磁电双层复合结构输出信号的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁电压层复合材料由于其蕴含的丰富的物理现象成为近几年来物理学和材料学科中的研究热点。其独特的物理特性以及它在多功能电子器件方面的应用前景受到科研工作者的广泛关注。随着人们对这种材料的研究越来越多,它在高灵敏度磁场传感器、换能器、滤波器、谐振器、换相器和信息存储设备等方面的应用潜力逐步被发掘。利用它制作的高性能电子器件和其他的材料相比具有很多优越性。因而,围绕磁电压层复合材料新的物理特性的研究将会有一定的实际意义。本文则主要是研究磁电压层材料的一些特殊输出信号和外加磁场条件的关系。具体的研究工作和结论如下:
     (1)基于已搭建的测试平台,我们对metglas/PZT L-T型磁电双层复合材料的输出信号随外加直流场的变化进行了研究。输出信号幅值随着直流场的增大先增大后减小,这和磁致伸缩材料metglas的磁导率变化趋势相符。关于输出信号的频率得到的结果是:在交流磁场幅值不高的情况下,输出信号的频率为输入的2倍。随着直流磁场的增大,输出信号波形发生变化,其频率逐渐转向和输入频率相同。对输出信号的快速傅里叶变换结果表明,输出是由一系列谐波信号组成。这些谐波信号的幅值随外加直流场的变化而变化。
     (2)在没有直流场的情况下,随着交流磁场幅值的增大,在不同结构尺寸样品中发现了4种不同的输出倍频关系,并且.研究了单个样品的输出信号和交流磁场幅值的关系。结果表明:输出的谐波信号幅值随着交流磁场幅值的增加而增加,谐波数目随交流场幅值的增大而增大。
     (3)当交流场幅值增大到34.30e后,同样品的输出中观察到了一系列的倍频现象。这些倍频信号的频率都在同一个频率附近,从样品阻抗和相角得出的机械共振频率和这些倍频信号的频率相同。在只有交流输入时,倍频输出是输入频率的偶次倍;随着直流场的引入,奇次偶次倍频输出均出现。这些输出信号的快速傅里叶变换表明:在只有交流输入时,输出是由偶倍于输入频率的谐波组成。当加入直流磁场时,输出信号中既包含奇次谐波,也包含偶次谐波。
     (4)从样品在大交流场幅值下的测量结果得到了它的磁电系数曲线。4个不同的测试条件下得到的磁电系数曲线均出现了多于一个机械共振峰的现象。这些峰出现的位置和观察到输出倍频现象的地方一致,均处于l/n于样品机械共振频率的地方。
     (5)对以上样品的倍频输出和磁电系数多峰现象综合分析后得到如下结论:制备的L-T型磁电双层结构样品在大幅值的交流磁场作用下,由于metglas层磁致伸缩的非线性特性而产生高次谐波信号,当某一谐波信号的频率在样品的机械共振频率附近时则会引起样品的机电共振,使得该谐波信号主导了样品的输出信号,从而输出出现明显的倍频现象。同时机电共振也导致在该频率下的磁电系数增大,出现了磁电系数的峰值。
Magnetoelectric(ME) laminate material has recently became an extremely hot and competitive field in physics and materials science because it contains a wealth of physical phenomena. Its unique characteristics and prospects of multi-functional electronic devices application have drawn considerable interests from scientists. As more and more research on this materials being done, its applications potential, like high sensitivity magnetic field sensors, transducers, filters, resonators, commutations,and information storage devices, is gradually being discovered. High-performance electronic devices made of this material has many advantages compared to other materials. Thus, research about novel physical characteristics of ME laminate composites will have some practical significance. This article is mainly about some special output signal of ME laminate composites and its relationship with external magnetic field conditions. Specific research work and conclusions as follows;
     (1) Based on a ME measurement system, we investigated output signal of metglas/PZT L-T ME unimorph under different direct current (DC) magnetic field.The amplitude of Output signal increases at first and then decreases with the increase of DC magnetic field, which is consistent with the magnetostrictive material-metglas'permeabiiity trends. The result on the frequency of the output signal obtained is:the output frequency is two times of the input when the amplitude of alternative current (AC) magnetic field is not high; with the increase of DC magnetic field, the output signal waveform changes, and its frequency gradually shifted to the input frequency. The fast Fourier transform of output signal shows that the output of the ME unimorph consists of a series of harmonic signals, and amplitude of these harmonics change when the external DC magnetic field increases.
