基于离散效应修正的位错芯结构及Peierls应力计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶体材料中存在大量的位错缺陷,这些位错缺陷对晶体的电学、光学、磁学、特别是力学性质具有重要的影响。位错缺陷的中心问题是位错的芯结构问题。位错芯结构与表征位错滑移性的Peierls应力、位错之间相互作用细部特征之间的关系十分密切。而滑移性与位错相互作用和材料的范性及加工硬化等现象直接关联。可以说,位错芯结构的揭示是认识理解位错相关现象的第一步,也是最为重要的一步。经典的位错Peierls-Nabarro (P-N)模型虽然能够定量地给出位错的芯宽度和Peierls应力。但是P-N模型是建立在弹性近似的基础上,不能够反应晶格离散效应对位错性质的影响。目前,基于点阵静力学的全离散位错晶格理论已基本建立起来,用于讨论位错芯结构的位错方程也已经给出,能够弥补P-N模型的不足。本文的任务是考虑离散效应修正后讨论具体材料位错的芯结构及Peierls应力,具体包括新型B2结构金属间化合物YAg和YCu中<100>{010}位错和对称分解<111>{110}超位错、钙钛矿结构SrTiO_3中< 110>{100}混合位错以及面心立方晶体分解1/2<110>{111}位错。主要内容如下:
     (1)位错方程的变分原理和计算Peierls应力的参数导数法
     基于变分原理近似求解包含晶格离散效应修正的位错方程。首先将位错方程的求解转化为变分极值问题,验证了位错方程的求解和变分极值问题的等价性。试探解取成截断近似法中的位错解一致,包含一个位错芯结构参数,变分泛函能够清楚地表示为位错芯结构参数的函数。在忽略离散效应后,位错解和Peierls经典的位错解一致,说明此试探解是一个好的试探解。变分原理定出二维三角格子和简立方格子模型中的芯结构参数分别为0.71和0.68,截断近似法得到芯结构参数值分别为0.72和0.68,结果表明正弦力律的变分解和截断近似法给出的解极为吻合。此外,考虑了正弦力律修正对位错芯结构的影响,变分参数随力律修正因子的增大而减小。利用Foreman的参数导数法导出了包含弹性应变能贡献和力律修正项的Peierls能量和Peierls应力表达式。在正弦力律下,参数导数方法得到的结果和幂级数展开方法得到的结果完全一致,但参数导数方法能够极大地简化计算过程和计算结果。
     (2)钇银和钇铜中<100>{010}位错
     YAg和YCu是近年来发现的典型的新型B2结构金属间化合物,它们具有良好的力学性能。目前,仍缺乏对YAg和YCu中位错性质的研究。本文根据变分原理和参数导数法的理论结果,给出了YAg和YCu中<100>{010}位错的芯宽度和Peierls应力,位错芯宽度分别为2.12b和1.94b,Peierls应力为3.5×10 ?3μ和5.8×10 ~(-3)μ。作为比较还给出了传统B2结构NiAl中<100>{010}刃位错芯宽度和Peierls应力,结果分别为1.38b和5047MPa,NiAl的Peierls应力理论预言结果与Schroll等人的数值结果几千MPa在数量级上符合的很好。讨论了不稳定层错能和位错芯宽度以及Peierls应力之间的关系。YAg和YCu<100>{010}位错的不稳定层错能比NiAl <100>{010}位错的不稳定层错能小,因而位错芯宽度更宽,Peierls应力更小,位错更容易滑动。此外,还讨论了位错芯宽度和离散效应修正因子以及正弦力律修正系数之间的关系。
     (3)钇银和钇铜中<111>{110}分解超位错
     B2结构金属间化合物中最容易滑动的位错是<111>{110}分解超位错,但由于存在分解使得问题相对复杂。采用以分解宽度和超部分位错芯宽度为变分参数的试探解描述YAg和YCu中<111>{110}分解超位错的芯结构,变分泛函能够表示成分解宽度和芯宽度的函数,从而定出YAg和YCu中刃和螺分解超位错的芯结构。Xie等人实验上测定的YAg中刃超位错的分解宽度为0.6nm,本文的理论预言结果为0.572nm,两者十分接近。忽略离散效应后,得到的超位错分解宽度为0.431nm,和实验值差别很大,因此,在计算分解宽度时需要考虑离散效应修正。近似计算得到YAg和YCu中超部分位错的Peierls应力分别为1.80×10 ~(-3)μ和3.13×10 ~(-3)μ。虽然<111>{110}位错的不稳定层错能比<100>{010}位错的不稳定层错能大,但得到的Peierls应力反而更小,原因在于位错的分解效应使得<111>{110}位错的几何结构因子比<100>{010}位错的几何结构因子大,而Peierls应力随几何因子的增大而指数减小。
     (4)钛酸锶中<110>{001}混合位错和面心立方晶体中分解位错
     研究了钙钛矿结构SrTiO3中<110>{001}45混合位错的性质。由于混合位错具有刃分量和螺分量,因此需要采用二维位错方程才能确定两方向分量的位移场。本文验证了束缚路径近似的合理性,并在束缚路径近似下把二维位错方程退化为一维位错方程。通过一维位错方程得到混合位错的Peierls应力为0.22GPa,刃位错和螺位错的Peierls应力分别为0.17GPa和0.46GPa。混合位错的Peierls应力比刃位错的Peierls应力大,但比螺位错的Peierls应力小,这说明能够用一维位错方程估计混合位错的Peierls应力。还计算了面心立方晶体(Al、Cu、Ag和Au)中1/2<110>{111}刃位错的分解芯结构。由于此位错芯结构的复杂性,本文采用弹性理论的结果来确定分解宽度,通过变分原理确定刃分量和螺分量位错芯宽度。考虑离散效应修正得到部分位错刃分量和螺分量的芯宽度比P-N模型中得到的要宽。
