非典型性双亲分子参与构建有序分子聚集体的理论模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂在不同溶剂中能够参与构建各种类型的有序聚集体,包括胶束、液晶、囊泡、微乳液、凝胶和固态有序聚集体等。以往的工作中,人们对典型表面活性剂在不同溶剂中的聚集行为进行了深入透彻地研究。伴随着表面活性剂工业的发展,人们将“表面活性”一词逐渐引入新的领域,以其来定义一些非典型性的表面活性剂,进而研究它们参与构建的各类有序聚集体。非典型性表面活性剂多种多样,既包括含有相对疏水和相对亲水嵌段的两亲性三嵌段共聚物,也包括不同类型的长链离子液体,还包括其它一些符合表面活性剂定义的表面活性物质。为了更加透彻地了解这类特殊的物质,以拓展表面活性剂聚集体的种类并深入了解聚集体形成的微观动力学过程,本论文中,利用实验手段结合分子动力学模拟方法研究了这类物质,即非典型性表面活性剂参与构建的不同类型的有序聚集体,包括胶束、液晶、高水含量的凝胶和固态有机材料。论文的主要研究内容包括以下四个部分:
     1.非典型表面活性剂一长链咪唑盐类化合物构建有序聚集体的研究。包括两个方面:[C16mim]Cl在EAN和[Omim]PF6两类离子液体中聚集行为的研究,并与其在水中的聚集行为进行对比,分析了溶剂对聚集行为的影响;[C16mim]Cl与SDS和水三元体系构建凝胶的研究。结果表明:(1) [C16mim]Cl-EAN、[C16mim]Cl-[Omim] PF6和[C16mim]Cl-H2O体系中都有胶束相、六角相、层状相和反双连续立方相液晶形成。[C16mim]Cl在三种不同溶剂中形成液晶的初始温度按H2O、EAN和[Omim]PF6顺序逐渐升高且对应液晶区域逐渐变小。这说明,[C16mim]Cl在不同溶剂中的自组装能力是不同的,随溶剂Gordon参数的减小而减弱。同时,利用耗散颗粒动力学(DPD)模拟方法对[C16mim]Cl-EAN二元体系的室温相行为进行了模拟,对聚集体形成的微观动力学过程有了深入地了解。此部分研究对于更好地认识EAN和[Omim]PF6两类离子液体与水溶剂的不同以及[C16mim]Cl与传统表面活性剂的不同具有重要的意义。
     (2) [C16mim]Cl、SDS和水三元体系在水含量很高时即能形成凝胶。流变学和偏光显微镜测量手段均表明体系形成了具有较弱有序结构凝胶相,其流变学性质与传统体系形成的囊泡相类似;利用差示扫描量热手段对凝胶的热性质进行了研究,确定了其sol-gel转化温度;对比试验和分子动力学模拟结果表明:SDS/[C16mim]Cl/H2O体系中形成的阴阳离子复合物较其它对比体系有所不同,正是这种不同导致了凝胶相的形成;不同链长体系的对比试验表明,疏溶剂作用对凝胶的形成也起着至关重要的作用。本文研究的三元体系与传统阳离子表面活性剂参与构建的复配体系有很大不同,它打破了传统复配体系的一般规律,将有助于人们更好地认识长链咪唑盐这类特殊的非典型表面活性剂。
     2.非典型表面活性剂--长链哌啶盐类化合物构建有序聚集体的研究。包括两个方面:利用表面张力法、电导率法和荧光法研究了不同链长的长链哌啶盐类化合物CnPDB (n=12,14,16)在水中的胶束化聚集行为,并将其与长链咪唑盐(CnmimBr)、长链吡咯烷类化合物(CnMPB)和长链烷基三甲基溴化铵(CnTAB)在水中的胶束化聚集行为进行了详细比较;不同链长的CnPDB在水中构建溶致液晶的研究,详细考察了温度和浓度对结构参数的影响。结果表明:
     (1) CnPDB的临界胶束浓度随其链长的增加而减小。依据电导率数据计算了CnPDB胶束形成的各种热力学参数(ΔGm0,ΔHm0和ΔSm0),结果表明:CnPDB胶束的形成过程在低温下是熵驱动的,而高温下是焓驱动的。同时,将CnPDB的cmc值与CnmimBr、CnMPB和CnTAB的数据进行了比较。结果表明:当链长相同时,CnPDB的cmc略大于CnmimBr,而小于CnTAB和CnMPB。这主要是由于,CnPDB分子头基中存在六元环结构,较CnTAB和CnMPB具有更长的链长,能够更好地降低表面张力;尽管CnPDB的六元环比CnmimBr的五元环碳链更长,但后者含有的共轭双键大大增加了分子间的相互作用,因此能够更好地降低表面张力。这一研究使长链哌啶盐在水中的胶束化行为以及它与其它类型长链离子液体在水中胶束化聚集行为的共性和特性得到了更深地认识。
     (2)对于不同链长的CnPDB-水体系,在所研究的温度范围内,C12PDB-H2O只能形成六角相区域,其动态模量的变化符合Maxwell模型;而C14PDB-H2O和C16PDB-H2O则形成了六角相和反双连续立方相两个区域,此时六角相的流变学曲线都与弹性的gel-like体系的谱图一致,这与传统阳离子表面活性剂体系的性质是不同的。本节所研究的流变学性质随链长的变化情况可以拓展到其它类型的表面活性离子液体体系。同时,考察了液晶的结构参数和流变学参数随温度和浓度的变化情况,可以看到:随着温度和浓度的升高,表面活性剂分子排列更加紧密。这一研究加深了对长链哌啶盐在水中构建的溶致液晶的认识,对有关表面活性离子液体的工作是强有力的补充。
     3.非典型表面活性剂双亲嵌段共聚物在水中构建有序聚集体的理论模拟研究。
     利用介观动力学模拟方法,MesoDyn,分别研究了三嵌段共聚物EO20PO70EO20 (P123)在水中的聚集行为,并将模拟结果与实验结果进行了详细比较;还研究了三嵌段共聚物EO27PO61EO27 (P104)在水中的聚集行为,考察了EO嵌段的电荷大小对聚集行为的影响。结果表明:
     (1)随着P123含量的增加,体系逐渐形成了胶束、六角相和层状相,这与实验结果基本一致,证明了模拟结果的可靠性与准确性。而模拟结果与实验结果也存在或多或少的差异,特别在聚合物浓度较高时。这主要是由于,实验中对P123-水二元体系的混匀需要外力,这恰好对应分子模拟中的剪切应力。在实验中,混匀不同浓度样品所用的外力大小存在一定差别;而分子模拟中,在一定的浓度区域,所采用的剪切应力大小一致,因此导致模拟相图与实验相图的微小差别;通过有序度参数随模拟步数的变化可以考察不同浓度和PO含量体系相分离过程的快慢,它能更直观地展示聚集体形成的微观动力学过程。介观动力学模拟方法能够模拟介观尺度的聚集体并可给出聚集体形成的微观动力学过程,对实验是强有力的补充。
     (2)当P104浓度较高时,体系能够形成六角相和层状相。随着EO嵌段电荷的增加,所形成的六角相结构更加有序;而层状相的变化过程则有所不同:首先变得有序,随后转变成反六角相,最后又变得无序,这主要是由短程和静电相互作用导致聚合物链的卷曲程度不同引起的。此工作对实验有预测作用,对以往有关P104相行为的研究是很好的补充。
     4.非典型表面活性物质双亲染料分子构建固态有序聚集体的研究
     利用简易的离子自组装方式,将双尾链阴离子表面活性剂AOT与反电荷功能性染料分子罗丹明B(RB)进行自组装得到固态有序聚集体。考察了不同实验条件,比如温度、浓度、混合体系的放置时间等对产物形貌的影响。通过一系列条件尝试,得到了规则产物----星型产物的最佳形成条件。通过不同的实验手段对形成的固态有序聚集体进行了表征,结果表明,体系形成了AOT和RB摩尔分数比为1:1的星型产物。该产物中间是一个内核,边缘是由片状结构堆积而成的;稳态荧光和激光共聚焦显微镜实验表明:星型产物具有很好的荧光性,在特定领域存在潜在的应用价值。同时,还对星型产物形成的机理进行了初步探讨。
The surfactants can be assembled into various aggregates in different solvents, including micelle, liquid crystal, vesicle, gel, and also the ordered aggregates in solid state. In the past years, the aggregation behaviors of traditional surfactants in different solvents were investigated in details. With the development of surfactant industry, the word surfactivity is involved in many other fields to define some untraditional surfactants and then people begin to investigate the aggregates formed from them. Getting more information on these non-classical surfactants can expand the aggregates species and also help us better understand the process of microphase separation. So the aggregates, including micelle, liquid crystal, vesicle, gel, and also the ordered aggregates in solid state, formed by several non-classical surfactants are investigated by both experimental and theoretical simulation methods in this dissertation. The studies can be divided into four parts.
     1. Investigations on the aggregates formed by long chained imidazolium salts. The work can be divided into two parts:investigations on the aggregation behavior of [C16mim]Cl in two different ionic liquids, EAN and [Omim]PF6, and then compared with that in water in order to make clear the solvent effect; Investigations on the gel phase formed in [C16mim]Cl/SDS/H2O ternary system. Following results can be obtained.
     (1) [C16mim]Cl can be assembled into micelle, hexagonal, and reverse bicontinous cubic phases in EAN, [Omim]PF6, and water. The threshold temperature of liquid crystalline (LC) phase formation increases in the order of water, EAN, and [Omim]PF6 but the areas of the LC phases display an opposite trend. This could be attributed to the different assembling abilities of [C16mim]Cl in these three solvents, which are quite related to their Gordon parameters. Meanwhile, the dissipative particle dynamics (DPD) method was used to simulate the phase behavior of [C16mim]Cl-EAN binary system at room temperature. Obtained results can give us microphase separation information which is much difficult to get by experimental methods. Such an investigation is quite important, which can help us better understand both similarities and differences among EAN, [Omim]PF6, and water or between [C16mim]Cl and traditional surfactants.
     (2) The ternary system SDS/[C16mim]Cl/H2O can form a novel gel phase at quite high water content. Results from rheology and POM measurements show that, the gel phase formed in the present system may be less ordered and has analogous rheological properties to that of vesicles formed in traditional systems. The sol-gel temperature can be ascertained by DSC technique. Control experiments and simulated results have certified that the complex formed by the [C16mim]Cl and SDS is dissimilar to that formed by the parallel catanionic surfactants with different head groups. Besides, the solvophobic interaction is also proved to play very important role in the gel phase formation. The phase behavior of this ternary system is quite different from those of previous ones, which had broken up the conventional phase behavior of catanionic systems and can help us better understand the special structure of the surface-active surfactant [Cnmim]Cl.
     2. Investigations on the aggregates formed by long chained piperidine salts CnPDB (n=12,14,16). The work can be divided into two parts:the micellization behavior of CnPDB in water were investigated by surface tension, conductivity, and fluorescence methods and then compared with that of long chained imidazolium, pyrrolidine, and traditional cationic surfactants; Investigations on the LLC phases formed by long chained piperidine salts CnPDB in water, both concentration and temperature effects were discussed in details. The following are obtained results.