     (2) when the AC magnetic field amplitude increases, in the case of no DC field, four different output multiplying relationship were found in the samples with different dimension. Then we investigated the relationship between output signal and AC magnetic field amplitude in a chosen sample. Fast Fourier transform shows that the amplitude of harmonic signals increase with increasing AC magnetic field amplitude, and so the number of harmonics.
     (3) A series of output frequency multiplying phenomenon were observed in a ME laminate sample, as the amplitude of the AC field was increased up to34.3Oe. These multiplying signal are all around a same frequency, which is consisting with the mechanical resonance frequency fr.And fr was obtained from the impedance and phase angle of sample. The multiplying output phenomenon is only odd times of the input frequency when there is only AC field input. With the superimposition of DC field, odd and even-order multiplying output are both observed. Fast Fourier transform of output signal shows; as AC field inputs, output of ME unimorph contain only odd harmonics of input; when there is DC field applied,both odd and even harmonics of input present in output signal.
     (4) ME coefficient curves were obtained from the measurement result as sample were exposed to high-amplitude AC magnetic field. With different measurement condition, four ME coefficient curve all demonstrate a phenomenon that there are more than one mechanic resonance peak in four curves. Positions of these peaks Coincide with places we observed frequency multiply phenomenons before, all of these peaks'frequency are all around1/n of fr.
     (5) By analyzing the multiplying output behavior and multi-peaks phenomenon in ME coefficient above,we get following conclusions; under high-amplitude AC magnetic field, magnetostrictive layer in L-T ME unimorph presents AC magnetostriction, its AC magnetostrictive signal and nonlinear harmonics result in the the electromechanical resonance of sample. Magnetostrictive signal or harmonics with frequency around the fr, caused the resonance of sample. Electromechanical resonance make these signal occupy the entire output of sample. It also make the ME coefficient increase as input frequency is around1/n of fr, and there are also peaks presented in ME coefficient curves Correspondingly.
引文
[1]Ce-Wen Nan, M. I. Bichurin, Multiferroic magnetoelectric composites:Historical perspective, status, and future directions. J. AppL Phys.103,031101(2008)
    [2]赵文明.以三层结构磁电复合材料为核心元件的磁场传感器的研究[硕十论文].天津:河北工业大学.2007
    [3]胡明哲,李强.超磁致伸缩材料的特性及应用研究(Ⅰ).稀有金属材料与工程.2000.1
    [4]田民波.磁性材料.北京:清华大学出版社,2001
    [5]Koon.N.C,Schinaler. A, Phys.Lett.A37:41(1971)
    [6]Savage.H.T, Clark.A.E, Magnetomechanical coupling and △E effect in highly magnetostrictive rare earth-Fe2 compounds.IEEE Trans Magn.1975,11(5):135
    [7]徐世峰.新型Fe-Ga磁致伸缩合金物性研究[博士论文].长春:吉林大学.2008
    [8]G.H. Wu, C. H. Yu, Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition, Appl. Phys. Lett.75(1999)2990
    [9]N. Srisukhmbowornchai, S. Guruswamy, Large magnetostriction in directionally solidified FeGa and FeGaAl alloys, J. Appl. Phys.90(2001)5680
