金属氧化物功能材料奇异电子结构的高分辨角分辨光电子能谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强关联电子材料,特别是金属氧化物材料,因具有多自由度竞争(电荷、自旋、轨道、晶格等)和低维性,呈现出丰富多彩的物理性质和物质形态(例如,高温超导,巨热电势效应等),以及潜在的巨大应用价值,不仅成为凝聚态物理学界最热门的研究课题,更得到工业界的广泛关注。近年来,随着研究的不断深入,新型非常规高温超导体和更高热电系数材料的不断出现,金属氧化物功能材料引起越来越广泛的兴趣,促进了物理、化学、材料学等多个学科科学家间的紧密合作。目前,同步辐射技术与实验仪器的不断进步,为研究各种新型材料提供了强大的实验工具,并已有效地应用于研究新型电子材料的电子结构、相变和各种有序现象、小尺度结构和微量分析等方面。其中,角分辨光电子能谱作为目前唯一可以同时测量固体中费米能级附近电子能带结构、价电子的能量、运动方向和散射性质的实验手段,被广泛的应用于研究各种关联电子材料的电子结构、相变及其中的各种有序现象。本文介绍了利用高分辨角分辨光电子能谱技术对具有高热电系数的不匹配层状结构氧化物和三角晶格钴氧化合物,以及新发现的铁基高温超导体等材料的电子结构进行系统的研究,得到了以下结果:
     1.结合同步辐射技术,利用高分辨角分辨光电子能谱对具有巨热电系数的不匹配层状结构氧化物材料Bi_2Ba_(1.3)K_(0.6)Co_(2.1)O_(7.94)(BBKCO)的电子结构进行了细致的研究,揭示了在巨大应变存在下氧化物界面的电子结构。BBKCO的结构是由交替堆叠的岩盐结构[BiO/BaO]层和六角的[CoO_2]层构成,我们发现不同氧化物层的低能电子态被分别局限在界面两边的各自层内,但是仍然会受到另一边的非公度晶体场的散射作用。并且,由于岩盐层[BiO/BaO]巨大应力的存在,而导致产生大的电荷转移到邻近的[CoO_2]层。此外,我们还发现另一个奇异的性质,就是由于界面效应而被增强的电子-声子相互作用。我们的工作为理解氧化物界面上的物理问题提供了电子结构基础,并且也为将来设计氧化物电子学器件提供了重要的指导意义。
     2.利用高分辨角分辨光电子能谱技术对不同掺杂三角晶格钴氧化合物A_xCoO_2(A=Na,K)的电子结构进行了系统研究。这类材料不仅具有较高的热电系数,其中Na_xCoO_2还是非常规超导体Na_xCoO_2·yH_2O的母体材料,因此研究A_xCoO_2的电子结构及费米面的拓扑结构对解释其超导机理及热电性能有着重要的辅助作用。我们通过对不同掺杂样品的测量比较,得到了母体材料A_xCoO_2细致的能带结构、准粒子散射率及费米面拓扑结构等信息,加深了对这类钴氧化合物及其超导样品的理解。
     3.对新型铁基高温超导体SmO_(1-x)F_xFeAs的电子结构进行了角积分光电子能谱研究。我们通过研究1111系铁基超导体SmO_(1-x)F_xFeAs费米面附近的态密度随着温度变化而发生的演化,发现随着温度降低,在所有掺杂样品中都存在明显的态密度压制,并且观察到了两个特征能量尺度——10meV和80meV。但是,这两个能量尺度并不随着掺杂变化而发生变化,存在于所有掺杂样品中。对于10meV能量尺度的态密度压制,我们认为是由于反常的不随掺杂变化的正常态赝能隙导致的,当进入超导态时,它将演变为超导能隙;而对于80meV的压制,我们提醒指出,这可能是由于多晶样品中的杂质因素导致的。我们的工作在铁基超导体发现早期,首先对该类样品进行了系统细致的光电子能谱研究,为后续研究提供了很好的参考作用。
     4.利用高分辨角分辨光电子能谱技术对新型铁基超导体BaFe_(2-x)Ni_xAs_2(x=0.1,0.16,0.2)单晶样品的电子结构进行了系统研究。我们的结果显示,作为122系铁基超导体母体材料的BaFe_2As_2的Fe位原子被同样带有磁性的Ni原子替代,这三种掺杂样中均不存在SDW而仅是超导现象,表现在能带结构上,就是随着Ni掺杂增加,能带仅表现出刚带模型的特点——费米能级的提高以及对应的能带向下推移,没有出现具有SDW转变特征的的能带劈裂及折叠现象,提供了一个简单清晰的能带结构图像,为研究其它铁基高温超导体的电子结构提供了参考意义。
Strong correlated electronic materials, especially the metal oxidefunctional materials, which possess the characteristic of competition betweendifferent degrees of freedom(such as the charge, spin and orbital) and the lowdimentionality, present a variety of physical properties(e.g., high-temperaturesuperconductivity, giant thermoelectric potential effect) and enormous potentialvalue. Thus, they have not only become the hottest research topic incondensed matter physics and material science but also aroused extensiveconcern in the industrial community. In recent years, with the further advanceof research and the emergence of novel materials(such as the unconventionalsuperconductors and the materials with giant thermoelectric Seebackcoefficient), the metal oxide functional materials have attracted tremendousinterests, and also promoted close cooperation among scientists in the field ofphysics, chemistry and material science. At present, with the progress of thesynchrotron radiation techniques and instruments, it offers a direct andeffective experimental probe to understand the fundamental problems in thesenovel materials. Among them, angle-resolved photoemission spectroscopy(ARPES), which is the sole tool to simultaneously detect the electron's energy,moving direction and scattering property near Fermi energy in solids, has beenwidely used in investigating the novel electronic structures, phase transitionsand various orderings in such strong correlated materials. In this dissertation,we report some progress in studying the electronic structures of themisfit-layered oxides, triangular-lattice cobalt oxides and Iron-basedsuperconductors by means of ARPES. Besides, we would like to reveal themicroscopic electronic structure of the formation of their different electronicground states. The corresponding results are listed as follows.