Dislocations are the most abundant defects in materials that affect electronic, optic, magnetic especially the mechanical properties of materials. The crucial proplem of dislocation theory is the core structure, which is closely related with the Peierls stress and the interaction between dislocations that is correlated with the ductility and work hardening of materials. In a word, the determination of the core structure is the first and the most important step while disclosing the properties of dislocations. The classical Peierls-Nabarro (P-N) model can determine the core structure and Peierls stress quantitily. However, P-N model is based on the linear elastic theory that neglects the lattice discrete effect. Recently, lattice theory of dislocation based on the lattice statics has been constructed and dislocation equation to discuss the core sturucture is provided that can recover the defect of P-N model. In this paper, the core structure and Peierls stress of compact <100>{010} dislocation and collinear dissociated <111>{110} superdislocation in the novel B2 structure intermetallics YAg and YCu, <110>{100} mixed dislocation in SrTiO3 and 1/2<110>{111} dislocation in FCC crystals have been disscussed. The main work and results involve:
     (1) Variational principle for dislocation equation and the method for Peierls stress
     The variational principle is applied to solve the dislocation taking into account the discreteness effect. The dislocation equation is changed into the equivalent variational extreme problem. The trial solution is chosed to be the same as that in the truncate approximation method that is a good trial solution while the parameter is taken to be zero that is the same as the Peierls solution. The variational functional can be represented by parameter of core structure. Take the two-dimentional triangular lattice and the simple cubic lattice as an example, the value of parameters obtained by variational principle are 0.71 and 0.68 for sinusoidal force law,the value of parameters obtained by variational principle are 0.72 and 0.68 for sinusoidal force law. The results show that both variational principle and truncate approximation method are effective method to solve the dislocation equation. The modification of the sinusoidal force law show that variational parameter decreases as the increasing of the modification factor. The parametric derivation method of Foremanethod is applied to derive Peierls energy and Peierls stress considering the contribution of elastic strain energy that is neglected in P-N model and the term of modification of sinusoidal force law. The result for Peierls energy and Peierls stress are the same obtained by parametric derivation method and power series expansion method for the sinusoidal force law. But the expression obtained by parametric derivation method is much brief than that obtained by power series expansion method and is convenient to estimate the Peierls stress of specific materials.