     (1)The critical micelle concentration (cmc) value of CnPDB decreases with increasing alkyl chain length. Various thermodynamical parameters (ΔGm0,ΔHm0和ΔSm0) during the micelle formation process are calculated. The obtained results show that, the micelle formation process is entropy dominatant at low temperature while it is enthalpy dominated at high temperature. Meanwhile, the cmc value of CnPDB was compared with those of CnmimBr, CnTAB, and CnMPB. Obtained results show that, the cmc value of CnPDB is a little higher than CnmimBr but lower than CnTAB and CnMPB, which can be attributed to the following reasons:the alkyl chain length of CnPDB head group is longer than CnTAB and CnMPB, which is better for surface tension decrease; Even though the alkyl chain length of CnPDB head group is longer than CnmimBr, the conjugated bands in the later can increase the interactions between different molecules, which will result in lower cmc. Such an investigation can help us better understand the micellization behavior of CnPDB in water and also makes it clear for both the similarities and differences among various long chain ILs.
     (2) Through comparison of these three LC systems, it can be found that, for C12PDB/H2O system, only the H1 phase is observed and a Maxwell behavior is exhibited. However, both H1 and V2 can be identified in C14PDB/H2O and C16PDB/H2O systems and the H1 phase here shows a gel-like behavior, unlike the traditional cationic surfactants. Such different rheological properties for H1 phases in these systems inspire us to extend investigations to systems with other series of surfactive ionic liquids. Meanwhile, the structural and rheological parameters have been claculated. Obtained results show that, the surfactant molecules tend to arrange themselves more tightly with increasing temperature and concentration. Such investigations were a great supplement to previous reports on surfactive ionic liquid and can help us to better understand the LLC phases formed by the piperidine salts.
     3. Theoretical investigations on the aggregates formed by Pluronic polymers in water. The phase behaviors of Pluronic P123 or P104 in water were simulated by a mesoscopic method, MesoDyn and then compared with the experimental results in details; The effect of EO charge on the aggregation behavior was also explored. The following are obtained results.
     (1)With P123 concentration increasing, different aggregates including micelle, hexagonal and lamellar phases, are formed in P123-H2O binary system, which can reproduce most experimental phase regions and has proved the accuracy and responsibility of simulation results. The simulated phase ranges are more or less different from those established from experiment, especially at high polymer concentrations. This can be attributed to different phase mapping situations, i.e. the constant shear used in simulation vs. the varied external forces in experiment. The influences of PO block amount or P123 concentration on aggregate formation rate can be explored by the changing trend of order parameters with increasing time steps, which can present us the microphase separation information more directly. The mesoscopic simulation method is a valuable tool for the description of mesoscale morphology and can give us insight into the aggregates formation process, which will be a great supplement to the experimental results.
     (2) With the increase of P104 concentration, two different aggregates, hexagonal and lamellar phases, can be formed in aqueous solutions. The hexagonal phase becomes more and more ordered with the increase of charge per EO bead while lamellar phases display a quite different trend. With the increase of charge per EO bead, the lamellar phases first become more ordered, then it turns to be a reverse hexagonal phase and finally the structures become disordered. Such results can be attributed to the changing curvature of polymeric domains caused by both short range and electrostatic interactions. This simulation can help us predict the results of new series surfactants and is also a great supplement to previous investigations on the phase behavior of P104.
     4. A much facile ionic self-assembly (ISA) route was employed, through the complexation between a double-tailed anionic surfactant, aerosol AOT and a functional dye molecular Rhodamine B (RB), to fabricate the ordered aggregates in solid state. The effect of different experimental conditions, such as temperature, concentration, and the storage period were investigated. The optimum formation condition of the ordered aggregates, star-shape aggregate is obtained. Their properties and structures are characterized by different techniques. Obtained results show that, the stoichiometry between AOT and RB in the complexes is determined as a 1:1 molar ratio; The center of the complex is occupied by a circle dot while the surrounding is encircled by many sheets; The results from steady-state fluorescence and laser confocal microsopy indicate that, the formed complex is of great fluorescent properties and may have potential applications in some specific fields. A possible formation mechanism for the complex is also proposed.
     Thanks for the financial supports from the National Natural Science Foundation of China (No.20573066,20773080 and 20973104).
引文
[1]de Gennes, P. G. Soft Matter (Nobel Lecture) [J]. Angew. Chem. Int. Ed.,1992, 31 (7):842-845.
    [2]Lin, Y.; Qiao, Y.; Yan, Y.; Huang, J. Thermo-Responsive Viscoelastic Wormlike Micelle to Elastic Hydrogel Transition in Dual-Component Systems [J]. Soft Matter, 2009,5 (16):3047-3053.
    [3]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Cai, J.; Qiu, H. Ionic Self-Assembled Organic Nanobelts from The Hexagonal Phase Complexes and Their Cyclodextrin Inclusions [J]. J. Phys. Chem. B,2008,112 (24):7191-7195.
    [4]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Ma, F.; Yue, X. Ionic Self-Assembled Solid-Like Vesicles and Their Temperature-induced Transformation [J]. J. Mater. Chem.,2009,19 (14):2037-2042.
    [5]Wu, J.; Li, N.; Zheng, L.; Li, X.; Gao, Y. a.; Inoue, T. Aggregation Behavior of Polyoxyethylene (20) Sorbitan Monolaurate (Tween 20) in Imidazolium Based Ionic Liquids [J]. Langmuir,2008,24 (17):9314-9322.
    [6]Zhang, J.; Dong, B.; Zheng, L. Q.; Li, N.; Li, X. W. Lyotropic Liquid Crystalline Phases Formed in Ternary Mixtures of 1-Cetyl-3-Methylimidazolium Bromide/p-Xylene/Water:A SAXS, POM, and Rheology Study [J]. J. Colloid Interface Sci.,2008,321 (1):159-165.
    [7]Zhang, G. D.; Chen, X. A.; Xie, Y. Z.; Zhao, Y. R.; Qiu, H. Y. Lyotropic Liquid Crystalline Phases in a Ternary System of 1-Hexadecyl-3-Methylimidazolium Chloride/1-Decanol/Water [J]. J. Colloid Interface Sci.,2007,315 (2):601-606.
    [8]Kaler, E.; Murthy, A.; Rodriguez, B.; Zasadzinski, J. Spontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants [J]. Science,1989,245 (4924):1371-1374.
    [9]Gao, Y. N.; Han, S. B.; Han, B. X.; Li, G. Z.; Shen, D.; Li, Z. H.; Du, J. M.; Hou, W. G.; Zhang, G. Y. TX-100/Water/1-Butyl-3-Methylimidazolium Hexafluorophosphate Microemulsions [J]. Langmuir,2005,21 (13):5681-5684.
    [10]Gao, H. X.; Li, J. C.; Han, B. X.; Chen, W. N.; Zhang, J. L.; Zhang, R.; Yan, D. D. Microemulsions with Ionic Liquid Polar Domains [J]. Phys. Chem. Chem. Phys., 2004,6 (11):2914-2916.
    [11]Long, P.; Hao, J. A Gel State from Densely Packed Multilamellar Vesicles in the Crystalline State [J]. Soft Matter,2010,6 (18):4350-4356.
    [12]Lin, Y.; Han, X.; Cheng, X.; Huang, J.; Liang, D.; Yu, C. pH-Regulated Molecular Self-Assemblies in a Cationic-Anionic Surfactant System:From a "1-2" Surfactant Pair to a "1-1" Surfactant Pair [J]. Langmuir,2008,24 (24):13918-13924.
    [13]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution [J]. Langmuir,2007, 23 (8):4178-4182.
    [14]Dong, B.; Zhao, X. Y.; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation Behavior of Long-Chain Imidazolium Ionic Liquids in Aqueous Solution: Micellization and Characterization of Micelle Microenvironment [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2008,317 (1-3):666-672.
    [15]McBain, J. W.; Salmon, C. S. Colloidal Electrolytes. Soap Solutions and Their Constitution [J]. J. Am. Chem. Soc.,1920,42 (3):426-460.
    [16]Shinoda, K. The Significance and Characteristics of Organized Solutions [J]. J. Phys. Chem.,1985,89 (11):2429-2431.
    [17]陈宗琪;王光信;徐桂英.胶体与界面化学,高等教育出版社:北京,2001.
    [18]Evans, D. F. Self-Organization of Amphiphiles [J]. Langmuir,1988,4 (1):3-12.
    [19]赵国玺;朱步瑶.表面活性剂作用原理,中国轻工业出版社:北京,2003.
    [20]Forrest, B. J.; Reeves, L. W. New Lyotropic Liquid Crystals Composed of Finite Nonspherical Micelles [J]. Chem. Rev.,1981,81 (1):1-14.
    [21]Braun, P. V.; Osenar, P.; Tohver, V.; Kennedy, S. B.; Stupp, S. I. Nanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals [J]. J. Am. Chem. Soc.,1999,121 (32):7302-7309.
    [22]Ding, J. H.; Gin, D. L. Catalytic Pd Nanoparticles Synthesized Using a Lyotropic Liquid Crystal Polymer Template [J]. Chem. Mater.,1999,12 (1):22-24.
    [23]Shah, J. C.; Sadhale, Y.; Chilukuri, D. M. Cubic Phase Gels as Drug Delivery Systems [J]. Adv. Drug Deliv. Rev.,2001,47 (2-3):229-250.
    [24]Kumar, K.; Shah, D. O. Tribology and the Liquid-Crystalline State [J]. Am. Chem. Soc.,1990,441:91-100.
    [25]李干佐;肖洪地.溶致液晶体研究及其在三次采油中的应用[J].高等学校化学学报,2001,22(001):108-111.
    [26]Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. New Dicholesteryl-Based Gelators:Chirality and Spacer Length Effect [J]. Langmuir,2008,24 (7):2992-3000.
    [27]Cahen, D.; Kahn, A. Electron Energetics at Surfaces and Interfaces:Concepts and Experiments [J]. Adv. Mater.,2003,15 (4):271-277.
    [28]Moreno-Villoslada, I.; Jofre, M.; Miranda, V.; Gonzalez, R.; Sotelo, T.; Hess, S.; Rivas, B. L. pH Dependence of the Interaction between Rhodamine B and the Water-Soluble Poly(sodium 4-styrenesulfonate) [J]. J. Phys. Chem. B,2006,110 (24): 11809-11812.
    [29]Radler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Structure of DNA-Cationic Liposome Complexes:DNA Intercalation in Multilamellar Membranes in Distinct Interhelical Packing Regimes [J]. Science,1997,275 (5301):810-814.
    [30]Koltover, I.; Salditt, T.; Radler, J. O.; Safinya, C. R. An Inverted Hexagonal Phase of Cationic Liposome-DNA Complexes Related to DNA Release and Delivery [J]. Science,1998,281 (5373):78-81.
    [31]Decher, G. Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites [J]. Science,1997,277 (5330):1232-1237.
    [32]Caruso, F.; Caruso, R. A.; Mohwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science,1998,282 (5391): 1111-1114.
    [33]Dubois, M.; Deme, B.; Gulik-Krzywicki, T.; Dedieu, J.-C.; Vautrin, C.; Desert, S.; Perez, E.; Zemb, T. Self-Assembly of Regular Hollow Icosahedra in Salt-free Catanionic Solutions [J]. Nature,2001,411 (6838):672-675.
