特种铸造及有色合金,2004,325-328.
    [33]于九明,孝云祯,王群骄等.金属层状复合技术及其新进展[J].材料研究学报,2000,14(1):12-16.
    [34]陶杰赵玉涛潘蕾骆心怡.金属基复合材料制备新技术导论[M],化学工业出版社,北京:2007
    [35]邹家生.材料连接原理与工艺[M].北京:哈尔滨工业大学出版社,哈尔滨:2005.
    [36]胡俊威.钢-铜双金属材料的开发与应用.机械设计与制造1995(6):45-47.
    [37]刘江南.金属表面工程学.北京:兵器工业出版社,1995.
    [38]王鸿建.电镀工艺学.哈尔滨:哈尔滨工业大学出版社,1998
    [39]高荣发.热喷涂.北京:化学工业出版社
    [40]李宝锦.铜/钢复合材料的研究及应用.材料导报.2002,16(2):22
    [41]Xia C Z, Li Y J, W an g J.et al.Microstructure and phase constitution near interface of Cu/Al vacuum brazing [J].Materials Science and Technology,2007,23 (7):815-818
    [42]谭昌瑶.实用表面工程技术.北京.新时代出版社.1998
    [43]益小苏.先进复合材料技术研究与发展[M].北京:国防工业出版社,2006.
    [44]S Trasatti. Electrocatalysis:Understanding the success of DSA[J]. ElectrochimicaActa,2000,45:2377-2385.
    [45]S.Ardizzone, C.L.Bianchi, G Cappelletti, et al.Composite ternary Sn02-IrO2-Ta205 oxide electrocatalysts[J].Journal of Electroanalytical Chemistry,2006,589:160-166.
    [46]V.V.Panic a,V. M.Jovanovic a,S. I.Terzio a,et al.The properties of electroactive ruthenium oxide coatings supported by titanium—based ternary carbides[J].Surface&Coatings Technology,2007,202(2):319-324.
    [47]F Cardarelli, P taxil, A Savall, et al. Preparation of oxygen evolving electrodes with long service life under extreme conditions [J]. J Appl Electrochem,1998,28:245-250.
    [48]M Panizza, L Ouattara, E Baranova, et al. DSA-type anode based on conductive porous p-silicon substrate[J]. Electrochemistry Communications,2003,5:365-368.
    [49]L Ouattara, T Diaco, I Duo, etal. Dimensionally stable anode-type anode based on conductive p-silicon substrate[J]. J Electrochemical Soc,2003,150(2):D41-D45.
    [50]陈延禧.电解工程学[M].天津:天津科学技术出版社,1993:72-74,76.
    [51]#12
    [52]刘旭东,邹智敏,曹小明,张洪延,张劲松.铅酸蓄电池三维网络碳化硅板栅和极板内电流的分布[J].材料研究学报,2004,18(6):587-592.
    [53]Milan Calabek. Influence of grid design on current distribution over the electrode surface in a lead-acid cell[J]. Journal of Power Sources,2000, 85:145-148.
    [54]叶张军,甘永平,张文魁,黄辉,陶新永.含TiN中间层Ir02-Ta205涂层钛阳极的电催化性能[J].中国有色金属学报,2009,19(8):1473-1479.
    [55]Leonardo M.Da Silva,Karla C.Femandes,Luiz A.De Faria,et al.Electrochemical impedance spectroscopy study during accelerated life test of conductive oxides:Ti (Ru+Ti+Ce)O2-system[J].Electrochemica Acta,2004,49(27):4893-4906.
    [56]Mario H.P. Santana, Luiz A. De Faria. Oxygen and chlorine evolution on RuO2+TiO2+CeOm2O5 mixed oxide electrodes[J].Electrochemical Acta,2006,51(17):3578.3585.
    [57]A Oliveira-Sousa,M A S Silver, S A S Machado,et al. Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes[J]. Electrochem Acta.2000,45:4467-4473.
    [58]陈宗民,姜学波,类成玲.特种铸造与先进铸造技术[M].北京:化学工业出版社,2008.
    [59]Hine F, et al. J Electrochem Soc.1977,124(4):500-505
    [60]Langer H, et al. J ElectrochemSoc.1979,126(7):1189
    [61]胡会利,李宁.电化学测量[M].北京:国防工业出版社,2007:41-43.
    [62]姜国圣,王志法,张迎九,等.DG合金电阻性能的影响因素[J].中国有色金属学报,1998,8(3):395-398.
    [63]Larsen J M,Worth B D,Balsone S J.et al.Overview of the Structural Capability of Available Gamma Titanium Aluminide Alloys[C].TMS Annual Meeting,1995.
    [64]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.
    [65]赵玉庭,姚希曾.复合材料基体与界面[M].上海:华东化工学院出版社,1991.
    [66]姚为,吴爱萍,邹贵生,等.Ti/A1扩散焊的接头组织结构及其形成规律[J].稀有金属材料与工程,2007,36(4):700-704
    [67]Ren Jiangwei, Li Yajiang, Feng Tao. Microstructure characteristics in the interface zone of Ti/Al diffusion bonding [J].materials letters.2002, 56(5),647-652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700