     (2) <100>{010} dislocation in YAg and YCu
     YAg and YCu are the typical novel B2 structure intermetallics that possess the good mechanical properties. There is lack of the study of dislocation properties in literatures. The core structure and Peierls stress are calculated for the <100>{010} dislocation in novel B2 structure intermetallics YAg and YCu taking into account the modification of discrete effect. The core width of <100>{010} dislocation are 2.12b and 1.94b, the correspongding Peierls stress are 3.5×10 ~(-3)μand 5.8×10 ~(-3)μ, respectively. Furthermore, the core width and Peierls stress of <100>{010} dislocation in traditional B2 structure NiAl are also calculate for comparison, and the results are 1.38b and 5047MPa , that is in order agreement with the numerical result, the result is acceptable while evaluating the Peierls stress due to the approximation. The results show that the unstable stacking fault energy is the key parameter controlling the core width and Peierls stress. The unstable stacking fault energy of <100>{010} dislocations in YAg and YCu is smaller than that of <100>{010} dislocation in NiAl. Thus, core width of dislocation are wider and Peierls stress are smaller. Core width is wider as the increasing of discreteness effect factor and the decreasing of the modification factor of sinusoidal force law.
     (3) <100>{010} dissociated superdislocations in YAg and YCu
     Dissociated <111>{110} superdislocations are the most easiest slip dislocations in B2 structure intermetallics. The dissociated properties result in some complex. The trial solution for <111>{110} dissociated superdislocations in YAg and YCu are presented, dissociated width and core width of superpartials are two core structure paramenters. The variatiaonal functional can be represented by the two parameters, and the core structure of edge and screw <111>{110} superdislocations in YAg and YCu are determined. The experimental vaule for edge <111>{110} superdislocations in YAg provided by Xie is 0.6nm, the theoretical value predicted by this paper is 0.572nm, the dissociated width obtained in P-N is 0.431nm that is underestimate the dissociated width with the elastic continuum approximation. The Peierls stress of <111>{110} superpartials in YAg and YCu are 1.80×10 ~(-3)μand 3.13×10 ~(-3)μ, respectively. The Peierls stress of <111>{110} superpartials are smaller than that of <100>{010} dislocation, although the unstable stacking fault energy of <111>{110} superpartials are larger than that of <100>{010} dislocation due to the dissociated effect. The dissociated effect leads to the geometric structure factor of <111>{110} dislocation that is larger than of <100>{010} dislocationand and Peierls stress exponential decreases as the increasing of the geometric strucuture factor.
     (4) <110>{001} mixed dislocation in SrTiO3 and dislocations in FCC crystal
     The properties of <110>{001}45 mixed dislocation in perovskite structure SrTiO3 are discussed taking into account the discrete effect. It’s necessary to deal with the mixed dislocation with two-dimensional dislocation equation due to the edge and screw components. The rationality of the constrained path approximation is stated. In the constrained path approximation, the two dimensional dislocation reduced into one dimensional mixed dislocation equation. While the discrete effect is neglected, the new equation is the same as the mixed dislocation equation in P-N model. Peierls stress of the <110>{001} mixed dislocation obtained with reduced dislocation equation is 0.22GPa and Peierls stress of <110>{001} edge and screw dislocations are 0.17GPa and 0.46GPa, respectively. This shows that the one dimensional dislocation equation is a valid method to deal with the mobility of mixed dislocation due to the Peierls stress of mixed dislocation in the region of edge and screw dislocations. The dissociated core structure of edge 1/2<110>{111} dislocation in FCC crystals(Al、Cu、Ag and Au) are examined. The core structure of these dislocations is complex, the dissociated width is determined by the elastic theory, the width of edge and screw component of partials are determined by variational principle. While the modification of discrete effect is taken into account the width obtained are wider than that obtained in P-N model.
引文
[1]杨顺华.晶体位错理论基础(第一卷)[M].北京:科学出版社,1988.
    [2]杨顺华,丁棣华.晶体位错理论基础(第二卷)[M].北京:科学出版社,1998.
    [3] E. Orowan.Zür Kristallplastizit?t I-III[J].Z. Phys.,1934,89:605-659.
    [4] M. Polanyi.über eine Art Gitterst?rung, die einem Kristall plastisch machen k?nnte[J].Z. Phys.,1934,89:660-664.
    [5] G. I. Taylor. The mechanism of plastic deformation of crystals I-II [J].Proc. Roy. Soc. A, 1934, 145: 362-404.