     1. The misfit-layered oxide with giant thermoelectric Seebeckcoefficient, Bi_2Ba_(1.3)K_(0.6)Co_(2.1)O_(7.94), is studied by high resolution ARPES,which revealing the electronic structure of a highly strained oxide interface.We find that low-energy states are confined within alternatingrocksalt-structured[BiO/BaO] layers and hexagonal[CoO_2] layers on bothsides of the interface respectively, but still affected by the incommensurate crystal field scattering from the other side. Furthermore, the high strain onthe rocksalt layer induces large charge transfer to the[CoO_2] layer.Besides, a novel effect, the interfacial enhancement of electron-phononinteractions, is discovered. Our findings provide an electronic structurefoundation for understanding oxide interfaces and have significantguidance in designing oxide devices.
     2. The electronic structure of hexagonal structure cobalt oxidesA_xCoO_2(A=Na, K) is studied by means of high resolution ARPES. Thesetypes of materials not only possess a relatively high thermoelectric powerin the thermoelectric materials but are the parent compounds of theunconventional superconductors A_xCoO_2·H_2O as well. Therefore,revealing the general electronic structure and the Fermi surface topologyplays an auxiliary role in understanding the mechanism ofsuperconductivity and high thermoelectric power. The results of differentdopings of A_xCoO_2 are compared and the detailed electronic structure andthe information of Fermi surface are obtained, which help tocomprehensively understand the superconductivity and highthermoelectric power.
     3. The temperature dependence of the density-of-states in theiron-based superconductor SmO_(1-x)F_xFeAs(x=0, 0.12, 0.15, 0.2) isinvestigated by high resolution angle-integrated photoemissionspectroscopy. The density-of-states suppression is observed with thedecrease of temperature in all samples, revealing two characteristicenergy scales(10 meV and 80 meV). However, no obvious dopingdependence is observed. We argue that the 10 meV suppression is due toan anomalously doping-independent normal state pseudogap, whichbecomes the superconducting gap once in the superconducting state; andalert the possibility that the 80 meV-scale suppression might be an artifactof the polycrystalline samples.
     4. The electronic structure of the Iron-based superconductorsBaFe_(2-x)Ni_xAs_2(x=0.1, 0.16, 0.2) single crystals is studied systematically. Our results demonstrate that, with the partially substitution of Fe with Ni inthe parent compounds BaFe_2As_2, there is no SDW transition exiting inthese three dopings but only superconducting transition. With theincreasing doping of Ni, the electronic structure only shows the characterof rigid band model: there is no band splitting and folding, but Fermi levelraise and bands shift towards to higher binding energy. Our results providea simple and clear band picture, which is useful for the study of otheriron-based superconductors.
引文
1 H.Leligny,D.Grebille,O.Perez,A.C.Masset,M.Hervieu,C.Michel and B.Raveau,A bismuth cobaltite with an intrinsically modulated misfit layer structure: [Bi_(0.87)SrO_2]_2[CoO_2]_(1.82) [J],C.R.Acad.Sci.Paris Ⅱ,1999,2:409-414
    2 M.Hervieu,Ph.Boullay,C.Michel,A.Maignan,and B.Raveau,A New Family of Misfit Layered Oxides with Double Rock Salt Layers Bi(A_(0.75)Bi_(0.25)O)_((3+3x)/2)MO2 (A=Ca,Sr and M=Co,Cr) [J],Journal of Solid State Chemistry,1999,142:305-318
    3 A.C.Masset,C.Michel,A.Maignan,M.Hervieu,O.Toulemonde,F.Studer,B.Raveau and J.Hejtmanek,Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca_3Co_4O_9 [J],Phys.Rev.B,2000,62:166-175
    4 K.V.Klitzing,G.dorda,M.Pepper,New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance [J],Phys.Rev.Lett.,1980,45:494-497
    5 D.C.Tsui,H.L.Stormer,and A.C.Gossard,Two-Dimensional Magnetotransport in the Extreme Quantum Limit [J],Phys.Rev.Lett.,192,48:1559-1562
    6 M.N.Baibich,J.M.Broto,A.Fert,F.Nguyen Van Dau,F.Petroff,P.Etienne,G.Creuzet,A.Friederich,and J.Chazelas,Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices [J],Phys.Rev.Lett.,1988,61: 2472-2475
    7 G.Binasch,P.Gr(u丨¨)nberg,F.Saurenbach,and W.Zinn,Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J],Phys.Rev.B,1989,39:4828-4830
    8 S.Jin,T.H.Tiefel,M.McCormack,R.A.Fastnacht,R.Ramesh,and L.H.Chen,Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films [J],Science,1994,264:413-415
    9 Y.Kamihara,T.Watanabe,M.Hirano,and H.Hosono,Iron-Based Layered Superconductor La[O_(1-x)F_x]FeAs(x=0.05-0.12) with T_c=26 K [J],J.Am.Chem.Soc.,2008,130: 3296.
