外界条件对阴/阳离子表面活性剂囊泡体系聚集行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当表面活性剂的浓度高于其临界胶束浓度(critical micelle concentration, cmc)时,可以在溶液中自发形成各种有序聚集体,如球状胶束、棒状胶束、蠕虫状胶束、囊泡、层状液晶等。这些有序结构的形成和性质决定了表面活性剂在工业中的诸多功用,如作为药物载体、仿生物膜、微反应器等。当溶液中含有两种或两种以上表面活性剂时,会产生协同作用,从而具有很多独特性质:如低临界聚集浓度、低界面张力、形成的聚集体种类丰富等。这些性质使混合表面活性剂体系具有了更高的工业应用价值。
     本论文系统研究了离子强度、温度、溶剂极性、剪切力等外界因素对混合表面活性剂体系聚集行为的影响,用基本的物理化学知识阐述了产生这些影响的本质原因,希望能达到通过调控外界条件来控制表面活性剂聚集体形貌的最终目的。具体研究内容如下:
     第一章中简要介绍了与本论文密切相关的基本知识、国内外近几年的研究动态及论文选题的科学意义。在第二章至第四章中,分别研究了离子强度、温度和溶剂极性对碳氢阴/阳离子表面活性剂混合体系的影响:第二章中选取阳离子表面活性剂十四烷基三甲基氢氧化铵(TTAOH)和阴离子表面活性剂月桂酸(LA)按摩尔比1:1复配形成的无盐的阴/阳离子表面活性剂TTAL囊泡体系,研究了小分子无机盐NaBr对其聚集行为的影响,着重探讨了极高盐度下TTAL聚集行为的变化情况。研究主要围绕小分子无机盐对表面电荷的屏蔽作用展开,囊泡双分子层上的表面电荷间的斥力是溶液中聚集体稳定分散的来源,加入的少量NaBr电离出的Na+和Br-会屏蔽表面电荷间的斥力,导致囊泡发生聚集。当阴/阳离子表面活性剂与加入NaBr的浓度接近1:1时,由于表面活性剂密度比水小,聚集后的囊泡形成白色“沉淀”浮在溶液上层。当NaBr的浓度超过TTAL的浓度时,体系逐渐变为具有双折射纹理的均相,盐度越高溶液越澄清,直至达到NaBr的饱和溶解度为止。
     温度是影响聚集体存在的重要因素,因此,第三章中研究了温度对阴/阳离子表面活性剂混合体系的影响。选取的是TTAL/NaBr/H2O形成的“沉淀”/胶束两相体系,研究其在不同温度下的聚集行为变化。当温度升高到表面活性剂的链熔化温度以上,处在上层“沉淀”相中密堆积的多层囊泡结构转变为三维网络状双层结构并分布在整个体相溶液中,形成了具有双折射纹理的均相,并且体系的结构转化温度随含盐量的增加而升高。相转变的原因主要是由于温度的升高增加了囊泡双分子层间的Helfrich自由能,导致层与层间斥力增加,原来密堆积的双分子层肿胀后重新闭合形成三维网络状的双分子层结构造成的。
     除盐度和温度外,溶剂的极性也是影响表面活性剂聚集行为的重要因素。在第四章中用甘油来逐步替代“沉淀”/胶束两相体系中的水溶剂来研究溶剂极性对此含盐阴/阳离子表面活性剂混合体系的影响。两相体系是由阳离子表面活性剂十四烷基三甲基溴化铵(TTABr)与阴离子表面活性剂月桂酸钠(SL)按摩尔比1:1复配形成的TTAL和相同物质量的NaBr组成。当甘油占总溶剂的浓度高于40%时,会提高TTAL在混合溶剂中的cmc,降低在体相溶液中形成聚集体的聚集数,导致体系发生了由Lα单相到Lα/L1两相最终到L1单相的一系列相变突跃。而当甘油浓度低于40%时,体系中分布在上相的密堆积的囊泡双层发生肿胀,变成了均一的Lα单相,形成了尺寸比较小的囊泡。这是因为溶剂极性的改变会导致折射率发生变化,当溶剂的折射率与溶质折射率相匹配时,体系的Van der Waals引力最小这时斥力占主导,引起了双分子层的肿胀。
     剪切力是表面活性剂混合体系中经常引入的外加力,也是需要考虑的重要外界因素。由于阴/阳离子表面活性剂体系中两类分子间的静电作用力很强,剪切力对其作用相对较弱。因此我们在第五章中选取了非离子表面活性剂带有五个乙氧基的十三烷基醇(IT5)与阴离子表面活性剂十二烷基硫酸钠(SDS)形成的粘弹性较高的多层囊泡体系,研究不同剪切力对其结构的影响。将此溶液置于流变仪的转筒-转子夹具中,施以不同速率的剪切力,溶液中的多层囊泡的外层会被剪切力脱去,形成新的单层囊泡,数量密度的增加提高了整个体系的粘弹性。当溶液被置于乳化器中被施以不同的压力来引入剪切时,体系的粘弹性完全丧失,Cryo-TEM照片显示体系中形成了直径较小的单层囊泡,而囊泡之间的间距相对增大,因此体系不再会因为囊泡和囊泡之间的密集排列相互挤压而产生粘弹性。通过进一步的拟合发现对乳化器施加的压力和形成囊泡的直径间呈线性关系。因此,可以通过调节乳化器的压力来控制囊泡的大小。
     在论文的最后一章中研究了外加表面电荷和剪切力对两性离子表面活性剂十四烷基二甲基氧化胺C(14)DMAO和非离子表面活性剂带有三个乙氧基的十三烷基醇(IT3)混合体系形成的海绵(L3)相的影响。在不引入剪切力的前提下,向L3相中加入甲酸甲酯,其水解产物甲酸将可以C14DMAO质子化,这时原本自发曲率为零的L3相中的双分子层表面带有了正电荷,改变了双分子层的曲率,L3相转变为平面层状结构。对此层状结构施加一定的剪切力时,层状相才能闭合形成囊泡。同时证明了囊泡并不是热力学稳定体系。
It is well known that surfactants can self-assemble into various aggregates such as spherical micelles, rod-like micelles, worm-like micelles, vesicles, lamellar liquid crystallines and so on, when the concentration is above the critical micelle concentration (cmc). The wide-ranging applications of surfactant aggregates as drug delivery, selective biomembranes and microreactors depend on the structure and properties of aggregates. The synergistic effect of mixed surfactant systems makes them with fascinating properties, such as low critic aggregates concentration, low surface tension, colorful morphologies of colloid particles. Besides the properties of surfactants, total concentration, some external conditions such as ionic strength, temperature, solvent and shear force also can affect the phase behavior of surfactant aggregates.
     In this thesis we investigate the phase transition of surfactant aggregates influenced by external conditions in order to control the morphologies of colloid particles. The outline and contents of this doctoral thesis are as follows:
     ChapterⅠis a brief introduction of basic knowledge of colloid and interface science and the research background and recent improvement of cationic and anionic surfactant mixed system. The object and scientific significance of this thesis are also discussed at the end of this chapter.
     In chapterⅡ-Ⅳthe phase behavior of cat-anionic surfactant system influenced by ionic strength, temperature and solvent was investigated in more detail. In chapterⅡthe phase transition of salt-free catanionic (mixtures of cationic and anionic surfactants) tetradecyltrimethylammonium laurate (TTAL) system affected by salt (NaBr) was described. With increasing concentration of NaBr, the salt-free catanionic birefringent Lα-phase formed by cationic tetradecyltrimethylammonium hydroxide (TTAOH) and lauric acid at equlimolar mixtures was transferred into a two-phase precipitate/L1-phase and finally a birefringent La-phase again at much higher salt concentration. The interlamellar distance of the precipitated vesicles is much smaller than that of salt-free or high-salinity catanionic vesicles. It is therefore supposed that the phase transition is aroused from the reduction of the repulsive between the bilayers by the excess salts and the interlamellar forces between the bilayers become attractive.
     In ChapterⅢ, the phase behavior of precipitate/L1 two-phase system with different amount of NaBr was investigated at different temperature. These densely packed multilamellar vesicles of two-phase system can be transformed into three-dimemtional network lamellar at high temperature. This phase transition is progressive process and happens at the chain melting temperature of surfactants. We also found that the phase transition temperature (Tm) was influenced by adding different amounts of salt but not by being diluted. This is the first time to observe the phase conversion from catianionic surfactant vesicles to bilayer networks triggered by chain melting, which the phase structural transition should arise from the enhanced membrane elasticity accompanying the catanionic surfactant state fluctuations on chain melting and the solvent-associated interactions including cationic and anionic surfactant electrostatic interaction that favor a change in membrane curvature. The energy of the fluctuation attained by heating surpasses the loss of the edge energy (the hydrocarbon tails of the surfactant bilayers are exposed to water). And then the multilamellar vesicles open up around the chain melting temperature and restructure to three dimensional networks.