    [6] R. E. Peierls.The size of a dislocation[J].Proc. Phys. Soc. London,1940,52:34-37.
    [7] F. R. N. Nabarro.Dislocations in a simple cubic lattice[J].Proc. Phys. Soc. London,1947,59:256-272.
    [8] A. J. Foreman, M. A. Jaswon, J. K. Wood. Factors controlling dislocation width[J]. Proc. Phys. Soc., 1951, 64: 156-163.
    [9] V.Vitek. Intrinsic stacking faults in body-centered cubic crystals[J]. Phil. Mag., 1968, 18: 737-786.
    [10] J. W. Christian, V.Vitek. Dislocations and stacking faults[J]. Rep. Prog. Phys., 1970, 33: 307-411.
    [11] B. Joós, Q. Ren, M. S. Duesbery, Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces[J]. Phys. Rev. B, 1994, 50: 5890-5898.
    [12] J. Hartford, B. Sydow, G. Wahnstrom, B. I. Lundqvist, Peierls barries and stress for edge dislocations in Pd and Al calculated from first principles[J]. Phys. Rev. B, 1998, 58: 2487-2496.
    [13] J. A. Yan, C. Y. Wang, S. Y. Wang, Generalized-stacking-fault energy and dislocation properties in bcc Fe: a first-principel study[J]. Phys. Rev. B, 2004, 70: 174015.
    [14] D. Ferré, P. Carrez, P. Cordier, Modeling dislocation cores in SrTiO using the Peierls-Nabarro mdoel[J]. Phys. Rev. B, 2008, 77: 014106.
    [15] V. Bulatov, E. Kaxiras, Semidiscrete variational Peierls framework for dislocation core properties[J]. Phys. Rev. Lett, 1997, 78: 4221-4224.
    [16] G. Lu, The Peierls-Nabarro model of dislocations: avenerable theory and its current development. in Handbook of Materials Modeling. Ed. By S. Yip, Vol.I: Methods and Models, 2005,1-19.
    [17] G. Lu, N. Kioussis, V. Bulatov, E. Kaxiras, Generalized-stacking-fault energy surface anddislocation properties of aluminum[J]. Phys. Rev. B, 2000, 62: 3099-3108.
    [18] G. Lu, Q. Zhang, N. Kioussis, E. Kaxiras, Hydrogen-enhanced local plasticity in aluminium[J]. Phys. Rev. Lett, 2001, 87: 095501.
    [19] G. Lu, E. Kaxiras, Can vacancies lubricate dislocation motion in aluminium[J]. Phys. Rev. Lett, 2002, 89: 105501.
    [20] G. Lu, V. Bulatov, N. Kioussis, Dislocation constriction and cross-slip: an ab initio study[J]. Phys. Rev. B, 2002, 66: 144103.
    [21] G. Lu, V. Bulatov, N. Kioussis, On stress assisted dislocation constriction and cross-slip[J]. Int. J. Plasticity, 2004, 20: 447-458.
    [22] A. A. Maradudin, Screw dislocations and discrete elastic theory[J]. J. Phys. Chen. Solids, 1958, 9: 1-20.
    [23] L. L. Boyer, J. R. Hardy, Lattice statics applied to screw dislocations in cubic metals[J]. Phil. Mag., 1971, 24: 647-671.
    [24] J. P. Hirth, J. Lothe, Theory of dislocations[M], New York: John Wiley, 2nd ed., 1982.
    [25] S. F. Wang, Lattice theory for structure of dislocations in a two-dimensional triangular crystal[J]. Phys. Rev. B, 2002, 65: 094111.
    [26] S. F. Wang, An improvement of the lattice theory of dislocation for a two-dimensional triangular crystal[J]. Chin. Phys., 2005, 14: 791-795.
    [27] S. F. Wang, An improvement of the Peierls equation by taking into account the lattice effects[J]. Chin. Phys., 2005, 14: 2575-2584.
    [28] S. F. Wang, From discreteness to continuity: dislocation equation for two-dimensional triangular lattice[J]. Chin. Phys. Lett., 2007, 24: 143-146.
    [29] S. F. Wang, Dislocation equation from the lattice dynamics[J]. J. Phys. A: Math. Theor., 2008, 41: 015005.