    [34]Anouti, M.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. Synthesis and Characterization of New Pyrrolidinium Based Protic Ionic Liquids. Good and Superionic Liquids [J]. J. Phys. Chem. B,2008,112 (42):13335-13343.
    [35]MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. Pyrrolidinium Imides:A New Family of Molten Salts and Conductive Plastic Crystal Phases [J]. J. Phys. Chem. B,1999,103 (20):4164-4170.
    [36]Baker, S. N.; McCleskey, T. M.; Pandey, S.; Baker, G. A. Fluorescence Studies of Protein Thermostability in Ionic Liquids [J]. Chem. Commun.,2004:940-941.
    [37]Shekibi, Y.; Pas, S. J.; Rocher, N. M.; Clare, B. R.; Hill, A. J.; MacFarlane, D. R.; Forsyth, M. Surprising Effect of Nanoparticle Inclusion on Ion Conductivity in a Lithium Doped Organic Ionic Plastic Crystal [J]. J. Mater. Chem.,2009,19 (11): 1635-1642.
    [38]Bouvy, C.; Baker, G. A.; Yin, H. F.; Dai, S. Growth of Gold Nanosheets and Nanopolyhedra in Pyrrolidinium-Based Ionic Liquids:Investigation of the Cation Effect on the Resulting Morphologies [J]. Cryst. Growth Des.,2010,10 (3): 1319-1322.
    [39]Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C.; Heenan, R. K. Aggregation Behavior of Aqueous Solutions of Ionic Liquids [J]. Langmuir,2004,20 (6):2191-2198.
    [40]Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.; Dietz, M. L. Lyotropic Liquid-Crystalline Gel Formation in a Room-Temperature Ionic Liquid [J]. Langmuir,2002,18 (20):7258-7260.
    [41]Karukstis, K. K.; McDonough, J. R. Characterization of the Aggregates of N-Alkyl-N-Methylpyrrolidinium Bromide Surfactants in Aqueous Solution [J]. Langmuir,2005,21 (13):5716-5721.
    [42]Li, N.; Zhang, S. H.; Zheng, L. Q.; Dong, B.; Li, X. W.; Yu, L. Aggregation Behavior of Long-Chain Ionic Liquids in an Ionic Liquid [J]. Phys. Chem. Chem. Phys.,2008,10 (30):4375-4377.
    [43]Pei, M. S.; Wu, Z. Y.; Wang, L. Y.; Wu, X. Z.; Ta, X. T. Phase Behavior of Liquid Crystals Formed in C12mimCl/H2O and C12mimCl/Alcohols Systems [J]. Chin. J. Chem. Phys.,2009,22 (5):453-459.
    [44]Su, H. L.; Lan, M. T.; Hsieh, Y. Z. Using the Cationic Surfactants N-Cetyl-N-Methylpyrrolidinium Bromide and 1-Cetyl-3-Methylimidazolium Bromide for Sweeping-Micellar Electrokinetic Chromatography [J]. J. Chromatogr. A, 2009,1216 (27):5313-5319.
    [45]Tuzar, Z.; Kratochvil, P. Block and Graft Copolymer Micelles in Solution [J]. Adv Colloid Interface,1976,6 (3):201-232.
    [46]Zhou, Z.; Chu, B. Phase Behavior and Association Properties of Poly(oxypropylene)-Poly(oxyethylene)-Poly(oxypropylene) Triblock Copolymer in Aqueous Solution [J]. Macromolecules,1994,27 (8):2025-2033.
    [47]Chu, B.; Zhou, Z.; Wu, G.; Farrell, H. M. Laser Light Scattering of Model Casein Solutions:Effects of High Temperature [J]. J. Colloid Interface Sci.,1995,170 (1): 102-112.
    [48]Brown, W.; Schillen, K.; Almgren, M.; Hvidt, S.; Bahadur, P. Micelle and Gel Formation in a Poly(ethylene oxide)/Poly(propylene oxide)/Poly(ethylene oxide) Triblock Copolymer in Water Solution:Dynamic and Static Light Scattering and Oscillatory Shear Measurements [J]. J. Phys. Chem.,1991,95 (4):1850-1858.
    [49]Yuan, S. L.; Zhang, X. Q.; Xu, G. Y.; Zhang, D. J. Mesoscopic Simulation Study on a Weakly Charged Block Polyelectrolyte in Aqueous Solution [J]. J Mol. Model., 2006,12 (4):406-410.
    [50]Li, Y.; Hou, T.; Guo, S.; Wang, K.; Xu, X. The Mesodyn Simulation of Pluronic Water Mixtures Using the 'Equivalent Chain' Method [J]. Phys. Chem. Chem. Phys., 2000,2 (12):2749-2753.
    [51]Fraaije, J. G. E. M.; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.; Hoffmann, C.; Altevogt, P.; Goldbeck-Wood, G. The Dynamic Mean-Field Density Functional Method and its Application to the Mesoscopic Dynamics of Quenched Block Copolymer Melts [J]. J. Chem. Phys.,1997,106 (10):4260-4269.
    [52]Zhang, X.; Yuan, S.; Wu, J. Mesoscopic Simulation on Phase Behavior of Ternary Copolymeric Solution in the Absence and Presence of Shear [J]. Macromolecules, 2006,39 (19):6631-6642.
    [53]Noolandi, J.; Shi, A. C.; Linse, P. Theory of Phase Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions [J]. Macromolecules,1996,29 (18):5907-5919.
    [54]Li, Y. M.; Xu, G. Y.; Chen, A. M.; Yuan, S. L.; Cao, X. R. Aggregation between Xanthan and Nonyphenyloxypropyl β-Hydroxyltrimethylammonium Bromide in Aqueous Solution:MesoDyn Simulation and Binding Isotherm Measurement [J]. J. Phys. Chem. B,2005,109 (47):22290-22295.
    [55]Guo, S. L.; Hou, T. J.; Xu, X. J. Simulation of the Phase Behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/Water/p-Xylene System Using MesoDyn [J]. J. Phys. Chem. B,2002,106 (43):11397-11403.
    [56]van Vlimmeren, B. A. C.; Maurits, N. M.; Zvelindovsky, A. V.; Sevink, G. J. A.; Fraaije, J. G. E. M. Simulation of 3D Mesoscale Structure Formation in Concentrated Aqueous Solution of the Triblock Polymer Surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13 and (Propylene Oxide)19(Ethylene Oxide)33(Propylene Oxide)19. Application of Dynamic Mean-Field Density Functional Theory [J]. Macromolecules,1999,32 (3):646-656.
    [57]Yang, S.; Yuan, S.; Zhang, X.; Yan, Y. Phase Behavior of Tri-block Copolymers in Solution:Mesoscopic Simulation Study [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2008,322 (1-3):87-96.
    [58]Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts [J]. Inorg. Chem.,1996,35 (5):1168-1178.
    [59]Namboodiri, V. V.; Varma, R. S. An Improved Preparation of 1,3-Dialkylimidazolium Tetrafluoroborate Ionic Liquids Using Microwaves [J]. Tetrahedron Lett.,2002,43 (31):5381-5383.
    [60]Wilkes, J.; Zaworotko, M. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids [J]. Chem. Commun.,1992:965-967.
    [61]Endres, F.; El Abedin, S. Z. Air and Water Stable Ionic Liquids in Physical Chemistry [J]. Phys. Chem. Chem. Phys.,2006,8 (18):2101-2116.
    [62]Khupse, N. D.; Kumar, A. Contrasting Thermosolvatochromic Trends in Pyridinium-, Pyrrolidinium-, and Phosphonium-Based Ionic Liquids [J]. J. Phys. Chem. B,2010,114 (1):376-381.
    [63]Xiao, Y.; Malhotra, S. V. Friedel-Crafts Alkylation Reactions in Pyridinium-based Ionic Liquids [J]. J Mol. Catal A-chem.,2005,230 (1-2):129-133.
    [64]Gerhard, D.; Alpaslan, S. C.; Gores, H. J.; Uerdingen, M.; Wasserscheid, P. Trialkylsulfonium Dicyanamides-A New Family of Ionic Liquids with Very Low Viscosities [J]. Chem. Commun.,2005:5080-5082.
    [65]Abu-Lebdeh, Y.; Abouimrane, A.; Alarco, P. J.; Armand, M. Ionic Liquid and Plastic Crystalline Phases of Pyrazolium Imide Salts as Electrolytes for Rechargeable Lithium-Ion Batteries [J]. J. Power Sources,2006,154 (1):255-261.
    [66]Yim, T.; Lee, H. Y.; Kim, H. J.; Mun, J.; Kim, S.; Oh, S. M.; Kim, Y. G. Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents [J]. Bull. Korean Chem. Soc.,2007,28 (9): 1567-1572.
    [67]Mirzaei, Y. R.; Twamley, B.; Shreeve, J. M. Syntheses of 1-Alkyl-1,2,4-Triazoles and the Formation of Quaternary 1-Alkyl-4-Polyfluoroalkyl-1,2,4-Triazolium Salts Leading to Ionic Liquids [J]. J. Org. Chem.,2002,67 (26):9340-9345.
    [68]Levillain, J.; Dubant, G.; Abrunhosa, I.; Gulea, M.; Gaumont, A. C. Synthesis and Properties of Thiazoline Based Ionic Liquids Derived from the Chiral Pool [J]. Chem. Commun.,2003:2914-2915.
    [69]Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P. Physical Properties of Ionic Liquids:Database and Evaluation [J]. J. Phys. Chem. Ref. Data,2006,35 (4): 1475-1517.
    [70]Okoturo, O. O.; VanderNoot, T. J. Temperature Dependence of Viscosity for Room Temperature Ionic Liquids [J]. J. Electroanal. Chem.,2004,568 (1-2):167-181.
    [71]Xie, H. B.; Zhang, S. B.; Duan, H. F. An Ionic Liquid Based on a Cyclic Guanidinium Cation is an Efficient Medium for the Selective Oxidation of Benzyl Alcohols [J]. Tetrahedron Lett.,2004,45 (9):2013-2015.
    [72]Jiang, N.; Pu, Y. Q.; Samuel, R.; Ragauskas, A. J. Perdeuterated Pyridinium Molten Salt (Ionic Liquid) for Direct Dissolution and NMR Analysis of Plant Cell Walls [J]. Green Chem.,2009,11 (11):1762-1766.
    [73]Bleasdale, T. A.; Tiddy, G. J. T.; Wyn-Jones, E. Cubic Phase Formation in Polar Nonaqueous Solvents [J]. J. Phys. Chem.,1991,95 (14):5385-5386.
    [74]Auvray, X.; Abiyaala, M.; Duval, P.; Petipas, C.; Rico, I.; Lattes, A. X-ray Diffraction and Freeze-Fracture Electron Microscopy Study of the Cubic Phase in the Cetylpyridinium Chloride/Formamide and Cetyltrimethylammonium Chloride/Formamide Systems [J]. Langmuir,1993,9 (2):444-448.
    [75]Bowlas, C.; Bruce, D.; Seddon, K. Liquid-Crystalline Ionic Liquids [J]. Chem. Commun.,1996:1625-1626.
    [76]Neve, F.; Francescangeli, O.; Crispini, A.; Charmant, J. A2[MX4] Copper(Ⅱ) Pyridinium Salts. From Ionic Liquids to Layered Solids to Liquid Crystals [J]. Chem. Mater.,2001,13 (6):2032-2041.