     Besides ionic strength and temperature, the polarity of the solvent also plays an important role in the morphology of surfactant aggregates. In chapter IV we found that the swelling of lamellar phase can be induced by the replacement of solvent in tetradecyltrimethylammonium bromide (TTABr) and sodium laurate (SL) aqueous solution which contains cream floating precipitates on the upper phase and L1-phase (micelles) at the lower phase. Phase transition, from cream floating precipitates to swelling birefringent vesicle phase, La/L1 two phase, and finally to micelle phase, can be induced by adding glycerin as solvent in aqueous solution. At first, densely packed multilamellar vesicles of cream floating precipitates on the upper phase swelled to the whole phase with increasing the content of glycerin. The replacement of solvent lowers the turbidity of the dispersion and swells the interlamellar distance between the bilayers, which is explained by matching of refractive index of the solvent to the refractive index of the bilayers of the surfactant mixtures. With more glycerin, the swelling La phase transfered La/L1 two-phase, and finally L1 phase (micelles). This phase transition can also be explained because of increasing cmc of cationic and anionic (catanionic) surfactant mixture (TTABr and SL) at high glycerin concentration. The phase transition induced by addition of sorbitol can also be studied and compared to the case of adding glycerin. These results may direct toward acquiring an understanding of the phase transition mechanism of catanionic surfactants induced by solvents.
     Because of the high electrostatic interaction of cat-anionic surfactant system, shear force almost can not influence the morphology of cat-anionic surfactant aggregates. So in chapter V we chose viscoelastic multilamellar vesicle phase formed by certain amount of nonionic surfactant, polyethylene glycol ether of tridecyl alcohol with the average number of ethylene oxide of 5 (CH3(CH2)(12)(OCH2CH2)5OH, abbreviated Trideceth-5 or IT5) and anionic surfactant SDS (sodium dodecyl sulfate) in aqueous solution and investigated in different shear field. The bilayers of multilamellar vesicles will be stripped off and become densely packed unilamellar vesicles by shear which increases the viscoelasticity of the system. However, through homogenizer the new-formed unilamellar vesicles become so small that they have relative larger distance between each other. The vesicles will not be crowded any more and can easily pass each other under shear. So the unilamellar vesicles through homogenizer only have very low viscoelasticity and flow birefringence. It takes very long time for the unilamellar vesicles to come back to the original state. So it is a good method to control the size of the vesicles.
     In the last chapter we studied the influence of surface charges and shear force simultaneously to the nonionic surfactant system. A sponge phase (L3 phase) was observed in the mixed system of nonionic surfactants, polyethylene glycol ether of tridecyl alcohol with the average number of ethylene oxide of 3 (CH3(CH2)(12)(OCH2CH2)3OH, abbreviated Trideceth-3) and tetradecyldimethylamino oxide , abbreviated C(14)DMAO), in aqueous solution. The L3 phase can be transferred to lamellar phase (L(αl) phase) after the bilayer was protonated by the formic acid formed through the hydrolysis of methylformate. The L(αl) phase can be transformed into multilamellar vesicles (L(αv) phase) under shear. The properties of L3 phase were investigated by conductivity and rheology measurements. The phase transition from L3 to vesicles was characterized by rheology measurements,2H NMR spectra, polarized microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM) observations.We hope that the report of the controlled phase transition through protonation and shearing forces in nonionic surfactant mixtures may direct primarily us how to achieve the phase transition in surfactant solution by changing the conditions and secondarily to acquire the applications such as the controlled materials from the phase transition as templates.
引文
[1]Tanford, C.'The Hydrophobic Effect:formation of micelles and biological membranes'John Wiley& Sons,1978, USA.
    [2]Mitchell, D. J.; Ninham, B. W., Micelles, vesicles and microemulsions J. Chem. Soc, Faraday Trans.2 1981,77,601-629.
    [3]Israelachvili, J. N. Intermolecular and Surface Forces, Academic Press, London, 1985, p.251.
    [4]Seddon, J. M., Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1990,1031 (1),1-69.
    [5]Helfrich, W.,1981, Amphiphilic mesophases made of defects, in:Physics of Defects, eds R. Balian, M. Kleman and J.P. Poirier (North-Holland, Amsterdam) pp. 715-755.
    [6]Winterhalter, M.; Helfrich, W., Bending elasticity of electrically charged bilayers: coupled monolayers, neutral surfaces, and balancing stresses. J. Phys. Chem.1992, 96(1),327-330.
    [7]Zapf, A.; Beck, R.; Platz, G.; Hoffmann, H., Calcium surfactants:a review. Adv. Colloid Interface Sci.2003,100-102,349-380.
    [8]Leermakers, F. A. M.; Scheutjens, J. M. H. M., Statistical thermodynamics of association colloids.2. Lipid vesicles. J. Phys. Chem.1989,93 (21),7417-7426.
    [9]Safran, S. A.; Pincus, P.; Andelman, D., Theory of Spontaneous Vesicle Formation in Surfactant Mixtures. Science 1990,248 (4953),354-356.
    [10]Laughlin, R. G., Equilibrium vesicles:fact or fiction? Colloids Surf., A 1997,128 (1-3),27-38.
    [11]Helfrich, W., Lyotropic lamellar phases. J. Phys.:Condens. Matter 1994, (23A), A79-A92.
    [12]Marsh, D., Analysis of the chainlength dependence of lipid phase transition temperatures:Main and pretransitions of phosphatidylcholines; main and non-lamellar transitions of phosphatidylethanolamines, Biochim. Biophys. Acta 1991,1062,1-6.
    [13]Seddon, J. M.; Cevc, G.; Marsh, D., Calorimetric studies of the gel-fluid (L.beta.-L.alpha.) and lamellar-inverted hexagonal (L.alpha.-HII) phase transitions in dialkyl-and diacylphosphatidylethanolamines. Biochemistry 1983,22 (5), 1280-1289.
    [14]Cevc, G., How membrane chain melting properties are regulated by the polar surface of the lipid bilayer, Biochemistry 1987,26,6305-6310.
    [15]Rand, R. P.; Fuller, N.; Parsegian, V. A.; Rau, D. C, Variation in hydration forces between neutral phospholipid bilayers:evidence for hydration attraction. Biochemistry 1988,27 (20),7711-7722.
    [16]Cevc, G., Isothermal lipid phase transitions. Chem. Phys. Lipids 1991,57 (2-3), 293-307.
    [17]Jonsson B., Lindman B., Holmberg K., Kronberg B. Surfactants and Polymers in Aqueous Solution:John Wiley& Sons,1998.
    [18]Myers D. Surfaces, interfaces, and colloids:Wiley-VCH New York,1999.
    [19]Clint, J. H., Micellization of mixed nonionic surface active agents. J. Chem. Soc, Faraday Trans.21975,71,1327-1334.
    [20]Rathman, J. F.; Scamehorn, J. F., Counterion binding on mixed micelles. J. Phys. Chem.1984,88 (24),5807-5816.
    [21]Shedlovsky, L.; Jakob, C. W.; Epstein, M. B., Study of pNa of aqueous solutions of sodium decyl, dodecyl, and tetradecyl sulfates by E.M.F. measurements. J. Phys. Chem.1963,67(10),2075-2078.
    [22]Lange, H. Kolloid Z.u.Z. Polymere.1953,131,96-101.
    [23]Xia, J; Dubin, P. L.; Zhang, H. In Mixed Surfactant Systems; Holland, P. M.; Rubingh, D. N., Eds.; ACS Symposium Series, American Chemical Society: Washington, DC,1992, Chapter 14.
    [24]Lange, H.; Beck, K. H. Kolloid-Z.u.Z. Polymere 1973,251,424-431.
    [25]Clint, J. H., Micellization of mixed nonionic surface active agents. J. Chem. Soc, Faraday Trans.21975,71,1327-1334.
    [26]Nishikido, N.; Morio, Y.; Matuura, R. Bull. Chem. Soc. Japan 1975,48,1387.