    10 X.H.Chen,T.Wu,G.Wu,R.H.Liu,H.Chen,and D.F.Fang,Superconductivity at 43 K in SmFeAsO_(1-x)F_x [J],Nature,2008,453:761-762
    11 G.F.Chen,Z.Li,D.Wu,G.Li,W.Z.Hu,J.Dong,P.Zheng,J.L.Luo,and N.L.Wang,Superconductivity at 41 K and Its Competition with Spin-Density-Wave Instability in Layered CeO_(1-x)F_xFeAs [J],Phys.Rev.Lett.,2008,100:247002
    12 Z.A.Ren,J.Yang,W.Lu,Wei Yi,G.C.Che,X.L.Dong,L.L.Sun,Z.X.Zhao,Superconductivity at 52 K in iron-based F-doped layered quaternary compound Pr[O_(1-x)F_x]FeAs [J],Mater.Res.Innov.,2008,12:105
    13 闻海虎,“超导科学研究现状和展望”,2006科学发展报告,北京,科学出版社,2006.
    14 J.G.Bednorz,and K.A.Muller,Z.Phys.B: Condens.Matter,1986,64:189
    15 J.Bardeen,L.N.Cooper,and J.R.Schrieffer,Microscopic Theory of Superconductivity [J],Phys.Rev.,1957,106:162-164
    16 封东来,杨科,同步辐射在高温超导中的应用,上海,复旦大学出版社,2001.
    17 A.Damascelli,Z.Hussain,Z.-X.Shen,Angle-resolved photoemission studies of the cuprate superconductors [J],Rev.Mod.Phys.,2003,75:473
    1 H.Hertz,Ann.Phys.,1887,17:983
    2 J.J.Thomson,Phil.Mag.,1899,48:547
    3 p.Lenard,Wien.Ber.,1899,108: 649; Ann.Phys.,1900,2: 359; Ann.Phys.,1902,8:149
    4 A.Einstein,Ann.Phys.,1905,31:132
    5 G.F.Derbenwick,D.T.Pierce,and W.E.Spicer,in Methods of Experimental Physics,edited by R.V.Coleman,(Academic Press,1974),Vol.11,p.67
    6 A.Damascelli,Z.Hussain,Z.-X.Shen,Angle-resolved photoemission studies of the cuprate superconductors [J],Rev.Mod.Phys.,2003,75:473
    7 谢斌平,博士论文“低维强关联体系和原子、小分子体系电子结构的角分辨光电子能谱及非弹性×光散射研究”,上海:复旦大学,2008
    8 沈大伟,博士论文“2H结构过渡族金属二硫属化物电子结构的高分辨角分辨光电子能谱研究”,上海:复旦大学,2008
    9 M.R.Norman,H.Ding,H.Fretwell,M.Randeria and J.C.Campuzano,Extraction of the electron self-energy from angle-resolved photoemission data:Application to Bi_2Sr_2CaCu_2O_(8+x)[J],Phys.Rev.B,1999,60:7585-7590
    10 C.N.Berglund and W.E.Spicer,Photoemission Studies of Copper and Silver: Theory [J],Phys.Rev.,1964,136:A1030-A1044
    11 曾谨言,量子力学,北京,科学出版社,1999.
    12 J.W.Gadzuk and M.Sunjic,Excitation energy dependence of core-level x-ray-photoemission-spectra line shapes in metals [J],Phys.Rev.B,1975,12:524-530
    13 李正中,固体理论,北京,高等教育出版社,2002.
    14 H.Y.Fan,Theory of Photoelectric Emission from Metals [J],Phys.Rev.,1945,68:43-52
    15 P.J.Feibelman and D.E.Eastman,Photoemission spectroscopy-Correspondence between quantum theory and experimental phenomenology [J],Phys.Rev.B,1974,10:4932-4947
    16 M.B.J.Meinders,Ph.D.Thesis (1994),University of Groningen,The Netherlands.
    17 S.H(u丨¨)fner,Photoemission Spectroscopy (Springer-Verlag,Berlin,2003).
    18 V.N.Strocov,Ho I.Starnberg,P.O.Nilsson,H.E.Brauer,and L.J.Holleboom,New Method for Absolute Band Structure Determination by Combining Photoemission with Very-Low-Energy Electron Diffraction:Application to Layered VSe_2 [J],Phys.Rev.Lett.,1997,79:467-470
    19 S.H(u丨¨)fner,Photoemission Spectroscopy (Springer-Verlag,Berlin,2003).
    20 N.V.Smith,P.Thiry and Y.Petroff,Photoemission linewidths and quasiparticle lifetimes [J],Phys.Rev.B,1993,47:15476-15481
    21 T.Pillo,Ph.D.Thesis (1999),University of Freiburg,Switzerland.
    22 J.W.Gadzuk and M.Sunjic,Excitation energy dependence of core-level x-ray-photoemission-spectra line shapes in metals [J],Phys.Rev.B,1975,12:524-530
    23 M.Randeria,H.Ding,J.C.Campuzano,A.Bellman,G.Jennings,T.Yokoya,T.Takahashi,H.K.Yoshida,T.Mochiku,and K.Kadowaki,Momentum Distribution Sum Rule for Angle-Resolved Photoemission [J],Phys.Rev.Lett., 1995,74:4951-4954
    24 M. De Crescenzi and M. N. Piacastelli, Electron Scattering and Related Spectroscopies (World Scientific, Singapore, River Edge, NJ, 1996).