    [10]David jiles[美国]肖春涛译.磁学及磁性材料导论.兰州大学出版社.2003年8月
    [11]P.Duwez, R.H.Willens, Continuous series of metastable solid solutions in silver copper alloys[J].J.APPl.Phys.1960,31:1136--1137
    [12]徐远丽.室温轧制变形对金属玻璃结构和性能的影响[博士论文].兰州:兰州大学.2011
    [13]龙毅叶荣昌,磁性金属玻璃研究进展,金属功能材料.9,4(2002)
    [14]Y. Yoshizawa, S. Oguma, New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. AppL Phys.64 (10), (1988)11
    [15]许煜寰,铁电材料和铁电物理的进展,物理,11(1987,),663
    [16]Valasek. J, Piezoelectric and allied Phenomena in Rochelle salt, Phys Rev.15:537(1920)
    [17]钟维烈,铁电体物理学,北京:科学出版社,1998
    [18]符春林,潘复生,铁电材料的发展历史和现状,重庆科技学院学报.(2008)12,第10卷第6期
    [19]刘爽.锆钛酸铅(PZT)陶瓷材料相关技术与应用研究[博士论文].合肥:中国科学技术大学.2009
    [20]雷淑梅,匡同春,压电陶瓷材料的研究现状与发展趋势, FOSHAN CERAMIC.15.3 (serial NO.99)
    [21]田莳,铁电材料研究进展及其在飞行器上的应用,航空学报,第21卷增刊,2000
    [22]李文静,吴孟强,磁电层状复合结构及其器件应用,材料导报.(2008)8.第22卷第8期
    [23]蔡春芳,李全禄,磁电复合材料的制备和理论分析,应用声学.第28卷.第6期.2009
    [24]张纳.超磁致伸缩/压电层状磁电复合材料的磁电效应研究[博士论文].天津:河北工业大学.2011
    [25]Landau. L. D, Lifshitz. E. M, Electrodynamics of continuous media, American Journal of Physics.1961,29(9):647-648
    [26]Astrov. D. N, Magnetoelectric effect in chromium oxide, Soviet Physics JETP,13(4):729-733
    [27]Rado. G.T, Folen V J, Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains, Physical Review Letters.1961.7:310
    [28]高秋岭.铁磁合金/压电材料复合磁电效应研究[硕士论文].重庆:重庆大学.2009
    [29].Van Den Boomgaard J, Born R A J, A sintered magnetoelectric composite materials BaTiO3-Ni (Co, Mn)Fe2O4, J. Mater. Sci.1978.13:1538
    [30].丁建明.层状磁电复合材料磁电效应的理论研究[硕士论文].苏州:苏州大学.2007
    [31].Mazumder. S, Bhattacharyya. G. S, Synthesis and characterization of in situ grown magnetoelectric composites in the BaO-TiO-FeO-CoO system, Ceramics international.2004. 30(3):389
    [32].Mori Kiyotake, Wuttig Manfred, Magnetoelectric coupling in Terfenol-D/ polyvinylidenedifluoride composites, Appl.Phys.Lett.2002.81(1):100
    [33].张辉,杨峻峰,铁电-铁磁复合材料的研究现状及发展趋势,材料导报.2003.17(6):64
    [34].Kenji Ueda, Hitoshi Tabata, Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature, Appl.Phys.Lett.1999.75(4):555
    [35].Zhang H, Wang J, Multiferroic BaTiO3-CoFe2O4 nanostructures. Science.2004.303(30):661
    [36].Y. K. Fetisov, K. E. Kamentsev, Converse magnetoelectric effects in a galfenol and lead zirconate titanate Bilayer, J. Appl. Phys.105,123918(2009)
    [37].Henry Greve,Eric Woltermann, Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AIN thin film composites, Appl.Phys.Lett.96,182501(2010)
    [38].Henry Greve, Eric Woltermann, Low damping resonant magnetoelectric sensors, Appl.Phys.Lett.97,152503(2010)
    [39].Ryu J,Carazo A V'azquez, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites, Jpn. J Appl.Phys.2001.40:4948
    [40]. Ryu. J, Priya. S, Effect of the magnetostrictive layer on magnetoelectricproperties in lead zirconate, J.Am.Ceram.Soc.2001.84:2905
    [41].Patankar K K, Mathe V L, Dielectric behavior and magnetoelectric effect in CuFe2O4-Ba0.8Pb0.2TiO3composites, Mater. Chen. Phys.2001.72:23
    [42].Shuxiang Dong, Jinrong Cheng, Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive, Appl.Phys.Lett.83,23(2003)