    [27]Hoffmann H., Poessnecker G. The Mixing Behavior of Surfactants. Langmuir,1994, 10(2),381-389.
    [28]Kamrath, R. F.; Franses, E. I. In Phenomena in Mixed Surfactant Systems; Scamehorn, J. F, Ed.; ACS Symposium Series 311, American Chemical Society: Washington, DC,1986, pp 44-60.
    [29]Kamrath, R. F.; Franses, E. I., Mass-action model of mixed micellization. J. Phys. Chem.1984,88 (8),1642-1648.
    [30]Wall, S.; Elvingson, C., Equilibrium and kinetic properties of mixed micelles. J. Phys. Chem.1985,89(12),2695-2705.
    [31]Kamrath, R. F.; Franses, E. I., Mass-action model of mixed micellization. J. Phys. Chem.1984,88 (8),1642-1648.
    [32]Wall, S.; Elvingson, C, Equilibrium and kinetic properties of mixed micelles. J. Phys. Chem.1985,89 (12),2695-2705.
    [33]Stecker, M. M.; Benedek, G. B., Theory of multicomponent micelles and microemulsions. J. Phys. Chem.1984,88 (26),6519-6544.
    [34]Puwada, S.; Blankschtein, D. In Mixed Surfactant Systems; Holland, P. M.; Rubingh, D. N., Eds.; ACS Symposium Series, American Chemical Society:Washington, DC, 1992, Chapter 5.
    [35]Lucassen-Reynders, E. H.; Lucassen, J.; Giles, D., Surface and bulk properties of mixed anionic/cationic surfactant systems i. equilibrium surface tensions. J. Colloid Interface 5ci.1981,81 (1),150-157.
    [36]Graciaa, A.; Ben Ghoulam, M.; Marion, G.; Lachaise, J., Critical concentrations and compositions of mixed micelles of sodium dodecylbenzenesulfonate, tetradecyltrimethylammonium bromide and polyoxyethylene octylphenols. The J. Phys. Chem.1989,93 (10),4167-4173.
    [37]Ogino, K.; Abe, M. Mixed surfactant systems. Surfactant science series.1992, volume 46.
    [38]Bergstrom, M., Synergistic Effects in Mixtures of an Anionic and a Cationic Surfactant. Langmuir 2000,77 (4),993-998.
    [39]Graciaa, A.; Ben Ghoulam, M.; Marion, G.; Lachaise, J., Critical concentrations and compositions of mixed micelles of sodium dodecylbenzenesulfonate, tetradecyltrimethylammonium bromide and polyoxyethylene octylphenols. J. Phys. Chem.1989,93 (10),4167-4173.
    [40]Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A., Phase Behavior of Aqueous Mixtures of Cetyltrimethylammonium Bromide (CTAB) and Sodium Octyl Sulfate (SOS). J. Phys. Chem.1996,100 (14),5874-5879.
    [41]Iampietro, D. J.; Kaler, E. W., Phase Behavior and Microstructure of Aqueous Mixtures of Cetyltrimethylammonium Bromide and Sodium Perfluorohexanoate. Langmuir 1999,75 (25),8590-8601.
    [42]赵国玺,程玉珍,欧进国.正离子表面活性剂与负离子表面活性剂在水溶液中的相互作用.化学学报,1980,38(5),409-420.
    [43]丁慧君,吴贤亮,赵国玺.十二烷基硫酸钠与溴化正辛基三甲基铵混合表面活性剂水溶液的表面吸附及胶团形成.化学学报,1985,43,603-610
    [44]Nan, Y.; Liu, H.; Hu, Y., Aqueous two-phase systems of cetyltrimethylammonium bromide and sodium dodecyl sulfonate mixtures without and with potassium chloride added. Colloids Surf., A 2005,269 (1-3),101-111.
    [45]Nan, Y.-Q.; Liu, H.-L.; Hu, Y., Composition, microstructure and rheology of aqueous two-phase cationic/anionic surfactant systems. Colloids Surf, A 2006, 277 (1-3),230-238.
    [46]Yin, H.; Mao, M.; Huang, J.; Fu, H., Two-Phase Region in the DTAB/SL Mixed Surfactant System. Langmuir 2002,18 (24),9198-9203.
    [47]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003.
    [48]Chen, L.; Xiao, J.-X.; Ruan, K.; Ma, J., Homogeneous Solutions of Equimolar Mixed Cationic-Anionic Surfactants. Langmuir 2002,18 (20),7250-7252.
    [49]史东,谷惠先,刘晓英.阴/阳离子表面活性剂复配体系的物化性能——不同乙氧基化数对溶解性及表面张力的影响.日用化学工业.2004,34(4),229-231
    [50]Raghavan, S. R.; Fritz, G.; Kaler, E. W., Wormlike Micelles Formed by Synergistic Self-Assembly in Mixtures of Anionic and Cationic Surfactants. Langmuir 2002,18 (10),3797-3803.
    [51]Regev, O.; Khan, A., Alkyl Chain Symmetry Effects in Mixed Cationic-Anionic Surfactant Systems. J. Colloid Interface Sci.1996,182 (1),95-109.
    [52]Sjobom, M. B.; Edlund, H., Dependence of Alkyl Chain Asymmetry on the Phase Equilibria of Three Catanionic Surfactant Mixtures Containing Dodecyltrimethylammonium Chloride-Sodium Alkylcarboxylate-Water. Langmuir 2002,18(22),8309-8317.
    [53]朱(王步)瑶,张镤,黄建滨.脂肪酸盐-烷基吡啶盐混合体系的双水相物理化学学报,1999,15,110-115
    [54]Kaler, E. W.; Herrington, K. L.; Murthy, A. K.; Zasadzinski, J. A. N., Phase behavior and structures of mixtures of anionic and cationic surfactants. J. Phys. Chem.1992,96 (16),6698-6707.
    [55]Herrington, K. L.; Kaler, E. W.; Miller, D. D.; Zasadzinski, J. A.; Chiruvolu, S., Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). J. Phys. Chem.1993,97 (51), 13792-13802.
    [56]Brasher, L. L.; Herrington, K. L.; Kaler, E. W., Electrostatic Effects on the Phase Behavior of Aqueous Cetyltrimethylammonium Bromide and Sodium Octyl Sulfate Mixtures with Added Sodium Bromide. Langmuir 1995,11 (11),4267-4277.
    [57]Brasher, L. L.; Kaler, E. W., A Small-Angle Neutron Scattering (SANS) Contrast Variation Investigation of Aggregate Composition in Catanionic Surfactant Mixtures. Langmuir 1996,12 (26),6270-6276.
    [58]Koehler, R. D.; Raghavan, S. R.; Kaler, E. W., Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J. Phys. Chem. B 2000,104 (47),11035-11044.
    [59]Liu, S.; Gonzalez, Y. I.; Kaler, E. W., Structural Fixation of Spontaneous Vesicles in Aqueous Mixtures of Polymerizable Anionic and Cationic Surfactants. Langmuir 2003,19 (26),10732-10738.
    [60]Karukstis, K. K.; McCormack, S. A.; McQueen, T. M.; Goto, K. F., Fluorescence Delineation of the Surfactant Microstructures in the CTAB-SOS-H2O Catanionic System. Langmuir 2003,20 (1),64-72.
    [61]Bai, G.; Wang, Y.; Wang, J.; Han, B.; Yan, H., Microcalorimetric Studies of the Interaction between DDAB and SDS and the Phase Behavior of the Mixture. Langmuir 2001,77(12),3522-3525.
    [62]Xia, Y.; Goldmints, I.; Johnson, P. W.; Hatton, T. A.; Bose, A., Temporal Evolution of Microstructures in Aqueous CTAB/SOS and CTAB/HDBS Solutions. Langmuir 2002,75(10),3822-3828.
    [63]Shioi, A.; Hatton, T. A., Model for Formation and Growth of Vesicles in Mixed Anionic/Cationic (SOS/CTAB) Surfactant Systems. Langmuir 2002,18 (20), 7341-7348.
    [64]Hebrant, M.; Tondre, C., Sodium Octyl Sulfate/Cetyltrimethylammonium Bromide Catanionic Vesicles: Aggregate Composition and Probe Encapsulation?AU-Caillet, C. Langmuir 2000,16 (23),9099-9102.
    [65]Kondo, Y.; Uchiyama, H.; Yoshino, N.; Nishiyama, K.; Abe, M., Spontaneous Vesicle Formation from Aqueous Solutions of Didodecyldimethylammonium Bromide and Sodium Dodecyl sulfate Mixtures. Langmuir 1995,77 (7),2380-2384.