    25 J. Fink, Adv. Electron. Electron Phys., 1989, 75: 121
    26 T. Valla, A. V. Fedorov.P. D. Johnson, B. 0. Wells, S. L. Hulbert, Q. Li, G. D.Gu and N. Koshizuka, Evidence for Quantum Critical Behavior in the Optimally Doped Cuprate Bi_2Sr_2CaCu_2O_(8+δ) [J], Science, 1999, 285: 2110-2113
    1 K.V.Klitzing,G.dorda,M.Pepper,New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance [J],Phys.Rev.Lett.,1980,45:494-497
    2 D.C.Tsui,H.L.Stormer,and A.C.Gossard,Two-Dimensional Magnetotransport in the Extreme Quantum Limit [J],Phys.Rev.Lett.,192,48:1559-1562
    3 徐跃华,王媛,徐家宁,宋天佑,冯守华,庞文琴,双晶格不匹配层状化合物的研究现状[J],化学进展,2006,18(10):1253-1261
    4 G.A.Wiegers and A.Meerschaut,Incommensurate Sandwiched Layered Compounds,Ed.A.Meerschaut,Materials Science Forum,Trans Tech Publications,Sweitzerland,1992,vol.100 & 102:101
    5 E.Makovicky and B.G.Hyde,Incommersurate Sandwiched Layered Compounds,Ed.A.Meerschaut,Materials Science Forum,Trans Tech Publications,Sweitzerland,1992,vol.100 & 101:1
    6 G.A Wiegers,Misfit layer compounds: Structures and physical properties,Progress in Solid State Chemistry [J],1996,24:1-139
    7 P.Boullay,B.Domeng(?)s,M.Hervieu,D.Groult,and B.Raveau,Evidence for the First Misfit Layer Oxide Tl_(0.41)(Sr_(0.9)O)_(1.12)CoO_2 [J],Chem.Mater.,1996,8(7): 1482-1489
    8 C.Brisi,P.Rolando,Ann.Chim.(Rome),1968,58:676-683
    9 E.Woermann,A.Muan,J.Inorg.Nucl.Chem.,1970,32:1455-1459
    10 A.C.Masset,C.Michel,A.Maignan,M.Hervieu,O.Toulemonde,F.Studer B.Raveau and J.Hejtmanek,Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca_3Co_4O_9 [J],Phys.Rev.B,2000,62:166-175
    11 A.Nader,A.Briggs,A.Meerschaut and A.Lafond,Superconductivity in the misfit layer compound (PbSe)_(1.12)(NbSe_2)_2 [J],Solid State Communications,1997,102:401-403
    12 J.Sugiyama,J.H.Brewer,E.J.Ansaldo,H.Itahara,K.Dohmae,Y.Seno,C Xia,and T.Tani,Hidden magnetic transitions in the thermoelectric layered cobaltite [Ca_2CoO_3]_(0.62)[CoO_2] [J],Phys.Rev.B,2003,68:134423
    13 S.H(?)bert,S.Lambert,D.Pelloquin,and A.Maignan,Large thermopower in a metallic cobaltite: The layered Tl-Sr-Co-O misfit [J],Phys.Rev.B,2001,64:172101
    14 D. Pelloquin, A. Maignan, S. Hebert, C. Martin, M. Hervieu, C. Michel, L. B.Wang, and B. Raveau, New Misfit Cobaltites [Pb_(0.7)A_(0.4)Sr_(1.9)O_3][CoO_2]_(1.8) (A= Hg,Co) with Large Thermopower [J], Chem. Mater., 2002, 14 (7): 3100-3105
    15 X. G. Luo, H. Chen, G. Y. Wang, G.Wu, T. Wu, L. Zhao and X. H. Chen,Transport properties and magnetic-field-induced localization in the misfit cobaltite [Bi_2Ba_(1.3)K_(0.6)Co_(0.1)O_4]Rs[CoO_2]_(1.97) single crystal [J], J. Phys.: Condens.Matter, 2008, 20:215221
    16 A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAIO3/SrTiO3 heterointerface [J], Nature, 2004, 427: 423-426
    17 N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C.Richter, C. W. Schneider, T. Kopp, A.-S. R(?)etschi, D. Jaccard, M. Gabay, D. A.Muller, J.-M. Triscone, J. Mannhart, Superconducting Interfaces Between Insulating Oxides [J], Science, 2007, 317: 1196-1199
    18 A. Brinkman, M. Huijben, M. V. Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G.V. Weil, G. Rijnders, D. H. A. Blank and H. Hilgenkamp, Magnetic effects at the interface between non-magnetic oxides [J], Nature Mater., 2007, 6: 493-496
    19 H. Ohta , S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y.Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO_3 [J], Nature Mater., 2007, 6: 129-134
    20 A. P. Ramirez, Oxide Electronics Emerge [J], Science, 2007, 315:1377-1378
    21 Breakthrough of the year, Science, 2007, 318: 1846
    22 J. Voit, L. Perfetti, F. Zwick, H. Berger, G. Margaritondo, G. Gruner, H.Hochst, and M. Grioni, Electronic Structure of Solids with Competing Periodic Potentials [J], Science, 2000, 290: 501-503
    23 A. Tsukazaki, A. Ohtomo, T. Kita, Y Ohno, H. Ohno, and M. Kawasaki,Quantum Hall Effect in Polar Oxide Heterostructures [J], Science, 2007, 315:1388-1391