    [30] S. F. Wang, A unified dislocation equation from lattice statics[J]. J. Phys. A: Math. Theor., 2009, 42: 025208.
    [31] S. F. Wang, X. Z. Wu, Y. F. Wang, Variational principle for dislocation equation in lattice theory[J]. Phys. Scr., 2007, 76: 593-596.
    [32] X. Z. Wu, S. F. Wang, Application of parametric derivation method to the calculation of Peierls energy and Peierls stress in lattice theory, Acta Mech. Solida Sin., 2007, 20: 363-368.
    [33] X. Z. Wu, S. F. Wang, H. L. Zhang, The dissociated properties of dislocation in two-dimensional triangular lattice[J]. Cent. Eur. J. Phys., 2008, 6: 440-444.
    [34] X. Z. Wu, S. F. Wang, On the properties of <111>{110} dissociated superdislocation in B2 structure YAg and YCu: Core structure and Peierls stress[J]. Front. Mater. Sci. China, 2009,accepted.
    [35] X. Z. Wu, S. F. Wang, R. P. Liu, On the core structure and mobility of <100>{010} dislocation in B2 structure YAg and YCu[J]. Chin. Phys. B, 2009, accepted.
    [36] X. Z. Wu, S. F. Wang, H. L. Zhang, The extended core structure of dissociated edge dislocations in fcc crystals with the consideration of discreteness[J]. Acta Mech. Solida Sin., 2008, 21: 403-410.
    [37]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983.
    [38]钱临照.晶体缺陷研究的历史回顾[J].物理,1980,9(4):289-296.
    [39]陈进化.位错基础[M].上海:上海科学技术出版社,1983.
    [40] J. Friedel.位错[M].王煜译.北京:科学出版社,1980.
    [41]赵敬世.位错理论基础[M].北京:国防工业出版社,1989.
    [42]石德珂.位错与材料强度[M].西安:西安交通大学出版社,1988.
    [43] D. Hull, D. J. Bacon.位错导论(第三版)[M].丁树深,李齐译.北京:科学出版社,1990.
    [44]范继美,万光珉.位错理论及其在金属切屑加工中的应用[M].上海:上海交通大学出版社,1991.
    [45]冯瑞,师昌绪,刘治国主编.材料科学导论[M].李齐,位错与向错,北京:化学工业出版社,2002.
    [46]王亚男,陈树江,董希淳.位错理论及其应用[M].北京:冶金工业出版社,2007.
    [47]周如松主编.金属物理(中册)[M].北京:高等教育出版社,1992.
    [48]熊家炯主编.材料设计[M].王崇愚,金属缺陷及电子结构的材料设计,天津:天津大学出版社,2000。
    [49] J. P. Hirth, A brief history of dislocation theory[J]. Metal. Trans. A, 1985, 16: 2085-2090.
    [50] F. R. N. Nabarro, Theory of crystal dislocations[M], London: Oxford University Press, 1967.
    [51] O. M. Braun, Y. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model[J].Phys. Rep.,1998,306: 1-108.
    [52] F.R. N. Nabarrro, Dislocations in solids, Vol.2, S. Amelinckx, Dislocations in particular structures, 1979, 67-460.
    [53] F. C. Frank, J. H. van der Merwe, One-dimensional dislocations I-II[J]. Proc. Roy. Soc. A, 1949, 198: 205-225.
    [54] J. H. van der Merwe, On the stresses and energies associated with inter- crystalline boundaries[J]. Proc. Phy. Soc. Sec. A, 1950, 63: 616-637.
    [55] B. Joós, M. S. Duesbery, The Peierls stress of dislocations: an analytic formula[J]. Phys. Rev. Lett. 1997, 78: 266-269.
    [56] F. R. N. Nabarro, Fifty-year study of the Peierls-Nabarro stress[J]. Mater. Sci. Eng. A, 1997,234-236: 67-76.
    [57] A. J. Foreman, M. A. Jaswon, J. K. Wood, Factors controlling dislocation width[J]. 1951, 64: 156-163.
    [58] Y. X. Gan, B. Z. Jan, A parametric derivation method for solving the Peierls-Nabarro dislocation equation with a non-sinusoidal law of interatomic forces[J]. J. Mater. Sci. Lett., 1996, 15: 2044-2047.