    [66]Zana, R.; Levy, H.; Danino, D.; Talmon, Y.; Kwetkat, K., Mixed Micellization of Cetyltrimethylammonium Bromide and an Anionic Dimeric (Gemini) Surfactant in Aqueous Solution. Langmuir 1997,13 (3),402-408.
    [67]Villeneuve, M.; Kaneshina, S.; Imae, T.; Aratono, M., Vesicle-micelle Equilibrium of Anionic and Cationic Surfactant Mixture Studied by Surface Tension. Langmuir 1999,15 (6),2029-2036.
    [68]Marques, E.; Khan, A.; da Graca Miguel, M.; Lindman, B., Self-assembly in mixtures of a cationic and an anionic surfactant:the sodium dodecyl sulfate-didodecyldimethylammonium bromide-water system. J. Phys. Chem.1993, 97(18),4729-4736.
    [69]Kaler, E.; Murthy, A.; Rodriguez, B.; Zasadzinski, J., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989,245 (4924), 1371-1374.
    [70]Marques, E. F.; Regev, O.; Khan, A.; da Graca Miguel, M.; Lindman, B., Vesicle Formation and General Phase Behavior in the Catanionic Mixture SDS-DDAB-Water. The Anionic-Rich Side. J. Phys. Chem. B 1998,102 (35), 6746-6758.
    [71]Marques, E. F.; Regev, O.; Khan, A.; Miguel, M. D.; Lindman, B., Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-water. The cationic-rich side. J. Phys. Chem. B 1999,103 (39),8353-8363.
    [72]Lucassen-Reynders, E. H.; Lucassen, J.; Giles, D., Surface and bulk properties of mixed anionic/cationic surfactant systems i. equilibrium surface tensions. J. Colloid Interface Sci.1981,81 (1),150-157.
    [73]Zhao, G.; Yu, W. Vesicles from Mixed Sodium 10-Undecenoate-Decyltrimethylammonium Bromide Solutions. J. Colloid Interface Sci.1995,173(1),159-164.
    [74]Safran S. A., Pincus P., Andelman D. Theory of Spontaneous Vesicle Formation in Surfactant Mixtures. Science,1990,248(4953),354-356.
    [75]Safran S. A. Statistical thermodynamics of surfaces, interfaces, and membranes: Westview Press,2003.
    [76]Safran S. A., Pincus P. A., Andelman D., MacKintosh F. C. Stability and phase behavior of mixed surfactant vesicles. Phys. Rev. A:At. Mol. Opt. Phys.,1991,43(2), 1071-1078.
    [77]Zemb, T.; Dubois, M.; Deme, B.; Gulik-Krzywicki, T., Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 1999,283 (5403), 816-819.
    [78]Dubois, M.; Deme, B.; Gulik-Krzywicki, T.; Dedieu, J. C.; Vautrin, C.; Desert, S.; Perez, E.; Zemb, T., Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 2001,411 (6838),672-675.
    [79]Dubois, M.; Lizunov, V.; Meister, A.; Gulik-Krzywicki, T.; Verbavatz, J. M.; Perez, E.; Zimmerberg, J.; Zemb, T., Shape control through molecular segregation in giant surfactant aggregates. Proc. Natl. Acad. Sci. U. S. A.2004,101 (42),15082-15087.
    [80]Horbaschek, K.; Hoffmann, H.; Thunig, C., Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J. Colloid Interface Sci.1998,206 (2),439-456.
    [81]Hao, J. C.; Liu, W. M.; Xu, G. Y.; Zheng, L. Q., Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 2003,19 (26),10635-10640.
    [82]Song A., Dong S., Jia X., Hao J., Liu W., Liu T. An onion-phase in salt-free zero charged catanionic surfactant solutions. Angew. Chem. Int. Ed.,2005,44(14), 4018-4021.
    [83]Rami, Abdel-Rahem. Ph.D. thesis, Bayreuth University,2003.
    [84]Fincham, W. H. A.; Freeman, M. H. Optics, Ninth edition,1980,340-355.
    [85]Hecht, E. Optics, Third edition,1999,319-345.
    [86]Michael, B. Handbook of optics,1995, volume 1, P 5.1-5.29.
    [87]Yamashita, Y.; Savchuk, K.; Beck, R.; Hoffmann, H. Vesicle phases from alkyldimethylaminoxides and strong acids. The Hofrneister series of anions and the L1/Lα-phase transition. Curr. Opion. Colloid Interface Sci.2004,9,173-177.
    [88]Hoffmann, H. Fascinating phenomena in surfactant chemistry. Adv. Mater.1994,6, 116-129.
    [89]Reimerj L. Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, With 264 Figures, Springer-Verlag Berlin Heidelberg NewYork Tokyo 1984.
    [90]Hunter, Robert J. Introduction to Modern Colloid Science, Oxford science publications,1993.
    [91]Miiller, T.; R. Guggenheim.; Diiggelin, M.; Scheidegger, C. Freeze-fracturing for conventional and field emission low-temperature scanning electron microscopy:the scanning cryo unit SCU 020. Journal of Microscopy,1991,161,73-83.
    [92]Allison, D. P.; Daw, C. S.; Rorvik, M. C. "The Construction and Operation of a Simple Inexpensive Slam Freezing Device for Electron Microscopy," J. Microscopy 1987,147,103-108.
    [93]Ichimura, T.; Hashimoto, P. H., Fine structure of basement membranes of the capillary endothelium and perivascular astrocyte in some circumventricular organs by three-dimensional SEM. Journal of Ultrastructure Research 1984,86 (3), 220-227.
    [94]Erik, K. Dispersions characterization, testing, and Surfactant science series.1999, 84.
    [95]Everett, D.H. Basic Principles of Colloid Science, Royal Society of Chemistry: London.1988. M
    [96]Gulik-Krzywicki, T.; Aggerbeck, L.P.; Larsson, K. The use of freeze-fracture and freezeetching electron microscopy for phase analysis and structure determination of lipid systems, in:Surfactants in Solution, eds K. Mittal and B. Lindman (Plenum, New York) 1984, Vol.1, pp.237-257.
    [97]Zana, R. Surfactant Solutions:New Methods of Investigation:Marcel Dekker New York,1986.
    [98]Hubbard P. L., McGrath K. M., Callaghan P. T. Orientational anisotropy in the polydomain lamellar phase of a lyotropic liquid crystal. Langmuir,2006,22(9), 3999-4003.
    [99]Borne, J.; Nylander, T.; Khan A. Microscopy, SAXD, and NMR Studies of Phase Behavior of the Monoolein-Diolein-Water System. Langmuir,2000,16(26), 10044-10054.
    [100]Mele, S.; Ninham, B. W.; Monduzzi, M. Phase Behavior of Homologous Perfluoropolyether Surfactants:NMR, SAXS, and Optical Microscopy. J. Phys. Chem. B,2004,108,17751-17759.
    [101]Dvinskikh S. V.; Castro V.; Sandstrom D. Efficient solid-state NMR methods for measuring heteronuclear dipolar couplings in unoriented lipid membrane systems. Phys. Chem. Chem. Phys.,2005,7(4),607-613.
    [102]李干佐,曾宪诚.2H—NMR法研究C14BE/正丁醇/正庚烷/水体系中的液晶结构.科学通报,1994,39(016),1478-1481.
    [103]Gustafsson J.; Oraedd G.; Lindblom G.; Olsson U.; Almgren M. A Defective Swelling Lamellar Phase. Langmuir,1997,13,852-860.
    [104]Lukaschek, M.; Miiller, S.; Hasennindl, A.; Schmidt, C.; Grabowski, D. A. Lamellar lyomesophases under shear as studied by deuterium nuclear magnetic resonance. Colloid Polym. Sci.1996,274 (1),1-7.
    [105]Einstein, A. A new determination of molecular dimensions. Ann. Phys.1906,19, 289-293.
    [106]Einstein, A. Anew determination of molecular dimensions (2). Ann. Phys.1911,34, 591-597.
    [107]Hoffmann, H.; Rauscher, A.; Gradzielski, M.; Schulz, S. F. Influence of ionic surfactants on the viscoelastic properties of zwitterionic surfactant solutions. Langmuir 1992,8 (9),2140-2146.
    [108]Xu, Z.; Lau, S.; Bohn, P. W. The role of nitrogen and sulfur heterocycles in corrosion inhibition.1. Initial steps in the adsorption of benzotriazole at copper (Ⅰ) and copper(Ⅱ) oxides. Langmuir 1993,9 (4),993-1000.