    24 J.-P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J. W. Seo and G. Van Tendeloo, Doubling the critical temperature of La_(1.9)Sr_(0.1)CuO_4 using epitaxial strain [J], Nature, 1998, 394: 453-456
    25 M. P. Seah and W. A. Dench, Quantitative electron spectroscopy of surfaces:A standard data base for electron inelastic mean free paths in solids [J], Surface and Interface Analysis,1979,1:2-11
    26 M.Takizawa,H.Wadati,K.Tanaka,M.Hashimoto,T.Yoshida,A.Fujimori,A.Chikamatsu,H.Kumigashira,M.Oshima,K.Shibuya,T.Mihara,T.Ohnishi,M.Lippmaa,M.Kawasaki,H.Koinuma,S.Okamoto,and A.J.Millis,Photoemission from Buried Interfaces in SrTiO_3/LaTiO_3 Superlattices [J],Phys.Rev.Lett.,2006,97:057601
    27 K.Maekawa,M.Takizawa,H.Wadati,T.Yoshida,A.Fujimori,H.Kumigashira,M.Oshima,Y.Muraoka,Y.Nagao,and Z.Hiroi,Photoemission study of TiO_2/VO_2 interfaces [J],Phys.Rev.B,2007,76:115121
    28 H.Wadati,Y.Hotta,A.Fujimori,T.Susaki,H.Y.Hwang,Y.Takata,K.Horiba,M.Matsunami,S.Shin,M.Yabashi,K.Tamasaku,Y.Nishino,and T.Ishikawa,Hard x-ray photoemission study of LaAlO_3/LaVO_3 multilayers [J],Phys.Rev.B,2008,77:045122
    29 H.Kumigashira,D.Kobayashi,R.Hashimoto,A.Chikamatsu,M.Oshima,N.Nakagawa,T.Ohnishi,and M.Lippmaa,H.Wadati and A.Fujimori,K.Ono,M.Kawasaki and H.Koinuma,Inherent charge transfer layer formation at La_(0.6)Sr_(0.4)FeO_3/La_(0.6)Sr_(0.4)MnO_3 heterointerface [J],Appl.Phys.Lett.,2004,84:5353-5355
    30 H.Leligny,D.Grebille,O.Perez,A.C.Masset,M.Hervieu,C.Michel and B.Raveau,A bismuth cobaltite with an intrinsically modulated misfit layer structure: [Bi_(0.87)SrO_2]_2[CoO_2]_(1.82)[J],C.R.Acad.Sci.Paris Ⅱ,1999,2:409-414
    31 M.Hervieu,Ph.Boullay,C.Michel,A.Maignan,and B.Raveau,A New Family of Misfit Layered Oxides with Double Rock Salt Layers Bi (A_(0.75)Bi_(0.25)O)_((3+3x)/2)MO2 (A=Ca,Sr and M=Co,Cr) [J],Journal of Solid State Chemistry,1999,142:305-318
    32 I.Terasaki,Y.Sasago and K.Uchinokura,Large thermoelectric power in NaCo_2O_4 single crystals [J],Phys.Rev.B,1997,56:R12685-R12687
    33 H.-B.Yang,Z.-H.Pan,A.K.P.Sekharan,T.Sato,S.Souma,T.Takahashi,R.Jin,B.C.Sales,D.Mandrus,A.V.Fedorov,Z.Wang,and H.Ding,Fermi Surface Evolution and Luttinger Theorem in Na_xCoO_2: A Systematic Photoemission Study [J],Phys.Rev.Lett.,2005,95:146401
    34 V.Brouet,A.Nicolaou,M.Zacchigna,A.Tejeda,L.Patthey,S.H(?)bert,W.Kobayashi,H.Muguerra,and D.Grebille,Direct observation of strong correlations near the band insulator regime of Bi misfit cobaltates,Phys.Rev. B, 2007, 76: 100403(R)
    35 Z. Yusof, B. 0. Wells, T. Valla, P. D. Johnson, A. V. Fedorov, Q. Li, S. M.Loureiro, and R. J. Cava, Angle-resolved photoemission study of the metal-insulator transition in bismuth cobaltates [J], Phys. Rev. B, 2007, 76:165115
    36 D. L. Feng, C. Kim, H. Eisaki, D. H. Lu, A. Damascelli, K. M. Shen, F.Ronning, N. P. Armitage, N. Kaneko, M. Greven, J. I. Shimoyama, K. Kishio, R.Yoshizaki, G. D. Gu, and Z. X. Shen, Electronic excitations near the Brillouin zone boundary of Bi_2Sr_2CaCu_2O_(8+(?)) [J], Phys. Rev. B, 2002, 65: 220501
    37 D. W. Shen, B. P. Xie, J. F. Zhao, L. X. Yang, L. Fang, J. Shi, R. H. He, D. H.Lu, H. H. Wen, and D. L. Feng, Novel Mechanism of a Charge DensityWave in a Transition Metal Dichalcogenide [J], Phys. Rev. Lett., 2007, 99: 216404
    38 W. H. Xie, O. Jepsen, O. K. Andersen, Y. L. Chen, and Z. X. Shen, Insights from Angle-Resolved Photoemission Spectroscopy of an Undoped Four-Layered Two-Gap High-Tc Superconductor [J], Phys. Rev. Lett., 2007, 98:047001
    39 Z. Y. Lu, G. L. Chiarotti, S. Scandolo and E. Tosatti, Atomic and electronic structure of ideal and reconstructed a-Sn (100) surfaces [J], Phys. Rev. B,1998, 58: 13698-13711
    40 S. J. Tang, Y. R. Lee, S. L. Chang, T. Miller, and T. C. Chiang,Umklapp-Mediated Quantization of Electronic States in Ag Films on Ge(111)[J], Phys. Rev. Lett., 2006, 96: 216803