    [43].Shuxiang Dong, Junyi Zhai, Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity, Appl.Phys.Lett.89,252904(2006)
    [44].Junyi Zhai, Shuxiang Dong,,Geomagnetic sensor based on giant magnetoelectric effect, Appl.Phys.Lett.91,123513(2007)
    [45].Chee-Sung Park, Dragan Avirovik, Low-frequency nanotesla sensitivity in Metglas/piezoelectric/fiber/piezoelectric composites with active tip mass, Appl.Phys.Lett.98, 0629042011
    [46].Zhan Shi, Jing Ma,Magnetoelectric resonance behavior of simple bilayered Pb(Zr,Ti)O3-(Tb,Dy)Fe2/epoxy composites, J. Appl. Phys.101.043902 (2007) [47].Jing Ma, Zheng Li, A novel frequency multiplier based on magnetoelectric laminate, J. Magn. Magn. Mater.323 (2011):101-103
    [48].蔡春芳.压磁-压电复合材料的磁电-力学行为研究进展.陕西理上学院学报.2010,26(3):63-66
    [49].刘金喜,姜稚清.压电、压磁和电磁各向异性弹性介质二维问题的Green函数.工程力学.2001,18(1):41-46
    [50].朱保兵,李国强.层状压电压磁弹性介质空间问题的数据分析与处理.力学季刊.2004,25(4):502-508
    [51].卿光辉,邱家俊.磁电弹性体修止后的H-R混合变分原理和状态向量方程.应用数学和力学.2005,26(6):665-670
    [52].卿光辉,邱家俊.磁电圆柱壳修正后的H-R变分原理及其正则方程.天津大学学报.2006,39(1):78-82
    [53].丁建明,仲崇贵.外电场对层状复合材料磁电效应的影响.苏州大学学报.2007,23(2):65-68
    [54].程磊,文玉梅.采用弹性基底的磁电复合结构有限元分析.传感技术学报.2008,21(8):1357-1361
    [55]. Harshe Girish, Dougherty Joseph P, Teoretical modeling of magnetoelectric Multilayer composites, Int. J. Appl. Electromagnetic. Mater,1993,4(2); 145
    [56]. Liu Y X, Wan J G, Numerical modeling of magnetoelectric effect in a composite structure, J. Appl. Phys.2003,94:5111-5117
    [57].Nicolas Galopin, Xavier Mininger. Finite element modeling of magnetoelectric sensors. IEEE Trans. Magn.2008,44(6):834-837
    [58].程磊,文玉梅.采用弹性基底的磁电复合结构有限元分析.传感技术学报.2008,21(8):1357-1361
    [59].Thu Trang Nguyen, Frederic Bouillault. Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect, J. Appl. Phys.109,084904(2011)
    [60]. Dong S X, Li J F, Longitudinal and transverse magnetoelectric voltage coefficients ofmagnetostrictive/piezoelectric laminate composite:theory, IEEE Transactions on Ultrasonics. Ferroelectrics and Frequency Control.2003,50(10):1253-1261
    [61].杨帆,文玉梅.考虑损耗的磁致/压电层合材料谐振磁电响应分析.物理学报.2007,56(6):3539-3545
    [62].阳昌海,文玉梅.偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响.物理学报,2008,57(11):7292-7297
    [63].杨帆,文玉梅.磁致/压电/磁致层合材料磁电响应分析[J].传感技术学报.2006,19(6):2371-2375
    [64].Fang Fei, Zhao ChangPeng, Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates, Sci. China. Phys. Mech. Astron.2011,54.4
    [65].Tao Wu, Michael Emmons, Influence of mechanical load bias on converse magnetoelectric laminate composites, J. Appl. Phys.107,09D912(2010)
    [66].阳昌海.偏置磁场对磁致伸缩/压电层合材料磁电效应的影响[硕士论文].重庆大学:重庆.2008
    [67].李彦波,魏福林.磁性隧道结的隧穿磁电阻效应及其研究进展,物理38卷(2009年)6期
    [68].K. E. Kamentsev and Y. K. Fetisov. Low-frequency nonlinear magnetoelectric effects in a ferrite-piezoelectric multilayer, Appl.Phys.Lett.89,142510(2006)
    [69].C.-S. Park, C.-W. Ahn, Design and characterization of broadband magnetoelectric sensor, J. Appl. Phys.105,094111(2009).
    [70].J. G.Wan, Z. Y. Li, Strong flexural resonant magnetoelectric effect in Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayer, Appl.Phys.Lett.86,202504(2005)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700