    [109]Barnes, H. A.; Hutton, J. F.; Walters, K. In An Introduction to Rheology, Rheol. Ser.3. New York:Elsevier,1989.
    [110]Cates, M. E. Contribution to the ACS-Symp. on Polymeric Microemulsions and Polymer-Microemulsion Interaction. New Orleans,1987.
    [111]Hoffmann, H.; Thunig, C.; Schmiedel, P.; Munkert, U.; The rheological behavior of different viscoelastic surfactant solutions:systems with and without a yield stress value. Tenside Surf. Det.1994,31,389-400.
    [1]Israelachvili, J. N. Intermolecular and Surface Forces; Academic Press:New York, 1992.
    [2]Herrington, K. L.; Kaler, E. W.; Miller, D. D.; Zasadzinski, J. A.; Chiruvolu, S., Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). J. Phys. Chem.1993,97 (51), 13792-13802.
    [3]Sonderman, O.; Herrington, K. L.; Kaler, E. W.; Miller, D. D., Transition from Micelles to Vesicles in Aqueous Mixtures of Anionic and Cationic Surfactants. Langmuir 1997,13 (21),5531-5538.
    [4]Bergstrom, M.; Pedersen, J. S.; Schurtenberger, P.; Egelhaaf, S. U., Small-angle neutron scattering (SANS) study of vesicles and lamellar sheets formed from mixtures of an anionic and a cationic surfactant. J. Phys. Chem. B 1999,103 (45), 9888-9897.
    [5]Villeneuve, M.; Kaneshina, S.; Imae, T.; Aratono, M., Vesicle-micelle equilibrium of anionic and cationic surfactant mixture studied by surface tension. Langmuir 1999,15 (6),2029-2036.
    [6]O'Connor, A. J.; Hatton, T. A.; Bose, A., Dynamics of micelle-vesicle transitions in aqueous anionic/cationic surfactant mixtures. Langmuir 1997,13 (26),6931-6940.
    [7]Ninham, B. W.; Evans, D. F.; Wei, G. J., The curious world of hydroxide surfactants. Spontaneous vesicles and anomalous micelles. J. Phys. Chem.1983,87 (24), 5020-5025.
    [8]Kaler, E.; Murthy, A.; Rodriguez, B.; Zasadzinski, J., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989,245 (4924), 1371-1374.
    [9]Wang, K.; Karlsson, G.; Almgren, M., Aggregation Behavior of Cationic Fluorosurfactants in Water and Salt Solutions. A CryoTEM Survey. J. Phys. Chem. B 1999,103 (43),9237-9246.
    [10]Oberdisse, J.; Regev, O.; Porte, G., Experimental study of the micelle-to-vesicle transition. J. Phys. Chem. B 1998,102 (7),1102-1108.
    [11]Marques, E. F.; Regev, O.; Khan, A.; Miguel, M. D.; Lindman, B., Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-water. The cationic-rich side. J. Phys. Chem. B 1999,103 (39),8353-8363.
    [12]Bergmeier, M.; Hoffmann, H.; Thunig, C., Preparation and Properties of Ionically Charged Lamellar Phases That Are Produced without Shearing. J. Phys. Chem. B 1997,101 (30),5767-5771.
    [13]Horbaschek, K.; Hoffmann, H.; Thunig, C., Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J. Colloid Interface Sci.1998,206 (2),439-456.
    [14]Horbaschek, K.; Hoffmann, H.; Hao, J. C., Classic L-alpha phases as opposed to vesicle phases in cationic-anionic surfactant mixtures. J. Phys. Chem. B 2000,104 (13),2781-2784.
    [15]Hao, J. C.; Liu, W. M.; Xu, G. Y.; Zheng, L. Q., Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 2003,19 (26),10635-10640.
    [16]Hao, J. C.; Hoffmann, H., Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr. Opin. Colloid Interface Sci.2004,9 (3-4), 279-293.
    [17]Li, H. G.; Jia, X. F.; Li, Y.; Shi, X. W.; Hao, J. C., A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C-60 in water. J. Phys. Chem. B 2006,110(1),68-74.
    [18]Kawasaki, H.; Imahayashi, R.; Tanaka, S.; Almgren, M.; Karlsson, G.; Maeda, H., Vesicle-micelle transition and the stability of the vesicle dispersion in mixtures of tetradecyldimethylamine oxide hemihydrochloride and sodium naphthalenesulfonate. J. Phys. Chem. B 2003,107(33),8661-8668.
    [1]Lasic, D. D. Liposomes; Elsevier:Amsterdam,1993.
    [2]Templeton, N. S.; Lasic, D. D., New directions in liposome gene delivery Mol. Biotechnol.1999,11,175-180.
    [3]Antonietti, M.; Foster, S., Vesicles and Liposomes:A Self-Assembly Principle Beyond Lipids. Adv. Mater.2003,15 (16),1323-1333.
    [4]Menon, S. V. G.; Manohar, C.; Lequeux, F., Vesicle to micelle transitions induced by Coulomb correlations in two dimensions. Chem. Phys. Lett.1996,263 (6), 727-732.
    [5]Mendes, E.; Narayanan, J.; Oda, R.; Kern, F.; Candau, S. J.; Manohar, C., Shear-Induced Vesicle to Wormlike Micelle Transition. J. Phys. Chem. B 1997,101 (13),2256-2258.
    [6]Mendes, E.; Oda, R.; Manohar, C; Narayanan, J., A Small-Angle Neutron Scattering Study of a Shear-Induced Vesicle to Micelle Transition in Surfactant Mixtures. J. Phys. Chem. B 1998,102 (2),338-343.
    [7]Horbaschek, K.; Hoffmann, H.; Thunig, C, Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J. Colloid Interface Sci.1998,206 (2),439-456.
    [8]Buwalda, R. T.; Stuart, M. C. A.; Engberts, J. B. F. N., Wormlike Micellar and Vesicular Phases in Aqueous Solutions of Single-Tailed Surfactants with Aromatic Counterions. Langmuir 2000,16 (17),6780-6786.
    [9]Majhi, P. R.; Blume, A., Temperature-Induced Micelle-Vesicle Transitions in DMPC-SDS and DMPC-DTAB Mixtures Studied by Calorimetry and Dynamic Light Scattering. J. Phys. Chem. B 2002,106 (41),10753-10763.
    [10]Bryskhe, K.; Bulut, S.; Olsson, U., Vesicle Formation from Temperature Jumps in a Nonionic Surfactant System. J. Phys. Chem. B 2005,109 (19),9265-9274.
    [11]Yin, H.; Lei, S.; Zhu, S.; Huang, J.; Ye, J., Micelle-to-Vesicle Transition Induced by Organic Additives in Catanionic Surfactant Systems. Chem.-Eur. J.2006,12 (10), 2825-2835.
    [12]Kaler, E.; Murthy, A.; Rodriguez, B.; Zasadzinski, J., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989,245 (4924), 1371-1374.
    [13]Zemb, T.; Dubois, M.; Deme, B.; Gulik-Krzywicki, T., Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 1999,283 (5403), 816-819.
    [14]Khan, A.; Marques, E. F., Synergism and polymorphism in mixed surfactant systems. Curr. Opin. Colloid Interface Sci.1999,4 (6),402-410.
    [15]Dubois, M; Deme, B.; Gulik-Krzywicki, T.; Dedieu, J. C.; Vautrin, C.; Desert, S.; Perez, E.; Zemb, T., Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 2001,411 (6838),672-675.
    [16]Shen, Y. W.; Hao, J. C.; Hoffmann, H., Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles. Soft Matter 2007, 3(11),1407-1412.
    [17]Kawasaki, H.; Imahayashi, R.; Tanaka, S.; Almgren, M.; Karlsson, G.; Maeda, H., Vesicle-micelle Transition and the Stability of the Vesicle Dispersion in Mixtures of Tetradecyldimethylamine Oxide Hemihydrochloride and Sodium Naphthalenesulfonate. J. Phys. Chem. B 2003,107 (33),8661-8668.
    [18]Snyder, R. G., Vibrational spectra of crystalline n-paraffms:Ⅱ. Intermolecular effects. J. Mol. Spectrosc.1961,7 (1-6),116-144.
    [1]Shen, Y. W.; Hao, J. C.; Hoffinann, H.; Wu, Z. H., Reversible phase transition from vesicles to lamellar network structures triggered by chain melting. Soft Matter 2008, 4(4),805-810.