    41 M. Daghofer, P. Horsch, and G. Khaliullin, Magnetic Properties of Spin-Orbital Polarons in Lightly Doped Cobaltates [J], Phys. Rev. Lett., 2006,96:216404
    1 H.J.Goldsmid and R.W.Douglas,Brit.J.Appl.Phys.,1954,5:386-458
    2 I.Terasaki,Y.Sasago,K.Uchinokura,Large thermoelectric power in NaCo2O4 single crystals [J],Phys.Rev.B,1997,56:R12685-R12687
    3 K.Takada,H.Sakurai,E.T.Muromachi,F.Izumi,R.A.Dilanian and T.Sasaki,Superconductivity in two dimensional CoO_2 layers [J],Nature,2003,422:53-55
    4 R.E.Schaak,T.Klimczuk,M.L.Foo and R.J.Cava,Superconductivity phase diagram of Na_xCoO_2·1.3H_2O [J],Nature,2003,424:527-529
    5 M.L.Foo,Y.Y.Wang,S.Watauchi,H.W.Zandbergen,T.He,R.J.Cava, and N. P. Ong, Charge Ordering, Commensurability, and Metallicity in the Phase Diagram of the Layered Na_xCoO_2 [J], Phys. Rev. Lett., 2004, 92:247001
    6 Y. Y. Wang, N. S. Rogado, R. J. Cava and N. P. Ong, Spin entropy as the likely source of enhanced thermopower in Na_xCo_2O_4 [J], Nature, 2003,423:425
    7 N. L. Wang, D. Wu, G. Li, X. H. Chen, C. H. Wang, and X.G. Luo, Infrared Spectroscopy of the Charge Ordering Transition of Na_(0.5)CoO_2 [J], Phys. Rev.Lett., 2004, 93: 147403
    8 C. H. Wang, X. H. Chen, T. Wu, X. G. Luo, G. Y. Wang, and J. L. Luo,In-Plane Ferromagnetism in Charge-Ordering Na_(0.55)CoO_2 [J], Phys. Rev. Lett.,2006, 96:216401
    9 T. Wu, D. F. Fang, G. Y. Wang, L. Zhao, G. Wu, X. G. Luo, C. H. Wang, and X.H. Chen, Magnetic-field-induced spin-flop transition in Na_xCoO_2 (0.5    10 T. Wu, K. Liu, H. Chen, G. Wu, Q. L. Luo, J. J. Ying, and X. H. Chen,Rearrangement of sodium ordering and its effect on physical properties in the Na_xCoO_2 system [J], Phys. Rev. B, 2008, 78:115122
    11 D. Qian, L. Wray, D. Hsieh, D. Wu, J. L. Luo, N. L. Wang, A. Kuprin, A.Fedorov, R. J. Cava, L. Viciu, and M. Z. Hasan, Quasiparticle Dynamics in the Vicinity of Metal-Insulator Phase Transition in Na_xCoO_2 [J], Phys. Rev. Lett.,2006, 96:046407
    12 D. Qian, D. Hsieh, L. Wray, Y. D. Chuang, A. Fedorov, D. Wu, J. L. Luo, N. L.Wang, L. Viciu, R. J. Cava, and M. Z. Hasan, Low-Lying Quasiparticle States and Hidden Collective Charge Instabilities in Parent Cobaltate Superconductors [J], Phys. Rev. Lett., 2006, 96:216405
    13 T Shimojima, T. Yokoya, T Kiss, A. Chainani, S. Shin, T. Togashi, S.Watanabe, C. Zhang, C. T. Chen, K. Takada, T. Sasaki, H. Sakurai, and E.Takayama-Muromachi, Laser-excited ultrahigh-resolution photoemission spectroscopy of Na_xCoO_2 ·yH_2O: Evidence for pseudogap formation [J], Phys.Rev. B, 2005, 71:020505(R)
    14 H. B. Yang, Z. H. Pan, A. K. P. Sekharan, T. Sato, S. Souma, T. Takahashi,R. Jin, B. C. Sales, D. Mandrus, A. V. Fedorov, Z. Wang, and H. Ding, Fermi Surface Evolution and Luttinger Theorem in Na_xCoO_2: A Systematic Photoemission Study [J], Phys. Rev. Lett., 2005, 95:146401
    15 M. Z. Hasan, Y. D. Chuang, D. Qian, Y. W. Li, Y. Kong, A. Kuprin, A.V.Fedorov, R. Kimmerling, E. Rotenberg, K. Rossnagel, Z. Hussain, H. Koh, N. S.Rogado, M. L. Foo, and R. J. Cava, Fermi Surface and Quasiparticle Dynamics of Na_(0.7)CoO_2 Investigated by Angle-Resolved Photoemission Spectroscopy [J], Phys. Rev. Lett., 2004, 92:246402
    16 D. Qian, L. Wray, D. Hsieh, L. Viciu, R. J. Cava, J. L. Luo, D. Wu, N. L.Wang, and M. Z. Hasan, Complete d-Band Dispersion Relation in Sodium Cobaltates [J], Phys. Rev. Lett., 2006, 97:186405
    17 T. Shimojima, K. Ishizaka, S. Tsuda, T. Kiss, T. Yokoya, A. Chainani, S. Shin,P. Badica, K. Yamada, and K. Togano, Angle-Resolved Photoemission Study of the Cobalt Oxide Superconductor Na_xCoO_2 ·yH2O: Observation of the Fermi Surface [J], Phys. Rev. Lett., 2006, 97:267003
    18 H. B. Yang, S. C. Wang, A. K. P. Sekharan, H. Matsui, S. Souma, T. Sato, T.Takahashi, T. Takeuchi, J. C. Campuzano, R. Jin, B. C. Sales, D. Mandrus, Z.Wang, and H. Ding, ARPES on Na_(0.6)CoO_2: Fermi Surface and Unusual Band Dispersion [J], Phys. Rev. Lett., 2004, 92:246403