    [77]Vieira, R. C.; Falvey, D. E. Solvent-Mediated Photoinduced Electron Transfer in a Pyridinium Ionic Liquid [J]. J. Am. Chem. Soc.,2008,130 (5):1552-1553.
    [78]Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Aggregation and Micelle Formation of Ionic Liquids in Aqueous Solution [J]. Chem. Phys. Lett.,2004,400 (4-6):296-300.
    [79]Batra, D.; Seifert, S.; Firestone, M. A. The Effect of Cation Structure on the Mesophase Architecture of Self-assembled and Polymerized Imidazolium-Based Ionic Liquids [J]. Macromol. Chem. Phys.,2007,208 (13):1416-1427.
    [80]Inoue, T.; Dong, B.; Zheng, L. Q. Phase Behavior of Binary Mixture of 1-Dodecyl-3-Methylimidazolium Bromide and Water Revealed by Differential Scanning Calorimetry and Polarized Optical Microscopy [J]. J. Colloid Interface Sci., 2007,307 (2):578-581.
    [81]Li, X. W.; Zhang, J.; Dong, B.; Zheng, L. Q.; Tung, C. H. Characterization of Lyotropic Liquid Crystals Formed in the Mixtures of 1-Alkyl-3-Methylimidazolium Bromide/P-xylene/Water [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2009, 335 (1-3):80-87.
    [82]Kaper, H.; Smarsly, B. Templating and Phase Behaviour of the Long Chain Ionic Liquid C16mimCl [J]. Z. Phys. Chem.,2006,220 (10):1455-1471.
    [83]Li, C. H.; He, J. H.; Liu, J. H.; Yu, Z. Q.; Zhang, Q. L.; He, C. X.; Hong, W. L Self-assembly of Lyotropic Liquid Crystal Phases in Ternary Systems of 1,2-Dimethyl-3-Hexadecylimidazolium Bromide/1-Decanol/Water [J]. J. Colloid Interface Sci.,2010,342 (2):354-360.
    [84]Zhang, G. D.; Chen, X.; Zhao, Y. R.; Xie, Y. Z.; Qiu, H. Y. Effects of Alcohols and Counterions on the Phase Behavior of 1-Octyl-3-Methylimidazolium Chloride Aqueous Solution [J]. J. Phys. Chem. B,2007,111 (40):11708-11713.
    [85]Thomaier, S.; Kunz, W. Aggregates in Mixtures of Ionic Liquids [J]. J Mol. Liq., 2007,130 (1-3):104-107.
    [86]Wu, J. P.; Zhang, J.; Zheng, L. Q.; Zhao, X. Y.; Li, N.; Dong, B. Characterization of Lyotropic Liquid Crystalline Phases Formed in Imidazolium Based Ionic Liquids [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2009,336 (1-3):18-22.
    [87]Baker, G. A.; Pandey, S.; Pandey, S.; Baker, S. N. A New Class of Cationic Surfactants Inspired by N-Alkyl-N-Methyl Pyrrolidinium Ionic Liquids [J]. Analyst, 2004,129 (10):890-892.
    [88]Dattelbaum, A. M.; Baker, S. N.; Baker, G. A. N-Alkyl-N-Methylpyrrolidinium Salts as Templates for Hexagonally Meso-Ordered Silicate Thin Films [J]. Chem. Commun.,2005:939-941.
    [89]Shin, Y.; Baker, G. A.; Wang, L.-Q.; Exarhos, G. J. Investigation of the Hygroscopic Growth of Self-assembled Layers of N-Alkyl-N-Methylpyrrolidinium Bromides at the Interface between Air and Organic Salt [J]. Colloids Surfaces A: Physicochem. Eng. Aspects,2008,318 (1-3):254-258.
    [90]Goossens, K.; Lava, K.; Nockemann, P.; Van Hecke, K.; Van Meervelt, L.; Driesen, K.; Gorller-Walrand, C.; Binnemans, K.; Cardinaels, T. Pyrrolidinium Ionic Liquid Crystals [J]. Chem. Eur. J.,2009,15 (3):656-674.
    [91]Goossens, K.; Lava, K.; Nockemann, P.; Van Hecke, K.; Van Meervelt, L.; Pattison, P.; Binnemans, K.; Cardinaels, T. Pyrrolidinium Ionic Liquid Crystals with Pendant Mesogenic Groups [J]. Langmuir,2009,25 (10):5881-5897.
    [92]Kim, K. S.; Choi, S.; Demberelnyamba, D.; Lee, H.; Oh, J.; Lee, B. B.; Mun, S. J. Ionic Liquids Based on N-Alkyl-N-Methylmorpholinium Salts as Potential Electrolytes [J]. Chem. Commun.,2004:828-829.
    [93]Choi, S.; Kim, K. S.; Cha, J. H.; Lee, H.; Oh, J. S.; Lee, B. B. Thermal and Electrochemical Properties of Ionic Liquids Based on N-Methyl-N-Alkyl Morpholinium Cations [J]. Korean J. Chem. Eng.,2006,23 (5):795-799.
    [94]Lava, K.; Binnemans, K.; Cardinaels, T. Piperidinium, Piperazinium and Morpholinium Ionic Liquid Crystals [J]. J. Phys. Chem. B,2009,113 (28): 9506-9511.
    [95]Zhao, M.; Zheng, L. Micelle formation by N-Alkyl-N-Methylpyrrolidinium Bromide in Aqueous Solution [J]. Phys. Chem. Chem. Phys.,2011,13 (4): 1332-1337.
    [96]Zhao, M.; Gao, Y.; Zheng, L. Liquid Crystalline Phases of the Amphiphilic Ionic Liquid N-Hexadecyl-N-Methylpyrrolidinium Bromide Formed in the Ionic Liquid Ethylammonium Nitrate and in Water [J]. J. Phys. Chem. B,2010,114 (35): 11382-11389.
    [97]Wanka, G.; Hoffmann, H.; Ulbricht, W. The Aggregation Behavior of Poly-(oxyethylene)-Poly-(oxypropylene)-Poly-(oxyethylene)-Block-Copolymers in Aqueous Solution [J]. Colloid Polym. Sci.,1990,268 (2):101-117.
    [98]Wanka, G.; Hoffmann, H.; Ulbricht, W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions [J]. Macromolecules,1994,27 (15):4145-4159.
    [99]Wang, L. Y.; Chen, X.; Chai, Y. C.; Hao, J. C.; Sui, Z. M.; Zhuang, W. C.; Sun, Z. W. Lyotropic Liquid Crystalline Phases formed in an Ionic Liquid [J]. Chem. Commun.,2004:2840-2841.
    [100]Zheng, L.; Guo, C.; Wang, J.; Liang, X.; Chen, S.; Ma, J.; Yang, B.; Jiang, Y.; Liu, H. Effect of Ionic Liquids on the Aggregation Behavior of PEO-PPO-PEO Block Copolymers in Aqueous Solution [J]. J. Phys. Chem. B,2007,111 (6):1327-1333.
    [101]张秀青;苑世领;徐桂英;刘成卜.水溶液中Pluronic嵌段共聚物聚集行为的介观模拟[J].物化学报,2007,23(02):139-144.
    [102]Zhang, S.; Li, N.; Zheng, L.; Li, X.; Gao, Y.; Yu, L. Aggregation Behavior of Pluronic Triblock Copolymer in 1-Butyl-3-methylimidazolium Type Ionic Liquids [J]. J. Phys. Chem. B,2008,112 (33):10228-10233.
    [103]Atkin, R.; De Fina, L. M.; Kiederling, U.; Warr, G. G. Structure and Self Assembly of Pluronic Amphiphiles in Ethylammonium Nitrate and at the Silica Surface [J]. J. Phys. Chem. B,2009,113 (36):12201-12213.
    [104]Kyrylyuk, A. V.; Fraaije, J. G. E. M. Microphase Separation of Weakly Charged Block Polyelectrolyte Solutions:Donnan Theory for Dynamic Polymer Morphologies [J]. J. Chem. Phys.,2004,121 (6):2806-2812.
    [105]Faul, C. F. J.; Antonietti, M. Facile Synthesis of Optically Functional, Highly Organized Nanostructures:Dye-Surfactant Complexes [J]. Chem. Eur. J.,2002,8 (12):2764-2768.
    [106]Guan, Y.; Antonietti, M.; Faul. Ionic Self-Assembly of Dye-Surfactant Complexes:Influence of Tail Lengths and Dye Architecture on the Phase Morphology [J]. Langmuir,2002,18 (15):5939-5945.
    [107]Camerel, F.; Faul, C. F. J. Combination of Ionic Self-assembly and Hydrogen Bonding as a Tool for the Synthesis of Liquid-crystalline Materials and Organogelators from a Simple Building Block [J]. Chem. Commun.,2003, (15): 1958-1959.
    [108]Zakrevskyy, Y.; Faul, C. F. J.; Guan, Y.; Stumpe, J. Alignment of a Perylene-Based Ionic Self-Assembly Complex in Thermotropic and Lyotropic Liquid-Crystalline Phases [J]. Adv. Funct. Mater.,2004,14 (9):835-841. [109]Kadam, J.; Faul, C. F. J.; Scherf, U. Induced Liquid Crystallinity in Switchable Side-Chain Discotic Molecules [J]. Chem. Mater.,2004,16 (20):3867-3871.
    [110]Zakrevskyy, Y.; Smarsly, B.; Stumpe, J.; Faul, C. F. J. Highly Ordered Monodomain Ionic Self-assembled Liquid-Crystalline Materials [J]. Phys. Rev. E, 2005,71 (2):021701.
    [111]Zakrevskyy, Y.; Stumpe, J.; Smarsly, B.; Faul, C. F. J. Photoinduction of Optical Anisotropy in an Azobenzene-Containing Ionic Self-assembly Liquid-Crystalline Material [J]. Phys. Rev. E,2007,75 (3):031703.
    [112]Camerel, F.; Strauch, P.; Antonietti, M.; Faul, C. F. J. Copper-Metallomesogen Structures Obtained by Ionic Self-Assembly (ISA):Molecular Electromechanical Switching Driven by Cooperativity [J]. Chem. Eur. J.,2003,9 (16):3764-3771.
    [113]Zakrevskyy, Y.; Stumpe, J.; Faul, C. F. J. A Supramolecular Approach to Optically Anisotropic Materials:Photosensitive Ionic Self-Assembly Complexes [J]. Adv. Mater.,2006,18 (16):2133-2136.
    [114]Faul, C. F. J.; Krattiger, P.; Smarsly, B. M.; Wennemers, H. Ionic Self-assembled Molecular Receptor-Based Liquid Crystals with Tripeptide Recognition Capabilities [J]. J. Mater. Chem.,2008,18 (25):2962-2967.
    [1]Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C.; Heenan, R. K. Aggregation Behavior of Aqueous Solutions of Ionic Liquids [J]. Langmuir,2004,20 (6):2191-2198.
    [2]Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Aggregation and Micelle Formation of Ionic Liquids in Aqueous Solution [J]. Chem. Phys. Lett.,2004,400 (4-6):296-300.