    [2]Shen, Y. W.; Hao, J. C.; Hoffinann, H., Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles. Soft Matter 2007,3 (11), 1407-1412.
    [3]Martin, M.; Swaebrick, J.; Ananthapadamanabhan, K. P., Eds. In Physical Pharmacy; Lea & Febiger Press:Philadelphia, PA,1983.
    [4]Corrin, M. L.; Harkins, W. D., The Effect of Solvents on the Critical Concentration for Micelle Formation of Cationic Soaps. J. Chem. Phys.1946,14 (10),640-641.
    [5]Paola, G. Di.; Belleau, B., Apparent Molal Volumes and Heat Capacities of Some Tetraalkylammonium Bromides, Alkyltrimethylammonium Bromides, and Alkali Halides in Aqueous Glycerol Solutions. Can. J. Chem.1975,55,3452-3461.
    [6]Aramaki, K.; Olsson, U.; Yamaguchi, Y.; Kunieda, H., Effect of water-soluble alcohols on surfactant aggregation in the C12CO8 system. Langmuir 1999,15 (19), 6226-6232.
    [7]Martino, A.; Kaler, E. W., The stability of lamellar phases in water, propylene glycol, and surfactant mixtures. Colloids Surf., A 1995,99 (2-3),91-99.
    [8]Lin, Y. N.; Alexandridis, P., Small-angle neutron scattering characterization of micelles formed by poly(dimethylsiloxane)-graft-polyether copolymers in mixed polar solvents. J. Phys. Chem. B 2002,106 (47),12124-12132.
    [9]Takisawa, N.; Thomason, M.; Bloor, D. M.; Wyn-Jones, E., Ultrasonic Relaxation and Electrochemical Studies of the Micellization of Sodium Decyl Sulfate and Decyltrimethylammonium Bromide in Glycerol/Water Mixtures. J. Colloid Interface Sci.1993,157 (1),77-81.
    [10]Palepu, R.; Gharibi, H.; Bloor, D. M.; Wyn-Jones, E., Electrochemical studies associated with the micellization of cationic surfactants in aqueous mixtures of ethylene glycol and glycerol. Langmuir 1993,9 (1),110-112.
    [11]Bakshi, M. S. Micelle formation by anionic and cationic surfactants in binary aqueous solvents. J. Chem. Soc. Faraday Trans.1993,89,4323-4326.
    [12]Cant, L.; Corti, M.; Degiorgio, V.; Hoffmann, H.; Ulbricht, W., Nonionic micelles in mixed water-glycerol solvent. J. Colloid Interface Sci.1987,116 (2),384-389.
    [13]Trindade, V. L.; de Souza, E. F., Application of the Pseudophase Ion Exchange Model to a Micellar Catalyzed Reaction in Water-Glycerol Solutions? AU-Ionescu, Lavinel G. Langmuir 2000,16 (3),988-992.
    [14]D'Errico, G.; Ciccarelli, D.; Ortona, O., Effect of glycerol on micelle formation by ionic and nonionic surfactants at 25 degrees C. J. Colloid Interface Sci.2005,286 (2), 747-754.
    [15]Yan, Y.; Hoffmann, H.; Makarsky, A.; Richter, W.; Talmon, Y., Swelling of L-alpha-phases by matching the refractive index of the water-glycerol mixed solvent and that of the bilayers in the block copolymer system of (EO)(15)-(PDMS)(15)-(EO)(15). J. Phys. Chem. B 2007,111 (23),6374-6382.
    [16]Hao, J. C.; Hoffmann, H.; Horbaschek, K., A vesicle phase that is prepared by shear from a novel kinetically produced stacked L-alpha-phase. J. Phys. Chem. B 2000, 104 (44),10144-10153.
    [17]Horbaschek, K.; Hoffmann, H.; Thunig, C., Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J. Colloid Interface Sci.1998,206 (2),439-456.
    [18]Dem, B.; Dubois, M.; Zemb, T., Swelling of a Lecithin Lamellar Phase Induced by Small Carbohydrate Solutes. Biochem. J.2002,82 (1),215-225.
    [19]Parsegian, V. A., In Van der Waals Forces; Cambridge University Press:Cambridge, UK,2005.
    [20]Hiemenz, P. C., In Principles of Colloid and Surface Chemistry,2nd revised ed.; Marcel Dekker Ltd.:New York,1985.
    [1]Hauser, H.; Gains, N.; Mueller, M., Vesiculation of unsonicated phospholipid dispersions containing phosphatidic acid by pH adjustment:physicochemical properties of the resulting unilamellar vesicles. Biochemistry 1983,22 (20), 4775-4781.
    [2]Kaler, E. W.; Herrington, K. L.; Murthy, A. K.; Zasadzinski, J. A. N., Phase behavior and structures of mixtures of anionic and cationic surfactants. J. Phys. Chem.1992,96 (16),6698-6707.
    [3]Roux, D.; Nallet, F.; Diat, O., Rheology of Lyotropic Lamellar Phases. EPL (Europhysics Letters) 1993, (1),53-58.
    [4]Lager, J.; Weigel, R.; Berger, K.; Hiltrop, K.; Richtering, W., Rheo-small-Angle-Light-Scattering Investigation of Shear-Induced Structural Changes in a Lyotropic Lamellar Phase. J. Colloid Interface Sci.1996,181 (2), 521-529.
    [5]Garrin, P.; Fave, J. P. A. A. J. L.; Ramakrishnan, S.; Baker, G. L., Conformation of substituted polyacetylenes in solution:relationship between electronic properties and local order. J. Phys. Ⅱ France 1992,2 (3),529-546.
    [6]Richtering, W., Investigation of shear-induced structures in lyotropic mesophases by scattering experiments. In Optical Methods and Physics of Colloidal Dispersions, 1997; pp 90-96.
    [7]Mendes, E.; Narayanan, J.; Oda, R.; Kern, F.; Candau, S. J.; Manohar, C., Shear-Induced Vesicle to Wormlike Micelle Transition. J. Phys. Chem. B 1997,101 (13),2256-2258.
    [8]Bergmeier, M.; Hoffmann, H.; Thunig, C., Preparation and Properties of Ionically Charged Lamellar Phases That Are Produced without Shearing. J. Phys. Chem. B 1997,101 (30),5767-5771.
    [9]Bergmeier, M.; Gradzielski, M.; Hoffmann, H.; Mortensen, K., Behavior of ionically charged lamellar systems under the influence of a shear field. J. Phys. Chem. B 1999,103 (9),1605-1617.
    [10]Lamprecht, A.; Ubrich, N.; Hombreiro Perez, M.; Lehr, C. M.; Hoffman, M.; Maincent, P., Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int. J. Pharm.1999,184 (1),97-105.
    [11]Mayhew, E.; Lazo, R.; Vail, W. J.; King, J.; Green, A. M., Characterization of liposomes prepared using a microemulsifier. Biochim. Biophys. Acta, Biomembr. 1984,775(2),169-174.
    [12]Talsma, H.; Ozer, A. Y.; van Bloois, L.; Crommelin, D. J. A., The Size Reduction of Liposomes with a High Pressure Homogenizer (Microfluidizer TM). Characterization of Prepared Dispersions and Comparison with Conventional Methods. Drug Dev. Ind. Pharm.1989,15 (2),197-207.
    [13]Brandl, M.; Bachmann, D.; Drechsler, M.; Bauer, K. H., Liposome Preparation by a New High Pressure Homogenizer Gaulin Micron Lab 40. Drug Dev. Ind. Pharm. 1990,16 (14),2167-2191.
    [14]Bachmann, D.; Brandl, M.; Gregoriadis, G., Preparation of liposomes using a Mini-Lab 8.30 H high-pressure homogenizer. Int. J. Pharm.1993,91 (1),69-74.
    [15]Lasic, D.D., Liposomes:From Physics to Applications, Elsevier Science B.V., Amsterdam,1993,523,77-78.
    [16]Brandl, M.; Drechsler, M.; Bachmann, D.; Tardi, C.; Schmidtgen, M.; Bauer, K.-H., Preparation and characterization of semi-solid phospholipid dispersions and dilutions thereof. Int. J. Pharm.1998,170 (2),187-199.
    [17]Kulkarni, S. B.; Betageri, G. V.; Singh, M., Factors affecting microencapsulation of drugs in liposomes. J. Microencapsulation 1995,12 (3),229-246.