    19 J. Geek, S. V. Borisenko, H. Berger, H. Eschrig, J. Fink, M. Knupfer, K. Koepernik, A. Koitzsch, A. A. Kordyuk, V. B. Zabolotnyy, and B. Buchner,Anomalous Quasiparticle Renormalization in Na_(0.73)CoO_2: Role of Interorbital Interactions and Magnetic Correlations [J], Phys. Rev. Lett., 2007, 99: 046403
    20 K.-W. Lee, J. Kunes, and W. E. Pickett, Charge disproportionation and spin ordering tendencies in Na_xCoO_2 [J], Phys. Rev. B, 2004, 70:045104
    21 P. H. Zhang, W. D. Luo, M. L. Cohen, and S. G. Louie, Fermi Surface of Na_xCoO_2 [J], Phys. Rev. Lett., 2004, 93:236402
    22 S. Zhou, M. Gao, H. Ding, P. A. Lee, and Z. Q. Wang, Electron Correlation and Fermi Surface Topology of Na_xCoO_2 [J], Phys. Rev. Lett., 2005, 94:206401
    23 H. Chen, T. Wu, Y. L. Xie, R. H. Liu, G. Wu, X. F. Wang and X. H. Chen,Magnetotransport properties in K_(0.5)CoO_2 single crystals [J], Journal of Physics:Condensed Matter, 2009, 21:016004
    24 C. H. Wang, X. H. Chen, J. L. Luo, G. T. Liu, X. X. Lu, H. T. Zhang, G. Y.Wang, X. G. Luo, and N. L. Wang, Dimensional crossover and anomalous magnetoresistivity of superconducting Na_xCoO_2 single crystals [J], Phys. Rev.B, 2005, 71:224515
    25 Unpublished data from X. H. Chen's Group.
    1 Y.Kamihara,T.Watanabe,M.Hirano,and H.Hosono,Iron-Based Layered Superconductor La[O_(1-x)F_x]FeAs (x=0.05-0.12) with T_c=26 K [J],J.Am.Chem.Soc.,2008,130: 3296.
    2 X.H.Chen,T.Wu,G.Wu,R.H.Liu,H.Chen,and D.F,Fang,Superconductivity at 43 K in SmFeAsO_(1-x)F_x [J],Nature,2008,453:761-762
    3 G.F.Chen,Z.Li,D.Wu,G.Li,W.Z.Hu,J.Dong,P.Zheng,J.L.Luo,and N.L.Wang,Superconductivity at 41 K and Its Competition with Spin-Density-Wave Instability in Layered CeO_(1-x)F_xFeAs [J],Phys.Rev.Lett.,2008,100:247002
    4 Z.A.Ren,J.Yang,W.Lu,Wei Yi,G.C.Che,X.L.Dong,L.L.Sun,Z.X.Zhao,Superconductivity at 52 K in iron-based F-doped layered quaternary compound Pr[O_(1-x)F_x]FeAs [J],Mater.Res.Innov.,2008,12:105
    5 Z.A.Ren,W.Lu,J.Yang,W.Yi,X.L.Shen,Z.C.Li,G.C.Che,X.L.Dong,L.L.Sun,F.Zhou,Z.X.Zhao,Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O_(1-x)F_x]FeAs [J],Chin.Phys.Lett.,2008,25:2215
    6 W.L.McMillan,Transition Temperature of Strong-Coupled Superconductors[J],Phys.Rev.,1968,167:331
    7 M.Rotter,M.Tegel,I.Schellenberg,W.Hermes,R.P(o丨¨)ttgen,D.Johrendt,Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe_2As_2 [J], Phys. Rev. B, 2008, 78: 020503(R)
    8 G. F. Chen.Z. Li, G. Li, W. Z. Hu, J. Dong, X. D. Zhang, P. Zheng, N. L.Wang, J. L. Luo, Superconductivity in hole-doped Sr_(1-x)K_xFe_2As_2 [J], Chin. Phys.Lett., 2008, 25: 3403-3405
    9 F. Ronning, T. Klimczuk, E.D. Bauer, H. Volz, J.D. Thompson, Synthesis and properties of CaFe_2As_2 single crystals [J], J. Phys.: Condens. Matter, 2008, 20:322201
    10 F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C.Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K. Wu, Superconductivity in the PbO-type Structure alpha-FeSe, arXiv:0807.2369v2 [cond-mat.supr-con],2008
    11 X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X.Yang, R. C.Yu, F. Y. Li, C. Q.Jin, The superconductivity at 18 K in LiFeAs system [J], Solid Sate Communications, 2008, 148: 538
    12 C. Cruz, Q. Huang, J. W. Lynn, J. Y. Li, W. Ratcliff II, J. L. Zarestky, H. A.Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. C. Dai, Magnetic Order versus superconductivity in the Iron-based layered La(O_(1-x)F_x)FeAs systems [J],Nature, 2008, 453: 899
    13 K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C.Sales, and D. Mandrus, ~(19)F NMR investigation of the iron pnictide superconductor LaFeAsO_(0.89)F_(0.11) [J], Phys. Rev. B, 2008, 78: 100501(R)
    14 H. J. Grafe, D. Paar, G. Lang, N. J. Curro, G. Behr, J. Werner, J.Hamann-Borrero, C. Hess, N. Leps, R. Klingeler, B. Buechner, ~(75)As NMR Studies of Superconducting LaFeAsO_(0.9)F_(0.1) [J], Phys. Rev. Lett., 2008, 101:047003