    [3]Dong, B.; Zhao, X. Y.; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation Behavior of Long-chain Imidazolium Ionic Liquids in Aqueous Solution: Micellization and Characterization of Micelle Microenvironment [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2008,317 (1-3):666-672.
    [4]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution [J]. Langmuir,2007, 23 (8):4178-4182.
    [5]Li, N.; Zhang, S. H.; Zheng, L. Q.; Dong, B.; Li, X. W.; Yu, L. Aggregation Behavior of Long-Chain Ionic Liquids in an Ionic Liquid [J]. Phys. Chem. Chem. Phys.,2008,10 (30):4375-4377.
    [6]Li, N.; Zhang, S.; Zheng, L.; Inoue, T. Aggregation Behavior of a Fluorinated Surfactant in 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid [J]. Langmuir,2009,25 (18):10473-10482.
    [7]Firestone, M. A.; Rickert, P. G.; Seifert, S.; Dietz, M. L. Anion Effects on Ionogel Formation in N,N'-Dialkylimidazolium-Based Ionic Liquids [J]. Inorg. Chim. Acta,
    2004,357 (13):3991-3998.
    [8]Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.; Dietz, M. L. Lyotropic Liquid-Crystalline Gel Formation in a Room-Temperature Ionic Liquid [J]. Langmuir,2002,18 (20):7258-7260.
    [9]Firestone, M. A.; Dietz, M. L.; Seifert, S.; Trasobares, S.; Miller, D. J.; Zaluzec, N. J. Ionogel-Templated Synthesis and Organization of Anisotropic Gold Nanoparticles [J]. Small,2005,1 (7):754-760.
    [10]Batra, D.; Seifert, S.; Firestone, M. A. The Effect of Cation Structure on the Mesophase Architecture of Self-Assembled and Polymerized Imidazolium-Based Ionic Liquids [J]. Macromol. Chem. Phys.,2007,208 (13):1416-1427.
    [11]Kaper, H.; Smarsly, B. Templating and Phase Behaviour of the Long Chain Ionic Liquid C16mimCl [J]. Z. Phys. Chem.,2006,220 (10):1455-1471.
    [12]Inoue, T.; Dong, B.; Zheng, L. Q. Phase Behavior of Binary Mixture of 1-Dodecyl-3-Methylimidazolium Bromide and Water Revealed by Differential Scanning Calorimetry and Polarized Optical Microscopy [J]. J. Colloid Interface Sci., 2007,307 (2):578-581.
    [13]Evans, D. F.; Yamauchi, A.; Roman, R.; Casassa, E. Z. Micelle Formation in Ethylammonium Nitrate, a Low-Melting Fused Salt [J]. J. Colloid Interface Sci.,1982, 88:89-96.
    [14]Zhou, Y.; Antonietti, M. A Series of Highly Ordered, Super-Microporous, Lamellar Silicas Prepared by Nanocasting with Ionic Liquids [J]. Chem. Mater.,2003, 16 (3):544-550.
    [15]Yang, C.; Chen, X.; Qiu, H.; Zhuang, W.; Chai, Y.; Hao, J. Dissipative Particle Dynamics Simulation of Phase Behavior of Aerosol OT/Water System [J]. J. Phys. Chem. B,2006,110 (43):21735-21740.
    [16]Thomaier, S.; Kunz, W. Aggregates in Mixtures of Ionic Liquids [J]. J Mol. Liq., 2007,130 (1-3):104-107.
    [17]Zhang, G. D.; Chen, X.; Zhao, Y. R.; Ma, F. M.; Jing, B.; Qiu, H. Y. Lyotropic Liquid-Crystalline Phases Formed by Pluronic P123 in Ethylammonium Nitrate [J]. J. Phys. Chem. B,2008,112 (21):6578-6584.
    [18]Holmqvist, P.; Alexandridis, P.; Lindman, B. Modification of the Microstructure in Block Copolymer-Water-"Oil" Systems by Varying the Copolymer Composition and the "Oil" Type:Small-Angle X-Ray Scattering and Deuterium-NMR Investigation [J]. J. Phys. Chem. B,1998,102 (7):1149-1158.
    [19]Svensson, B.; Alexandridis, P.; Olsson, U. Self-Assembly of a Poly(ethylene oxide)/Poly(propylene oxide) Block Copolymer (Pluronic P104, (EO)27(PO)61(EO)27) in the Presence of Water and Xylene [J]. J. Phys. Chem. B,1998,102 (39): 7541-7548.
    [20]Holmqvist, P.; Alexandridis, P.; Lindman, B. Modification of the Microstructure in Poloxamer Block Copolymer-Water-"Oil" Systems by Varying the "Oil" Type [J]. Macromolecules,1997,30 (22):6788-6797.
    [21]Bowlas, C.; Bruce, D.; Seddon, K. Liquid-Crystalline Ionic Liquids [J]. Chem. Commun.,1996:1625-1626.
    [22]Holbrey, J. D.; Seddon, K. R. The Phase Behaviour of 1-Alkyl-3-Methylimidazolium Tetrafluoroborates; Ionic Liquids and Ionic Liquid Crystals [J]. J. Chem. Soc.-Dalton Trans.,1999, (13):2133-2139.
    [23]Bradley, A. E.; Hardacre, C.; Holbrey, J. D.; Johnston, S.; McMath, S. E. J.; Nieuwenhuyzen, M. Small-Angle X-Ray Scattering Studies of Liquid Crystalline 1-Alkyl-3-Methylimidazolium Salts [J]. Chem. Mater.,2002,14 (2):629-635.
    [24]Ropers, M. H.; Stebe, M. J. Effect of the Molecular Structure of Non-Ionic Fluorinated Surfactants on Their Phase Behaviour in Water [J]. Phys. Chem. Chem. Phys.,2001,3 (18):4029-4036.
    [25]Jiang, W. Q.; Hao, J. C.; Wu, Z. H. Anisotropic Ionogels of Sodium Laurate in a Room-Temperature Ionic Liquid [J]. Langmuir,2008,24 (7):3150-3156.
    [26]Evans, D. F.; Kaler, E. W.; Benton, W. J. Liquid Crystals in a Fused Salt:. Beta.,. gamma.-Distearoylphosphatidylcholine in N-Ethylammonium Nitrate [J]. J. Phys. Chem.,1983,87 (4):533-535.
    [27]Evans, D.; Yamauchi, A.; Roman, R.; Casassa, E. Micelle Formation in Ethylammonium Nitrate, a Low-Melting Fused Salt [J]. J. Colloid Interface Sci.,1982, 88:89-96.
    [28]Tamura-Lis, W.; Lis, L. J.; Quinn, P. J. Structures and Mechanisms of Lipid Phase Transitions in Nonaqueous Media. Dipalmitoylphosphatidylethanolamine in Fused Salt [J]. Biophys. J.,1988,53 (4):489-492.
    [29]Tamura-Lis, W.; Lis, L.; Quinn, P. Structures and Mechanisms of Lipid Phase Transitions in Nonaqueous Media:Dipalmitoylphosphatidylcholine in Fused Salt [J]. J. Phys. Chem.,1987,91 (17):4625-4627.
    [30]Araos, M. U.; Warr, G. G. Structure of Nonionic Surfactant Micelles in the Ionic Liquid Ethylammonium Nitrate [J]. Langmuir,2008,24 (17):9354-9360.
    [31]Araos, M. U.; Warr, G. G. Self-assembly of Nonionic Surfactants into Lyotropic Liquid Crystals in Ethylammonium Nitrate, a Room-Temperature Ionic Liquid [J]. J. Phys. Chem. B,2005,109 (30):14275-14277.
    [32]Atkin, R.; De Fina, L. M.; Kiederling, U.; Warr, G. G. Structure and Self Assembly of Pluronic Amphiphiles in Ethylammonium Nitrate and at the Silica Surface [J]. J. Phys. Chem. B,2009,113 (36):12201-12213.
    [33]Greaves, T. L.; Weerawardena, A.; Fong, C.; Drummond, C. J. Many Protic Ionic Liquids Mediate Hydrocarbon-Solvent Interactions and Promote Amphiphile Self-Assembly [J]. Langmuir,2007,23 (2):402-404.
    [34]Greaves, T. L.; Weerawardena, A.; Fong, C.; Drummond, C. J. Formation of Amphiphile Self-assembly Phases in Protic Ionic Liquids [J]. J. Phys. Chem. B,2007, 111 (16):4082-4088.
    [35]Zhang, G. D.; Chen, X. A.; Xie, Y. Z.; Zhao, Y. R.; Qiu, H. Y. Lyotropic Liquid Crystalline Phases in a Ternary System of 1-Hexadecyl-3-Methylimidazolium Chloride/1-Decanol/Water [J]. J. Colloid Interface Sci.,2007,315 (2):601-606.
    [36]Anderson, J. L.; Pino, V.; Hagberg, E. C.; Sheares, V. V.; Armstrong, D. W. Surfactant Solvation Effects and Micelle Formation in Ionic Liquids [J]. Chem. Commun.,2003:2444-2445.
    [37]Kaler, E.; Murthy, A.; Rodriguez, B.; Zasadzinski, J. Spontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants [J]. Science,1989,245 (4924):1371-1374.
    [38]Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. New Dicholesteryl-Based Gelators:Chirality and Spacer Length Effect [J]. Langmuir,2008,24 (7):2992-3000.
    [39]Mohmeyer, N.; Schmidt, H.-W. A New Class of Low-Molecular-Weight Amphiphilic Gelators [J]. Chem. Eur. J.,2005,11 (3):863-872.
    [40]Mortensen, K.; Batsberg, W.; Hvidt, S. Effects of PEO-PPO Diblock Impurities on the Cubic Structure of Aqueous PEO-PPO-PEO Pluronics Micelles:fcc and bcc Ordered Structures in F127 [J]. Macromolecules,2008,41 (5):1720-1727.
    [41]Mortensen, K. Cubic Phase in a Connected Micellar Network of Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers in Water [J]. Macromolecules,1997,30 (3):503-507.
    [42]Hao, J. C.; Song, A. X.; Wang, J. Z.; Chen, X.; Zhuang, W. C.; Shi, F.; Zhou, F.; Liu, W. M. Self-Assembled Structure in Room-Temperature Ionic Liquids [J]. Chem. Eur. J.,2005,11 (13):3936-3940.
    [43]Song, A.; Jia, X.; Teng, M.; Hao, J. Ca2+- and Ba2+-Ligand Coordinated Unilamellar, Multilamellar, and Oligovesicular Vesicles [J]. Chem. Eur. J.,2007,13 (2):496-501.
    [44]Zemb, T.; Carriere, D.; Glinel, K.; Hartman, M.; Meister, A.; Vautrin, C.; Delorme, N.; Fery, A.; Dubois, M. Catanionic Bilayers as Micro-Crystals with in-Plane Ordered Alternated Charges [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2007,303 (1-2):37-45.
    [45]Zhao, Y.; Chen, X.; Yang, C.; Zhang, G. Mesoscopic Simulation on Phase Behavior of Pluronic P123 Aqueous Solution [J]. J. Phys. Chem. B,2007,111 (50): 13937-13942.
    [46]Yin, H.; Mao, M.; Huang, J.; Fu, H. Two-Phase Region in the DTAB/SL Mixed Surfactant System [J]. Langmuir,2002,18 (24):9198-9203.