    [18]Bamadas-Rodriguez, R.; Sabes, M., Factors involved in the production of liposomes with a high-pressure homogenizer. Int. J. Pharm.2001,213 (1-2),175-186.
    [1]Porte, G.; Appell, J.; Bassereau, P.; Marignan, J., L3:a topology driven transition in phases of infinite fluid membranes. J. Phys. France 1989,50 (11),1335-1347.
    [2]Gazeau, D.; Bellocq, A. M.; Roux, D.; Zemb, T., Experimental Evidence for Random Surface Structures in Dilute Surfactant Solutions. EPL (Europhysics Letters) 1989, (5),447-452.
    [3]Mitchell, D. J.; Tiddy, G. J. T.; Waring, L.; Bostock, T.; McDonald, M. P., Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points). J. Chem Soc, Faraday Trans.1 1983,79, 975-1000.
    [4]Gomati, R.; Appell, J.; Bassereau, P.; Marignan, J.; Porte, G., Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride-hexanol-brine. J. Phys. Chem.1987,91 (24), 6203-6210.
    [5]Porte, G.; Marignan, J.; Bassereau, P.; May, R., Shape transformations of the aggregates in dilute surfactant solutions:a small-angle neutron scattering study. J. Phys. France 1988,49 (3),511-519.
    [6]Anderson, D.; Wennerstroem, H.; Olsson, U., Isotropic bicontinuous solutions in surfactant-Solvent systems:the L3 phase. J. Phys. Chem.1989,93 (10),4243-4253.
    [7]Gazeau, D.; Bellocq, A. M.; Roux, D.; Zemb, T., Experimental Evidence for Random Surface Structures in Dilute Surfactant Solutions. EPL (Europhysics Letters) 1989, (5),447-452.
    [8]Porte, G.; Appell, J.; Bassereau, P.; Marignan, J., L3:a topology driven transition in phases of infinite fluid membranes. J. Phys. (Paris) 1989,50,1335-1347.
    [9]Snabre, P.; Porte, G., Viscosity of the L3 Phase in Amphiphilic Systems. EPL (Europhysics Letters) 1990, (7),641-645.
    [10]Strey, R.; Schomacker, R.; Roux, D.; Nallet, F.; Olsson, U., Dilute lamellar and L3 phases in the binary water-C12E5 system. J. Chem. Soc, Faraday Trans 1990,86, 2253-2261.
    [11]Strey, R.; Jahn, W.; Porte, G.; Bassereau, P., Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases. Langmuir 1990,6 (11), 1635-1639.
    [12]Miller, C.; Gradzielski, M.; Hoffmann, H.; Kramer, U.; Thunig, C., L3 phases:Their structure and dynamic properties. In Trends in Colloid and Interface Science V, 1991; pp 243-249.
    [13]Skouri, M.; Marignan, J.; Appell, J.; Porte, G., Fluid membranes in the "semi-rigid regime":scale invariance. J. Phys. Ⅱ France 1991,1 (9),1121-1132.
    [14]Roux, D.; Coulon, C.; Cates, M. E., Sponge phases in surfactant solutions. J. Phys. Chem.1992,96 (11),4174-4187.
    [15]Vinches, C.; Coulon, C.; Roux, D., Viscosity of sponge phase in porous medium. J. Phys. Ⅱ France 1992,2 (3),453-469.
    [16]Waton, G.; Porte, G., Transient behavior and relaxations of the L3 (sponge) phase? T-jumb experiments. J. Phys. Ⅱ France 1993,3 (4),515-530.
    [17]Filali, M.; Porte, G.; Appell, J.; Pfeuty, P., L3 (sponge) phase in the very dilute regime:spontaneous tearing of the membrane? J. Phys. Ⅱ France 1994,4 (2), 349-365.
    [18]Strey, R.; Jahn, W.; Porte, G.; Bassereau, P., Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases. Langmuir 1990,6 (11), 1635-1639.
    [19]Strey, R.; Jahn, W.; Porte, G.; Marignm, J.; Olsson, U.; S. H., Chen., Ed. Proceedings of Summer School, Masatea, Italy,1991.
    [20]Granek, R.; Cates, M. E., Sponge phase of surfactant solutions:An unusual dynamic structure factor. Physical Review A 1992,46 (6),3319-3334.
    [21]Watanabe, K.; Nakama, Y.; Yanaki, T.; Hoffmann, H., Novel Vesicle and Sponge Phase Prepared in Amphoteric Surfactant/Anionic Surfactant/Oleic Acid/Water System. Langmuir 2001,17 (23),7219-7224.
    [22]Hoffmann, H.; Thunig, C.; Munkert, U.; Meyer, H. W.; Richter, W., From vesicles to the L3 (sponge) phase in alkyldimethylamine oxide/heptanol systems. Langmuir 1992,8(11),2629-2638.
    [23]Thunig, C.; Platz, G.; H. Hoffmann., Surfactant phases with bilayer structures and their rheological properties. Ber. Bunsen-Ges. Phys.Chem.1992,96,667-677.
    [24]Bergmeier, M.; Gradzielski, M.; Hoffmann, H.; Mortensen, K., Behavior of ionically charged lamellar systems under the influence of a shear field. J. Phys. Chem. B 1999,103 (9),1605-1617.
    [25]Winterhalter, M.; Helfrich, W., Bending elasticity of electrically charged bilayers: coupled monolayers, neutral surfaces, and balancing stresses. J. Phys. Chem.1992, 96(1),327-330.
    [26]Helfrich, W., Lyotropic lamellar phases. J. Phys.:Condens. Matter 1994, (23A), A79-A92.
    [27]Li, X.; Dong, S.; Jia, X.; Song, A.; Hao, J., Vesicles of a New Salt-Free Cat-anionic Fluoro/Hydrocarbon Surfactant System. Chem.-Eur. J.2007,13 (34),9495-9502.
    [28]Lukaschek, M.; Muller, S.; Hasennindl, A.; Schmidt, C.; Grabowski, D. A., Lamellar lyomesophases under shear as studied by deuterium nuclear magnetic resonance. Colloid Polym. Sci.1996,274(1),1-7.
    [29]"Surfactant Solutions. New Methods of Investigation", (ed.: R. Zana), Marcel Dekker, New York,1987.
    [1]Israelachvili, J. N. Intermolecular and Surface Forces; Academic Press:New York,1992.
    [2]Herrington, K.L.; Kaler, E. W.; Miller, D. D.; Zasadzinski, J. A. N.; Chiruvolu, S. J. Phys. Chem.1993,97,13792-13802.
    [3]Sonderman, O.; Herrington, K. L.; Kaler, E. W.; Miller, D. D. Langmuir 1997,13,5531-5538.
    [4]Bergstrom, M.; Pedersen, J. S.; Schurtenberger, P.; Egelhaaf, S.U. J. Phys. Chem. B 1999,103, 9888-9897.
    [5]Villeneuve, M.; Kaneshina, S.; Imae, T.; Aratono, M. Langmuir 1999,15(6),2029-2036.
    [6]O'Connor A.; Hatton, T. A.; Bose, A. Langmuir 1997,13,6931-6940.
    [7]Huang, C., and Thompson, T. E., Methods Enzymol 1974,32,485-489.
    [8]Hope, M. J., Bally, M. B., Webb, G., and Cullis, P. R., Biochim. Biophys. Acta 1985,812, 55-65.
    [9]Ninham, B. W., Evans, D. F., and Wel, G. J. J. Phys. Chem.1983,87,5020-5025.
    [10]Kaler, E. W., Murthy, A. K., Rodriguez, B. E., and Zasadzinski, J. A. N. Science 1989,245, 1371-1374.
    [11]Kaler, E. W., Herrington, K. L., Murthy, A. K., and Zasadzinski, J. A. N. J. Phys. Chem.1992, 96(16),6698-6707.
    [12]Talmon, Y.; Evans, D. F.; Ninham, B. W. Science 1983,221,1047-1048.
    [13]Ke, W.; Karlsson, G.; Almgren, M.; Asakawa, T. J. Phys. Chem. B 1999,103,9237-9246.
    [14]Oberdisse, J.; Regev, O.; Porte, G. J. Phys. Chem. B 1998,102(7),1102-1108.
    [15]Marques, E. F.; Regev, O.; Khan, A.; Miguel, M. da G.; Lindman, B. J. Phys. Chem. B 1999, 103(39),8353-8363.
    [16]Bergmeier, M.; Hoffmann, H.; Thunig, C. J. Phys. Chem. B 1997,101(30),5767-5771.