    [59] L. Lej?ek, Dissociated dislocations in the Peierls-Nabarro model[J]. Czech. J. Phys. B, 1976, 26: 294-299.
    [60] F. Kroupa, L. Lej?ek, Splitting of dislocations in the Peierls-Nabarro model[J]. Czech. J. Phys. B, 1972, 22: 813-825.
    [61] J. R. Rice, Dislocation nucleation from a crack tip: an analysis based on the Peierls concept[J]. J. Mech. Phys. Solids, 1992, 40: 239-271.
    [62] O. N. Mryasov, Y. N. Gornostyrev, A. J. Freeman, Generalized stacking fault energetics and dislocation properties: compact versus spread unit-dislocation structure in TiAl and CuAl[J]. Phys. Rev. B, 1998, 58: 11927-11932.
    [63] G. Schoeck, The Peierls model: progress and limitations[J]. Mater. Sci. Eng. A, 2005, 400-401: 7-17.
    [64] G. Schoeck, The generalized Peierls-Nabarro model[J]. Phil. Mag. A, 1994, 69: 1085-1095.
    [65] G. Schoeck, The Bordoni maximum and the Peierls energy: lecture on receiving the Zerner medal[J]. J. alloys Comp., 2000, 310: 2-6.
    [66] G. Schoeck, The core structure of dislocations. Peierls model vs. atomic simulations in Pd[J]. Comp. Mater. Sci., 2001, 21: 124-134.
    [67] G. Schoeck, The core structure of dislocations in Al: a critical assessment[J]. Mater. Sci. Eng. A, 2002, 333: 390-396.
    [68] G. Schoeck, The core structure of dissociated dislocations in NiAl[J]. Acta Mater., 2001, 49: 1179-1187.
    [69] G. Schoeck, The core structure, recombination energy and Peierls energy for dislocations in Al[J]. Phil. Mag. A, 2001, 81: 1161-1176.
    [70] G. Schoeck, The Peierls energy and kink energy in fcc metals[J]. Phil. Mag., 2005, 85: 949-966.
    [71] S. Kibey, J. B. Liu, M. J. Curtis, D. D. Johnson, H. Sehitoglu, Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels[J]. Acta Mater., 2006, 54: 2991-3001.
    [72] Y. Xiang, H. Wei, P. B. Ming, W. N. E, A generalized Peierls-Nabarro model for curveddislocations and core structures of dislocation loops in Al and Cu[J]. Acta Mater., 2008, 56: 1447-1460.
    [73] H. Wei, Y. Xiang, P. B. Ming, A generalized Peierls-Nabarro model for curved dislocations using discrete Fourier transform[J]. Commun. Comput. Phys., 2008, 4: 275-293.
    [74] Y. Xiang, Modelling dislocations at different scales[J]. Commun. Compt. Phys., 2006, 1: 383-424.
    [75] S. F. Wang, Dislocation solution in slowly varying approximation[J]. Phys. Lett. A, 2003, 313: 408-411.
    [76] W. L. Bragg, W. M. Lomer, A dynamical model of a crystal structure[J]. Proc. Roy. Sco. A, 1949, 196: 171-181.
    [77] H. B. Huntington, Modification of the Peierls-Nabarro model for edge dislocation core[J]. Proc. Phys. Soc., 1955, 68: 1043-1048.
    [78] J. N. Wang, A new modification of the formulation of Peierls stress[J]. Acta Mater., 1996, 44: 1541-1546.
    [79] G. Schoeck, Peierls energy of dislocations: a critical assessment[J]. Phys. Rev. Lett., 1999, 82: 2310-2313.
    [80] G. Lu, N. Kioussis, V. Bulatov, E. Kaxiras, The Peierls-Nabarro model revisited[J]. Phil. Mag. Lett., 2000, 80: 675-682.
    [81] S. F. Wang, Dislocation energy and Peierls stress: a rigorous calculation from the lattice theory[J]. Chin. Phys., 2006, 15: 1301-1309.
    [82] S. J. Zhou, A. E. Carlsson, R. Thomson, Dislocation core-core interaction and Peierls stress in a model hexagonal lattice[J]. Phys. Rev. B, 1994, 49: 6451-6457.