    [1]Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts [J]. Inorg. Chem.,1996,35 (5):1168-1178.
    [2]Namboodiri, V. V.; Varma, R. S. An Improved Preparation of 1,3-Dialkylimidazolium Tetrafluoroborate Ionic Liquids Using Microwaves [J]. Tetrahedron Lett.,2002,43 (31):5381-5383.
    [3]Wilkes, J.; Zaworotko, M. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids [J]. Chem. Commun.,1992:965-967.
    [4]Endres, F.; El Abedin, S. Z. Air and Water Stable Ionic Liquids in Physical Chemistry [J]. Phys. Chem. Chem. Phys.,2006,8 (18):2101-2116.
    [5]Khupse, N. D.; Kumar, A. Contrasting Thermosolvatochromic Trends in Pyridinium-, Pyrrolidinium-, and Phosphonium-Based Ionic Liquids [J]. J. Phys. Chem. B,2010,114(1):376-381.
    [6]Xiao, Y.; Malhotra, S. V. Friedel-Crafts Alkylation Reactions in Pyridinium-Based Ionic Liquids [J]. J Mol. Catal. A-Chem.,2005,230 (1-2): 129-133.
    [7]Anouti, M.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. Synthesis and Characterization of New Pyrrolidinium Based Protic Ionic Liquids. Good and Superionic Liquids [J]. J. Phys. Chem. B,2008,112 (42):13335-13343.
    [8]Gerhard, D.; Alpaslan, S. C.; Gores, H. J.; Uerdingen, M.; Wasserscheid, P. Trialkylsulfonium Dicyanamides-A New Family of Ionic Liquids with Very Low Viscosities [J]. Chem. Commun.,2005:5080-5082.
    [9]Abu-Lebdeh, Y.; Abouimrane, A.; Alarco, P. J.; Armand, M. Ionic Liquid and Plastic Crystalline Phases of Pyrazolium Imide Salts as Electrolytes for Rechargeable Lithium-Ion Batteries [J]. J. Power Sources,2006,154 (1):255-261.
    [10]Yim, T.; Lee, H. Y.; Kim, H. J.; Mun, J.; Kim, S.; Oh, S. M.; Kim, Y. G. Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents [J]. Bull. Korean Chem. Soc.,2007,28 (9): 1567-1572.
    [11]Mirzaei, Y. R.; Twamley, B.; Shreeve, J. M. Syntheses of 1-Alkyl-1,2,4-Triazoles and the Formation of Quaternary 1-Alkyl-4-Polyfluoroalkyl-1,2,4-Triazolium Salts Leading to Ionic Liquids [J]. J Org. Chem.,2002,67 (26):9340-9345.
    [12]Levillain, J.; Dubant, G.; Abrunhosa, I.; Gulea, M.; Gaumont, A. C. Synthesis and Properties of Thiazoline Based Ionic Liquids Derived from the Chiral Pool [J]. Chem. Commun.,2003:2914-2915.
    [13]Sun, J.; MacFarlane, D. R.; Forsyth, M. A New Family of Ionic Liquids Based on the 1-Alkyl-2-Methyl Pyrrolinium Cation [J]. Electrochim. Acta,2003,48 (12): 1707-1711.
    [14]Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P. Physical Properties of Ionic Liquids:Database and Evaluation [J]. J. Phys. Chem. Ref. Data,2006,35 (4): 1475-1517.
    [15]Okoturo, O. O.; VanderNoot, T. J. Temperature Dependence of Viscosity for Room Temperature Ionic Liquids [J]. J. Electroanal. Chem.,2004,568 (1-2):167-181.
    [16]Xie, H. B.; Zhang, S. B.; Duan, H. F. An Ionic Liquid Based on a Cyclic Guanidinium Cation is an Efficient Medium for the Selective Oxidation of Benzyl Alcohols [J]. Tetrahedron Lett.,2004,45 (9):2013-2015.
    [17]MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. Pyrrolidinium imides:A New Family of Molten Salts and Conductive Pplastic Crystal Phases [J]. J. Phys. Chem. B,1999,103 (20):4164-4170.
    [18]Baker, S. N.; McCleskey, T. M.; Pandey, S.; Baker, G. A. Fluorescence Studies of Protein Thermostability in Ionic Liquids [J]. Chem. Commun.,2004:940-941.
    [19]Shekibi, Y.; Pas, S. J.; Rocher, N. M.; Clare, B. R.; Hill, A. J.; MacFarlane, D. R.; Forsyth, M. Surprising Effect of Nanoparticle Inclusion on Ion Conductivity in a Lithium Doped Organic Ionic Plastic Crystal [J]. J. Mater. Chem.,2009,19 (11): 1635-1642.
    [20]Bouvy, C.; Baker, G. A.; Yin, H. F.; Dai, S. Growth of Gold Nanosheets and Nanopolyhedra in Pyrrolidinium-Based Ionic Liquids:Investigation of the Cation Effect on the Resulting Morphologies [J]. Cryst. Growth Des.,2010,10 (3): 1319-1322.
    [21]Anderson, J. L.; Pino, V.; Hagberg, E. C.; Sheares, V. V.; Armstrong, D. W. Surfactant Solvation Effects and Micelle Formation in Ionic Liquids [J]. Chem. Commun.,2003:2444-2445.
    [22]He, Y.; Li, Z.; Simone, P.; Lodge, T. P. Self-Assembly of Block Copolymer Micelles in an Ionic Liquid [J]. J. Am. Chem. Soc.,2006,128 (8):2745-2750.
    [23]Patrascu, C.; Gauffre, F.; Nallet, F.; Bordes, R.; Oberdisse, J.; de Lauth-Viguerie, N.; Mingotaud, C. Micelles in Ionic Liquids:Aggregation Behavior of Alkyl Poly(ethyleneglycol)-Ethers in 1-Butyl-3-Methyl-Imidazolium Type Ionic Liquids [J]. ChemPhysChem,2006,7 (1):99-101.
    [24]Wu, J.; Li, N.; Zheng, L.; Li, X.; Gao, Y. a.; Inoue, T. Aggregation Behavior of Polyoxyethylene (20) Sorbitan Monolaurate (Tween 20) in Imidazolium Based Ionic Liquids [J]. Langmuir,2008,24 (17):9314-9322.
    [25]Hao, J. C.; Song, A. X.; Wang, J. Z.; Chen, X.; Zhuang, W. C.; Shi, F.; Zhou, F.; Liu, W. M. Self-Assembled Structure in Room-Temperature Ionic Liquids [J]. Chem. Eur. J.,2005,11 (13):3936-3940.
    [26]Gao, H. X.; Li, J. C.; Han, B. X.; Chen, W. N.; Zhang, J. L.; Zhang, R.; Yan, D. D. Microemulsions with Ionic Liquid Polar Domains [J]. Phys. Chem. Chem. Phys., 2004,6 (11):2914-2916.
    [27]Gao, Y. N.; Han, S. B.; Han, B. X.; Li, G. Z.; Shen, D.; Li, Z. H.; Du, J. M.; Hou, W. G.; Zhang, G. Y. TX-100/Water/1-Butyl-3-Methylimidazolium Hexafluorophosphate Microemulsions [J]. Langmuir,2005,21 (13):5681-5684.
    [28]Eastoe, J.; Gold, S.; Rogers, S. E.; Paul, A.; Welton, T.; Heenan, R. K.; Grillo, I. Ionic Liquid-in-Oil Microemulsions [J]. J. Am. Chem. Soc.,2005,127 (20): 7302-7303.
    [29]Wang, L. Y.; Chen, X.; Chai, Y. C.; Hao, J. C.; Sui, Z. M.; Zhuang, W. C.; Sun, Z. W. Lyotropic Liquid Crystalline Phases Formed in an Ionic Liquid [J]. Chem. Commun.,2004:2840-2841.
    [30]Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C.; Heenan, R. K. Aggregation Behavior of Aqueous Solutions of Ionic Liquids [J]. Langmuir,2004,20 (6):2191-2198.
    [31]Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Aggregation and Micelle Formation of Ionic Liquids in Aqueous Solution [J]. Chem. Phys. Lett.,2004,400 (4-6):296-300.
    [32]Goodchild, I.; Collier, L.; Millar, S. L.; Prokes, I.; Lord, J. C. D.; Butts, C. P.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. Structural Studies of the Phase, Aggregation and Surface Behaviour of 1-Alkyl-3-Mmethylimidazolium Halide+ Water Mixtures [J]. J. Colloid Interface Sci.,2007,307 (2):455-468.
    [33]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution [J]. Langmuir,2007, 23 (8):4178-4182.
    [34]Wang, J.; Wang, H.; Zhang, S.; Zhang, H.; Zhao, Y. Conductivities, Volumes, Fluorescence, and Aggregation Behavior of Ionic Liquids [C4mim][BF4] and [Cnmim]Br (n=4,6,8,10,12) in Aqueous Solutions [J]. J. Phys. Chem. B,2007,111 (22):6181-6188.
    [35]Sirieix-Plenet, J.; Gaillon, L.; Letellier, P. Behaviour of a Binary Solvent Mixture Constituted by an Amphiphilic Ionic Liquid, 1-Decyl-3-Methylimidazolium Bromide and Water:Potentiometric and Conductimetric Studies [J]. Talanta,2004,63 (4): 979-986.
    [36]Vanyur, R.; Biczok, L.; Miskolczy, Z. Micelle Formation of 1-Alkyl-3-Methylimidazolium Bromide Ionic Liquids in Aqueous Solution [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2007,299 (1-3):256-261.
    [37]Li, N.; Zhang, S. H.; Zheng, L. Q.; Dong, B.; Li, X. W.; Yu, L. Aggregation Behavior of Long-Chain Ionic Liquids in an Ionic Liquid [J]. Phys. Chem. Chem. Phys.,2008,10 (30):4375-4377.
    [38]Thomaier, S.; Kunz, W. Aggregates in Mixtures of Ionic Liquids [J]. J Mol. Liq., 2007,130(1-3):104-107.
    [39]Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.; Dietz, M. L. Lyotropic Liquid-Crystalline Gel Formation in a Room-Temperature Ionic Liquid [J]. Langmuir,2002,18 (20):7258-7260.
    [40]Inoue, T.; Dong, B.; Zheng, L. Q. Phase Behavior of Binary Mixture of 1-Dodecyl-3-Methylimidazolium Bromide and Water Revealed by Differential Scanning Calorimetry and Polarized Optical Microscopy [J]. J. Colloid Interface Sci., 2007,307 (2):578-581.
    [41]Kaper, H.; Smarsly, B. Templating and Phase Behaviour of the Long Chain Ionic Liquid C16mimCl [J]. Z. Phys. Chem.,2006,220 (10):1455-1471.
    [42]Zhao, Y. R.; Chen, X.; Wang, X. D. Liquid Crystalline Phases Self-Organized from a Surfactant-like Ionic Liquid C16mimCl in Ethylammonium Nitrate [J]. J. Phys. Chem. B,2009,113 (7):2024-2030.
    [43]Zhao, M.; Gao, Y.; Zheng, L. Liquid Crystalline Phases of the Amphiphilic Ionic Liquid N-Hexadecyl-N-Methylpyrrolidinium Bromide Formed in the Ionic Liquid Ethylammonium Nitrate and in Water [J]. J. Phys. Chem. B,2010,114 (35): 11382-11389.