    [17]Horbaschek, K.; Hoffinann, H.; Hao, J. J. Phys. Chem. B 2000,104(13),2781-2784.
    [18]Hao, J.; Hoffmann, H.; Horbaschek, K. J. Phys. Chem. B 2000,104(44),10144-10153.
    [19]Hao, J.; Hoffmann, H.; Horbaschek, K. Langmuir 2001,17(14),4151-4160.
    [20]Bergmeier, M., Gradzielski, M., Thunig, C., Hoffmann, H. IL NUOVO CIMENTO 1998,20D, N.12bis,2251-2264.
    [21]Horbaschek, K.; Hoffinann, H.; Thunig, C. J. Colloid Interface Sci.1998,206,439-456.
    [22]Mishra, B. K., Samant, S. D., Pradhan, P., Mishra, S. B., and Manohar, C., Langmuir 1993, 9(4),894-898.
    [23]Salkar, R. A., Hassan, P. A., Samant, S. D., Valaulikar, B. S., Kumar, V. V., Kern, F., Candau, S. J., and Manohar, C. Chem. Commun.1996,10,1223-1224.
    [24]Hassan, P. A., Narayanan, J., Menon, S. V. G., Salkar, R. A., Samant, S. D., and Manohar, C. Colloids Surf. A 1996,117,89-94.
    [25]Hassan, P. A., Valaulikar, B. S., Manohar, C., Kern, F., Bourdieu, L., and Candau, S. J. Langmuir 1996,12(18),4350-4357.
    [26]Narayanan, J., Manohar, C., Kern, F., Lequeux, F., and Candau, S. J., Langmuir 1991,13(20), 5235-5243.
    [27]Mendes, E., Narayanan, J., Oda, R., Kern, F., Candau, S. J., and Manohar, C. J. Phys. Chem. B 1997,101(13),2256-2258.
    [28]Hao, J., Liu, W., Xu, G., Zheng, L. Langmuir 2003,19(26),10635-10640.
    [29]Li, H., Jia, X., Li, Y., Shi, X., Hao, J. J. Phys. Chem. B 2006,110(1),68-74.
    [30]Kawasaki, H., Imahayashi, R., Tanaka, S., Almgren, M., Karlsson, G., and Maeda, H., J. Phys. Chem. B 2003,107(33),8661-8668.
    [1]A. G. Lee, Biochim Biophys. Acta,1977,472,285-344.
    [2]A. Blume and P. Garidel, Lipid model membranes and biomembranes, in: R.B. Kemp (Ed.), Handbook of Thermal Analysis and Calorimetry, Elsevier, Amsterdam,1999.
    [3]T. Heimburg, Biochim Biophys. Acta,1998,1415,147-162.
    [4]G. Cevc (Ed.), Phospholipids Handbook, Marcel Dekker, New York,1993.
    [5]M. F. Schneider, D. Marsh, W. Jahn, B. Kloesgen and T. Heimburg, PNAS,1999,96(25), 14312-14317.
    [6]W. W. Kaler, K. A. Murthy, B. E. Rodriguez and J. A. N. Zasadzinski, Science,1989,245, 1371-1374.
    [7]E. Marques, A. Khan, Miguel MdaG, B. Lindman, J. Phys. Chem.,1993,97,4729-4736.
    [8]M. Bergstrom, J. S. Pedersen, P. Schurtenberger and S. U. Egelhaf, J. Phys. Chem. B,1999, 103,9888-9897.
    [9]K. Horbaschek, H. Hoffmann and J. Hao, J. Phys. Chem. B,2000,104(13),2781-2784.
    [10]C. Vautrin, Th. Zemb, M. Schneider and M. Tanaka, J. Phys. Chem. B 2004,108,7986-7991.
    [11]Y. Shen, J, Hao and H. Hoffmann, Soft Matter,2007,3,1407-1412.
    [12]K. Horbaschek, H. Hoffmann and C. Thunig, J. Colloid Interface Sci.,1998,206,439-456.
    [13]H. Kawasaki, R. Imahayashi, S. Tanaka, M. Almgren, G. Karlsson and H. Maeda, J. Phys. Chem. B,2003,107(33),8661-8668.
    [14]Th. Zemb, M. Dubois. B. Deme, Th. Gulik-Krzywicki, Science,1999,283,816-819.
    [15]J. Hao, W. Liu, G. Xu and L. Zheng, Langmuir,2003,19,10635-10640.
    [16]R. G. Synder,J. Mol. Spectr.,1961,7,116-144.
    [17]D. Needham and E. Evans, Biochem.,1988,27,8261-8269.
    [18]L. Fernandez-Puente, I. Bivas, M. D. Mitov and P. Meleard, Europhys. Lett,1994,28, 181-186.
    [19]P. Meleard, C. Gerbeaud, T. Pott, L. Fernandez-Puente, I. Bivas, M. D. Mitov and J. Dufourcq, Bothorel, P. Biophys. J.1997,72,2616-2629.
    [1]J. Hao.; H. Hoffmann. Curr. Opin. Colloid Interface 2004,9,279.
    [2]E. W. Kaler.; K. A. Murthy.; B. E. Rodriguez.; J. A. N. Zasadzinski. Science 1989,245, 1371-1374.
    [3]A. Khan.; E. Marques. In: Ⅰ. D. Robb (Ed.). Specialist Surfactants, Dordrecht Kluwer,1997, pp.37.
    [4]E. Marques.; A. Khan.; Miguel MdaG.; B. Lindman. J. Phys. Chem.1993,97,4729-4736.
    [5]M. Bergstrom.; J. S. Pedersen.; P. Schurtenberger.; S. U. Egelhaf. J. Phys. Chem. B 1999,103, 9888-9897.
    [6]K. Horbaschek.; H. Hoffmann.; J. Hao. J. Phys. Chem. B 2000,104,2781-2784.
    [7]Y. Shen.; J. Hao.; H. Hoffmann. Soft Matter 2007,3,1407-1412.
    [8]Y. Shen.; J. Hao.; H. Hoffmann.; Z. Wu. Soft Matter 2008,4,805-810.
    [9]M. Martin.; J. Swaebrick.; K. P. Ananthapadamanabhan. Eds. In Physical Pharmacy; Lea & Febiger Press: Philadelphia, PA,1983.
    [10]M. L. Corrin.; W. D. Hrakins. J. Chem. Phys.1946,14,640.
    [11]G. Di Paola.; B. Belleau. Can. J. Chem.1975,53,3452-3461.
    [12]K. Aramaki.; U. Olsson.; Y. Yamaguchi.; H. Kunieda. Langmuir 1999,15,6226-6232.
    [13]A. Martino.; E. W. Kaler. Colloids Surf. A 1995,99,91-99.
    [14]Y. Lin.; P. Alexandridis. J. Phys. Chem. B 2002,106,12124-12132.
    [15]N. Takisawa.; M. Thomason.; D. M. Bloor.; E. Wyn-Jones. J. Colloid Interface Sci.1993,157, 77-81.
    [16]R. Palepu.; H. Gharibi.; D. M. Bloor.; E. Wyn-Jones. Langmuir 1993,9,110-112.
    [17]M. S. Bakshi. J. Chem. Soc. Faraday Trans.1993,89,4323-4326.
    [18]L. Cantu,; M. Corti.; V. Degiorgio.; H. Hoffinann.; W. Ulbricht. J. Colloid Interface Sci.1987, 116,384-389.
    [19]L. G. Ionescu.; V. L. Trindade.; E. F. de Douza. Langmuir 2000,16,988-992.
    [20]G. D'Erricl.; D. Ciccarelli.; O. Ortona. J. Colloid Interface Sci.2005,286,747-754.
    [21]Y. Yan.; H. Hoffmann. J. Phys. Chem. B 2007,111,6374-6382.
    [22]J. Hao.; H. Hoffmann.; K. Horbaschek. J. Phys. Chem. B 2000,104,10144-10153.
    [23]K. Horbaschek.; H.Hoffmann.; C. Thunig. J. Colloid Interface Sci.1998,206,439-456.
    [24]D. Bruno.; D. Monique.; Th. Zemb. Biophys J.2002,82,215-225.
    [25]V. A. Parsegian. In Van der Waals Forces; Cambridge University Press: Cambridge, UK, 2005.
    [26]P. C. Hiemenz. In Principles of Colloid and Surface Chemistry,2nd revised ed.; Marcel Dekker Ltd.:New York,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700