    15 Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, H. Hosono, Evolution from Itinerant Antiferromagnet to Unconventional Superconductor with Fluorine Doping in La(O_(1-x)F_x)FeAs Revealed by ~(75)As and ~(139)La Nuclear Magnetic Resonance [J], J. Phys. Soc. Jpn., 2008, 77: 073701
    16 T. Sato, S. Souma, K. Nakayama, K. Terashima, K. Sugawara, T.Takahashi, Y. Kamihara, M. Hirano, H. Hosono, Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(O_(1-x)F_x)FeAs [J], J. Phys.Soc. Jpn., 2008, 77: 063708
    17 Y. Ishida, T Shimojima, K. Ishizaka, T. Kiss, M. Okawa, T. Togashi, S. Watanabe, X. Y. Wang, C. T. Chen, Y. Kamihara, M. Hirano, H. Hosono, S.Shin, Temperature-dependent pseudogap in the oxypnictides LaFeAsO_(1-x)F_x and LaFePO_(1-x)F_x seen via angle-integrated photoemission [J],Phys. Rev. B, 2009, 79: 060503(R)
    18 A. Damascelli, Z. Hussain, Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors [J], Rev. Mod. Phys., 2003, 75:473
    19 R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F.Wang, R. L. Yang, L. Ding, C. He, D. L. Feng, and X. H. Chen, Anomalous Transport Properties and Phase Diagram of the FeAs-Based SmFeAsO_(1-x)F_x Superconductors [J], Phys. Rev. Lett., 2008, 101:087001
    20 C. Cao, P.J. Hirschfeld, H. P. Cheng, Proximity of antiferromagnetism and superconductivity in LaFeAsO_(1-x)F_x: Effective Hamiltonian from ab initio studies [J], Phys. Rev. B, 2008, 77: 220506(R)
    21 F. Ma, Z.Y. Lu, Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal [J], Phys. Rev. B, 2008, 78: 033111
    22 M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T. Yokoya, T. Takeuchik, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma and D. G. Hinks, Destruction of the Fermi surface in underdoped high-T_c superconductors [J], Nature, 2008, 392: 157
    23 H. W. Ou, J. F. Zhao, Y. Zhang, D. W. Shen, B. Zhou, L. X. Yang, C. He, F.Chen, M. Xu, T. Wu, X. H. Chen, Y. Chen, D. L. Feng, Angle integrated photoemission study of SmO_(0.85)F_(0.15)FeAs [J], Chin. Phys. Lett., 2008, 25: 2225
    1 H.W.Ou et al.,Doping-insensitive density-of-states suppression in polycrystalline iron-based superconductor SmO_(1-x)F_xFeAs [J],Solid State Communications,2008,148:504-507
    2 H.W.Ou et al.,Angle Integrated Photoemission Study of SmO_(0.85)F_(0.15)FeAs [J].Chin.Phys.Lett.,2008,25:2225-2227
    3 M.Rotter,M.Tegel,I.Schellenberg,W.Hermes,R.P(o丨¨)ttgen,D.Johrendt,Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe_2As_2 [J],Phys.Rev.B,2008,78: 020503(R)
    4 G.F.Chen,Z.Li,G.Li,W.Z.Hu,J.Dong,X.D.Zhang,P.Zheng,N.L.Wang,J.L.Luo,Superconductivity in hole-doped Sr_(1-x)K_xFe_2As_2[J],Chin.Phys.Lett.,2008,25:3403-3405
    5 F.Ronning,T.Klimczuk,E.D.Bauer,H.Volz,J.D.Thompson,Synthesis and properties of CaFe_2As_2 single crystals,J.Phys.: Condens.Matter [J],2008,20:322201
    6 M.Rotter,M.Tegel,and D.Johrendt,Superconductivity at 38 K in the Iron Arsenide (Ba_(1-x)K_x)Fe_2As_2 [J],Phys.Rev.Lett.,2008,101:107006
    7 A.S.Sefat,R.Y.Jin,M.A.McGuire,B.C.Sales,D.J.Singh,D.Mandrus,Superconductivity at 22 K in Co-doped BaFe_2As_2 Crystals [J],Phys.Rev.Lett., 2008,101:117004
    8 L.J.Li,Y.K.Luo,Q.B.Wang,H.Chen,Z.Ren,Q.Tao,Y.K.Li,X.Lin,M.He,Z.W.Zhu,G.H.Cao and Z.A.Xu,Superconductivity induced by Ni doping in BaFe_2As_2 single crystals [J],New J.Phys.,2009,11:025008
    9 H.Chen,Y.Ren,Y.Qiu,Wei Bao,R.H.Liu,G.Wu,T.Wu,Y.L.Xie,X.F.Wang,Q.Huang and X.H.Chen,Coexistence of the spin-density wave and superconductivity in Ba_(1-x)K_xFe_2As_2 [J],Europhys.Lett.,2009,85:17006
    10 L.X.Yang et al.,Electronic Structure and Unusual Exchange Splitting in the Spin-Density-Wave State of the BaFe_2As_2 Parent Compound of Iron-Based Superconductors [J],Phys.Rev.Lett.,2009,102:107002
    11 y.Zhang et al.,Unusual Doping Dependence of the Electronic Structure and Coexistence of Spin-Density-Wave and Superconductor Phases in Single Crystalline Sr_(1-x)K_xFe_2As_2[J],Phys.Rev.Lett.,2009,102:127003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700