    [44]Zhang, G. D.; Chen, X.; Zhao, Y. R.; Xie, Y. Z.; Qiu, H. Y. Effects of Alcohols and Counterions on the Phase Behavior of 1-Octyl-3-Methylimidazolium Chloride Aqueous Solution [J]. J. Phys. Chem. B,2007,111 (40):11708-11713.
    [45]Zhang, J.; Dong, B.; Zheng, L. Q.; Li, N.; Li, X. W. Lyotropic Liquid Crystalline Phases Formed in Ternary Mixtures of 1-Cetyl-3-Methylimidazolium Bromide/P-xylene/Water:A SAXS, POM, and Rheology Study [J]. J. Colloid Interface Sci.,2008,321 (1):159-165.
    [46]Zhao, Y. R.; Chen, X.; Jing, B.; Wang, X. D.; Ma, F. M. Novel Gel Phase Formed by Mixing a Cationic Surfactive Ionic Liquid C16mimCl and an Anionic Surfactant SDS in Aqueous Solution [J]. J. Phys. Chem. B,2009,113 (4):983-988.
    [47]Baker, G. A.; Pandey, S.; Pandey, S.; Baker, S. N. A New Class of Cationic Surfactants Inspired by N-Alkyl-N-Methyl Pyrrolidinium Ionic Liquids [J]. Analyst, 2004,129 (10):890-892.
    [48]Karukstis, K. K.; McDonough, J. R. Characterization of the Aggregates of N-Alkyl-N-Methylpyrrolidinium Bromide Surfactants in Aqueous Solution [J]. Langmuir,2005,21 (13):5716-5721.
    [49]Dattelbaum, A. M.; Baker, S. N.; Baker, G.A. N-Alkyl-N-Methylpyrrolidinium Salts as Templates for Hexagonally Meso-Ordered Silicate Thin Films [J]. Chem. Commun.,2005:939-941.
    [50]Shin, Y. S.; Baker, G. A.; Wang, L. Q.; Exarhos, G. J. Investigation of the Hygroscopic Growth of Self-Assembled Layers of N-Alkyl-N-Methylpyrrolidinium Bromides at the Interface between Air and Organic Salt [J]. Colloids Surfaces A: Physicochem. Eng. Aspects,2008,318 (1-3):254-258.
    [51]Goossens, K.; Lava, K.; Nockemann, P.; Van Hecke, K.; Van Meervelt, L.; Driesen, K.; Gorller-Walrand, C.; Binnemans, K.; Cardinaels, T. Pyrrolidinium Ionic Liquid Crystals [J]. Chem. Eur. J.,2009,15 (3):656-674.
    [52]Goossens, K.; Lava, K.; Nockemann, P.; Van Hecke, K.; Van Meervelt, L. Pattison, P.; Binnemans, K.; Cardinaels, T. Pyrrolidinium Ionic Liquid Crystals with Pendant Mesogenic Groups [J]. Langmuir,2009,25 (10):5881-5897.
    [53]Kim, K. S.; Choi, S.; Demberelnyamba, D.; Lee, H.; Oh, J.; Lee, B. B.; Mun, S. J. Ionic Liquids Based on N-Alkyl-N-Methylmorpholinium Salts as Potential Electrolytes [J]. Chem. Commun.,2004:828-829.
    [54]Choi, S.; Kim, K. S.; Cha, J. H.; Lee, H.; Oh, J. S.; Lee, B. B. Thermal and Electrochemical Properties of Ionic Liquids Based on N-Methyl-N-Alkyl Morpholinium Cations [J]. Korean J. Chem. Eng.,2006,23 (5):795-799.
    [55]Lava, K.; Binnemans, K.; Cardinaels, T. Piperidinium, Piperazinium and Morpholinium Ionic Liquid Crystals [J]. J. Phys. Chem. B,2009,113 (28): 9506-9511.
    [56]Zhang, G. D.; Chen, X.; Zhao, Y. R.; Ma, F. M.; Jing, B.; Qiu, H. Y. Lyotropic Liquid-Crystalline Phases Formed by Pluronic P123 in Ethylammonium Nitrate [J]. J. Phys. Chem. B,2008,112 (21):6578-6584.
    [57]Wang, Z.; Diao, Z.; Liu, F.; Li, G.; Zhang, G. Microstructure and Rheological Properties of Liquid Crystallines Formed in Brij 97/Water/IPM System [J]. J. Colloid Interface Sci.,2006,297 (2):813-818.
    [58]Wang, Z. N.; Liu, F.; Gao, Y.; Zhuang, W. C.; Xu, L. M.; Han, B. X.; Li, G. Z.; Zhang, G. Y. Hexagonal Liquid Crystalline Phases Formed in Ternary Systems of Brij 97-Water-Ionic Liquids [J]. Langmuir,2005,21 (11):4931-4937.
    [59]Montalvo, G.; Valiente, M.; Rodenas, E. Rheological Properties of the L Phase and the Hexagonal, Lamellar, and Cubic Liquid Crystals of the CTAB/Benzyl Alcohol/Water System [J]. Langmuir,1996,12 (21):5202-5208.
    [60]Rodriguez-Abreu, C.; Acharya, D. P.; Aramaki, K.; Kunieda, H. Structure and Rheology of Direct and Reverse Liquid-Crystal Phases in a Block Copolymer/Water/Oil System [J]. Colloids Surfaces A:Physicochem. Eng. Aspects, 2005,269 (1-3):59-66.
    [61]Cordobes, F.; Munoz, J.; Gallegos, C. Linear Viscoelasticity of the Direct Hexagonal Liquid Crystalline Phase for a Heptane/Nonionic Surfactant/Water System [J]. J. Colloid Interface Sci.,1997,187 (2):401-417.
    [62]Jones, J. L.; McLeish, T. C. B. Rheological Response of Surfactant Cubic Phases [J]. Langmuir,1995,11 (3):785-792.
    [63]Blesic, M.; Swadzba-Kwasny, M.; Holbrey, J. D.; Lopes, J. N. C.; Seddon, K. R.; Rebelo, L. P. N. New Catanionic Surfactants Based on 1-Alkyl-3-Methylimidazolium Alkylsulfonates, C(n)H(2n+1)mim CmH2m+1SO3:Mesomorphism and Aggregation [J]. Phys. Chem. Chem. Phys.,2009,11 (21):4260-4268.
    [64]Ray, G. B.; Chakraborty, I.; Ghosh, S.; Moulik, S. P.; Palepu, R. Self-Aggregation of Alkyltrimethylammonium Bromides (C10, C12, C14, and C16TAB) and Their Binary Mixtures in Aqueous Medium:A Critical and Comprehensive Assessment of Interfacial Behavior and Bulk Properties with Reference to Two Types of Micelle Formation [J]. Langmuir,2005,21 (24):10958-10967.
    [65]Zhao, M.; Zheng, L. Micelle Formation by N-Alkyl-N-Methylpyrrolidinium Bromide in Aqueous Solution [J]. Phys. Chem. Chem. Phys.,2011,13 (4): 1332-1337.
    [66]Rosen, M. J.; Cohen, A. W.; Dahanayake, M.; Hua, X. Y. Relationship of Structure to Properties in Surfactants.10. Surface and Thermodynamic Properties of 2-Dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in Aqueous Solution [J]. J. Phys. Chem.,1982,86 (4):541-545.
    [67]Dong, B.; Zhao, X. Y.; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation Behavior of Long-Chain Imidazolium Ionic Liquids in Aqueous Solution: Micellization and Characterization of Micelle Microenvironment [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2008,317 (1-3):666-672.
    [68]Inoue, T.; Ebina, H.; Dong, B.; Zheng, L. Electrical Conductivity Study on Micelle Formation of Long-Chain Imidazolium Ionic Liquids in Aqueous Solution [J]. J. Colloid Interface Sci.,2007,314 (1):236-241.
    [69]Jungnickel, C.; Luczak, J.; Ranke, J.; Fernandez, J. F.; Muller, A.; Thoming, J. Micelle Formation of Imidazolium Ionic Liquids in Aqueous Solution [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2008,316 (1-3):278-284.
    [70]Zana, R. Critical Micellization Concentration of Surfactants in Aqueous Solution and Free Energy of Micellization [J]. Langmuir,1996,12 (5):1208-1211.
    [71]Tsui, H. W.; Hsu, Y. H.; Wang, J. H.; Chen, L. J. Novel Behavior of Heat of Micellization of Pluronics F68 and F88 in Aqueous Solutions [J]. Langmuir,2008,24 (24):13858-13862.
    [72]Li, N.; Zhang, S.; Zheng, L.; Wu, J.; Li, X.; Yu, L. Aggregation Behavior of a Fluorinated Surfactant in 1-Butyl-3-methylimidazolium Ionic Liquids [J]. J. Phys. Chem. B,2008,112 (39):12453-12460.
    [1]Zhao, Y. R.; Chen, X.; Wang, X. D. Liquid Crystalline Phases Self-Organized from a Surfactant-Like Ionic Liquid C16mimCl in Ethylammonium Nitrate [J]. J. Phys. Chem. B,2009,113 (7):2024-2030.
    [2]Zhao, Y. R.; Chen, X.; Jing, B.; Wang, X. D.; Ma, F. M. Novel Gel Phase Formed by Mixing a Cationic Surfactive Ionic Liquid C16mimCl and an Anionic Surfactant SDS in Aqueous Solution [J]. J. Phys. Chem. B,2009,113 (4):983-988.
    [3]Tuzar, Z.; Kratochvil, P. Block and Graft Copolymer Micelles in Solution [J]. Adv Colloid Interface,1976,6 (3):201-232.
    [4]Zhou, Z.; Chu, B. Phase Behavior and Association Properties of Poly(oxypropylene)-Poly(oxyethylene)-Poly(oxypropylene) Triblock Copolymer in Aqueous Solution [J]. Macromolecules,1994,27 (8):2025-2033.
    [5]Chu, B.; Zhou, Z.; Wu, G.; Farrell, H. M. Laser Light Scattering of Model Casein Solutions:Effects of High Temperature [J]. J. Colloid Interface Sci.,1995,170 (1): 102-112.
    [6]Brown, W.; Schillen, K.; Almgren, M.; Hvidt, S.; Bahadur, P. Micelle and Gel Formation in a Poly(ethylene oxide)/Poly(propylene oxide)/Poly(ethylene oxide) Triblock Copolymer in Water Solution:Dynamic and Static Light Scattering and Oscillatory Shear Measurements [J]. J. Phys. Chem.,1991,95 (4):1850-1858.
    [7]Wanka, G.; Hoffmann, H.; Ulbricht, W. The Aggregation Behavior of Poly-(Oxyethylene)-Poly-(Oxypropylene)-Poly-(Oxyethylene)-Block-Copolymers in Aqueous Solution [J]. Colloid Polym. Sci.,1990,268 (2):101-117.
    [8]Zhao, Y.; Chen, X.; Yang, C.; Zhang, G. Mesoscopic Simulation on Phase Behavior of Pluronic P123 Aqueous Solution [J]. J. Phys. Chem. B,2007,111 (50): 13937-13942.
    [9]Yang, S.; Yuan, S.; Zhang, X.; Yan, Y. Phase Behavior of Tri-block Copolymers in Solution:Mesoscopic Simulation Study [J]. Colloids Surfaces A:Physicochem. Eng. Aspects,2008,322 (1-3):87-96.
    [10]Noolandi, J.; Shi, A. C.; Linse, P. Theory of Phase Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions [J]. Macromolecules,1996,29 (18):5907-5919.
    [11]Yang, C.; Chen, X.; Qiu, H.; Zhuang, W.; Chai, Y.; Hao, J. Dissipative Particle Dynamics Simulation of Phase Behavior of Aerosol OT/Water System [J]. J. Phys. Chem. B,2006,110 (43):21735-21740.
    [12]Li, Y. M.; Xu, G. Y.; Chen, A. M.; Yuan, S. L.; Cao, X. R. Aggregation between Xanthan and Nonyphenyloxypropyl β-Hydroxyltrimethylammonium Bromide in Aqueous Solution:MesoDyn Simulation and Binding Isotherm Measurement [J]. J. Phys. Chem. B,2005,109 (47):22290-22295.
    [13]Zhang, X.; Yuan, S.; Wu, J. Mesoscopic Simulation on Phase Behavior of Ternary Copolymeric Solution in the Absence and Presence of Shear [J]. Macromolecules, 2006,39 (19):6631-6642.
    [14]Guo, S. L.; Hou, T. J.; Xu, X. J. Simulation of the Phase Behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/Water/p-Xylene System Using MesoDyn [J]. J. Phys. Chem. B,2002,106 (43):11397-11403.
    [15]Li, Y.; Hou, T.; Guo, S.; Wang, K.; Xu, X. The Mesodyn Simulation of Pluronic Water Mixtures Using the 'Equivalent Chain' Method [J]. Phys. Chem. Chem. Phys., 2000,2 (12):2749-2753.
    [16]Lam, Y. M.; Goldbeck-Wood, G. Mesoscale Simulation of Block Copolymers in Aqueous Solution:Parameterisation, Micelle Growth Kinetics and the Effect of Temperature and Concentration Morphology [J]. Polymer,2003,44 (12):3593-3605.
    [17]van Vlimmeren, B. A. C.; Maurits, N. M.; Zvelindovsky, A. V.; Sevink, G. J. A.; Fraaije, J. G. E. M. Simulation of 3D Mesoscale Structure Formation in Concentrated Aqueous Solution of the Triblock Polymer Surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13 and (Propylene Oxide)19(Ethylene Oxide)33(Propylene Oxide)19. Application of Dynamic Mean-Field Density Functional Theory [J]. Macromolecules,1999,32 (3):646-656.
    [18]Abe, A.; Mark, J. E. Conformational Energies and the Random-Coil Dimensions and Dipole Moments of the Polyoxides CH3O[(CH2)yO]xCH3 [J]. J. Am. Chem. Soc., 1976,98 (21):6468-6476.
    [19]Fraaije, J. G. E. M.; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.; Hoffmann, C.; Altevogt, P.; Goldbeck-Wood, G. The Dynamic Mean-Field Density Functional Method and Its Application to the Mesoscopic Dynamics of Quenched Block Copolymer Melts [J]. J. Chem. Phys.,1997,106 (10):4260-4269.
    [20]Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Mesoscale Modeling [J]. J. Chem. Phys.,2004,120 (2):1117-1126.
    [21]Fraaije, J. G. E. M.; Sevink, G. J. A. Model for Pattern Formation in Polymer Surfactant Nanodroplets [J]. Macromolecules,2003,36 (21):7891-7893.
    [22]Lyakhova, K. S.; Zvelindovsky, A. V.; Sevink, G. J. A.; Fraaije, J. G. E. M. Inverse Mapping of Block Copolymer Morphologies [J]. J. Chem. Phys.,2003,118 (18):8456-8459.
    [23]Altevogt, P.; Evers, O. A.; Fraaije, J. G. E. M.; Maurits, N. M.; van Vlimmeren, B. A. C. The MesoDyn Project:Software for Mesoscale Chemical Engineering [J]. J. Mol. Struct:THEOCHEM,1999,463 (1-2):139-143.
    [24]Wanka, G.; Hoffmann, H.; Ulbricht, W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions [J]. Macromolecules,1994,27 (15):4145-4159.
    [25]Mortensen, K.; Pedersen, J. S. Structural Study on the Micelle Formation of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymer in Aqueous Solution [J]. Macromolecules,1993,26 (4):805-812.
    [26]Lam, Y. M.; Grigorieff, N.; Goldbeck-Wood, G. Direct Visualisation of Micelles of Pluronic Block Copolymers in Aqueous Solution by Cryo-TEM [J]. Phys. Chem. Chem. Phys.,1999,1 (14):3331-3334.
    [27]Zheng, L.; Guo, C.; Wang, J.; Liang, X.; Chen, S.; Ma, J.; Yang, B.; Jiang, Y.; Liu, H. Effect of Ionic Liquids on the Aggregation Behavior of PEO-PPO-PEO Block Copolymers in Aqueous Solution [J]. J. Phys. Chem. B,2007,111 (6):1327-1333.
    [28]Zhao, Y.; Chen, X.; Zhang, G. Mesoscopic Simulation on Phase Behavior of Pluronic P104 Aqueous Solution at Moderate Concentrations [J]. J. Dispersion Sci. Technol.,2008,29 (9):1331-1337.
    [29]Kyrylyuk, A. V.; Fraaije, J. G. E. M. Microphase Separation of Weakly Charged Block Polyelectrolyte Solutions:Donnan Theory for Dynamic Polymer Morphologies [J]. J. Chem. Phys.,2004,121 (6):2806-2812.
    [30]Yuan, S. L.; Zhang, X. Q.; Xu, G. Y.; Zhang, D. J. Mesoscopic Simulation Study on a Weakly Charged Block Polyelectrolyte in Aqueous Solution [J]. J Mol. Model., 2006,12 (4):406-410.
    [1]Zhao, Y. R.; Chen, X.; Wang, X. D. Liquid Crystalline Phases Self-Organized from a Surfactant-like Ionic Liquid C16mimCl in Ethylammonium Nitrate [J]. J. Phys. Chem. B,2009,113 (7):2024-2030.
    [2]Zhao, Y. R.; Chen, X.; Jing, B.; Wang, X. D.; Ma, F. M. Novel Gel Phase Formed by Mixing a Cationic Surfactive Ionic Liquid C16mimCl and an Anionic Surfactant SDS in Aqueous Solution [J]. J. Phys. Chem. B,2009,113 (4):983-988.
    [3]Zhao, Y.; Chen, X.; Yang, C.; Zhang, G. Mesoscopic Simulation on Phase Behavior of Pluronic P123 Aqueous Solution [J]. J. Phys. Chem. B,2007,111 (50): 13937-13942.
    [4]Zhao, Y.; Chen, X.; Zhang, G. Mesoscopic Simulation on Phase Behavior of Pluronic P104 Aqueous Solution at Moderate Concentrations [J]. J. Dispersion Sci. Technol.,2008,29 (9):1331-1337.
    [5]Winsor, P. A. Binary and Multicomponent Solutions of Amphiphilic Compounds. Solubilization and the Formation, Structure, and Theoretical Significance of Liquid Crystalline Solutions [J]. Chem. Rev.,1968,68 (1):1-40.
    [6]Coppola, L.; Muzzalupo, R.; Ranieri, G. A.; Terenzi, M. Characterization of the Lamellar Phase Aerosol OT/Water System by NMR Diffusion Measurements [J]. Langmuir,1995,11 (4):1116-1121.
    [7]Callaghan, P. T.; Soderman, O. Examination of the Lamellar Phase of Aerosol OT/Water Using Pulsed Field Gradient Nuclear Magnetic Resonance [J]. J. Phys. Chem.,1983,87 (10):1737-1744.
    [8]Boissiere, C.; Brubach, J. B.; Mermet, A.; de Marzi, G.; Bourgaux, C.; Prouzet, E.; Roy, P. Water Confined in Lamellar Structures of AOT Surfactants:An Infrared Investigation [J]. J. Phys. Chem. B,2002,106 (5):1032-1035.
    [9]Petrov, P. G.; Ahir, S. V.; Terentjev, E. M. Rheology at the Phase Transition Boundary:1. Lamellar La Phase of AOT Surfactant Solution [J]. Langmuir,2002,18 (24):9133-9139.
    [10]Fontell, K. The sStructure of the Lamellar Liquid Crystalline Phase in Aerosol OT--Water System [J]. J. Colloid Interface Sci.,1973,44 (2):318-329.
    [11]Jing, B.; Chen, X.; Wang, X.; Yang, C.; Xie, Y.; Qiu, H. Self-Assembly Vesicles Made from a Cyclodextrin Supramolecular Complex [J]. Chem. Eur. J.,2007,13 (32): 9137-9142.
    [12]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Cai, J.; Qiu, H. Ionic Self-Assembled Organic Nanobelts from the Hexagonal Phase Complexes and Their Cyclodextrin Inclusions [J]. J. Phys. Chem. B,2008,112 (24):7191-7195.
    [13]Rogers, J.; Winsor, P. A. Optically Positive, Isotropic and Negative Lamellar Liquid Crystalline Solutions [J]. Nature,1967,216 (5114):477-479.
    [14]Skouri, M.; Marignan, J.; May, R. X-ray and Neutron-Scattering Study of the Lamellar Phases of the System Aerosol-OT-Water:Effect of NaCl and Decane [J]. Colloid Polym. Sci.,1991,269 (9):929-937.
    [15]Tajalli, H.; Ghanadzadeh Gilani, A.; Zakerhamidi, M. S.; Moghadam, M. Effects of Surfactants on the Molecular Aggregation of Rhodamine Dyes in Aqueous Solutions [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2009,72 (4):697-702.
    [16]Sariri, R.; Zakerhamidi, M. S.; Baharpaima, K.; Ghanadzadeh, A. The Anion Effect and Molecular Association of Rhodamine Dyes in Isotropic and Anisotropic Solvents [J]. J Mol. Liq.,2004,115 (1):55-61.
    [17]Faul, C. F. J.; Krattiger, P.; Smarsly, B. M.; Wennemers, H. Ionic Self-Assembled Molecular Receptor-Based Liquid Crystals with Tripeptide Recognition Capabilities [J]. J. Mater. Chem.,2008,18 (25):2962-2967.
    [18]Jing, B.; Chen, X.; Zhao, Y.; Wang, X.; Ma, F.; Yue, X. Ionic Self-Assembled Solid-Like Vesicles and Their Temperature-Induced Transformation [J]. J. Mater. Chem.,2009,19 (14):2037-2042.
    [19]MacDonald, J. C.; Whitesides, G. M. Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides [J]. Chem. Rev.,1994,94 (8): 2383-2420.
    [20]Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. About Supramolecular Assemblies of π-Conjugated Systems [J]. Chem. Rev.,2005,105 (4): 1491-1546.
    [21]Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular Chemistry of Cyclodextrins in Enzyme Technology [J]. Chem. Rev.,2007,107 (7):3088-3116.
    [22]Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules [J]. Chem. Rev.,2005,105 (4): 1401-1444.
    [23]Lehn, J. M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization [J]. Angew. Chem. Int. Ed.,1990,29 (11):1304-1319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700