    [83] K. Gschneidner Jr, A. M. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C. H. Lo, Y. Ye, A. Slager, D. Kesse, A family of ductile intermetallic compounds[J]. Nat. Mater., 2003, 2: 587-590.
    [84] J. R. Morris, Y. Ye, Y. B. Lee, Harmon B N, Gschneidner K Jr and Russell A M, Acta. Mater., Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds[J], 2004, 52: 4849-4857.
    [85] A. M. Russell, Z. Zhang,T. A. Lograsso, C. H. Lo, A. O. Pecharsky, J. R. Morris, Y. Ye, K. Gschneidner Jr, A. J. Slager, Mechanical properties of single crystal YAg[J]. Acta. Mater., 2004, 52: 4033-4044.
    [86] A. M. Russell, Z. Zhang, K. Gschneidner Jr, T. Lograsso, A. Pecharsky, A. Slager, D. Kesse, Mechanical properties of single crystal YCu and (TbDy)Zn B2 intermetallic compounds[J]. Intermetallics, 2005, 13: 565-571.
    [87] Q. Chen, S. B. Biner, Stability of perfect dislocations in rare-earth intermetallic compounds: YCu, YAg and YZn[J]. Acta Mater., 2005, 53: 3215-3223.
    [88] Z. Zhang, A. M. Russell, S. B. Biner, K. Gschneidner Jr, C. H. Lo, Stability of perfect dislocations in rare-earth intermetallic compounds: YCu, YAg and YZn[J]. Intermetallics, 2005, 53: 559-564.
    [89] X. M. Tao, Y. F. Ouyang, H. S. Liu, F. J. Zeng, Y. F. Feng, Z. P. Jin, Ab initio calculations of mechanical and thermodynamic properties for the B2-based AlRE[J]. Comp. Mater. Sci., 2007, 40: 226-233.
    [90] Y. J. Shi, Y. L. Du, G. Chen, G. L. Chen, First principle study on phase stability and electronic structure of YCu[J]. Phys. Letts. A, 2007, 368: 495-498.
    [91] G. H. Cao, D. Shechtman, D. M. Wu, A. Becker, L. Chumbley, T. Lograsso, A. Russell, K. Gschneidner Jr, Determination of slip systems and their relation to the high ductility and fracture toughness of the B2 DyCu intermetallic compound[J]. Acta Mater., 2007, 55: 3765-3770.
    [92] S. Xie, A. M. Russell, A. T. Becker, K. Gschneidner Jr, Dislocation core structures in YAg, a ductile B2 CsCl-type intermetallic compound[J]. Scripta Mater., 2008, 58: 1066-1069.
    [93] D.Farkas, B. Mutasa, C. Vailhe, K. Ternes, Interatomic potentials for B2 NiAl and martensitic phases[J]. Modelling Simul. Mater. Sci. Eng., 1995, 3: 201-214.
    [94] C. Vailhe, D.Farkas, Shear faults and dislocation core structure simulations in B2 FeAl[J]. Acta Mater., 1997, 45: 4463-4473.
    [95] C. Vailhe, D.Farkas, Shear faults and dislocation core structure in B2 CoAl[J]. J. Mater. Res., 1997, 12: 2559-2570.
    [96] V. Shastry, D.Farkas, Atomistic simulation of fracture in CoAl and FeAl[J]. Intermetallics, 1998, 6: 95-104.
    [97] R. Pasianot, Z. Xie, D. Farkas, E. J. Savino, Computer simulation <100> dislocation core structure in NiAl[J]. Modelling Simul. Mater. Sci. Eng., 1994, 2: 383-394.
    [98] R. Schroll, M. W. Finnis, P. Gumbsch, Energies of defects in ordered alloys: dislocation core energies in NiAl[J]. Acta Mater., 1998, 46: 919-926.
    [99] V. Vitek, Atomic structure of dislocations in intermetallics with close packed structures: a comparative study[J]. Intermetallics, 1998, 6: 579-585.
    [100] M. Ludwig, P. Gumbsch, Cleavage fracture and crack tip dislocation emission in B2 NiAl: an atomistic study[J]. Acta Mater., 1998, 46: 3135-3143.
    [101] R. Schroll, V. Vitek, P. Gumbsch, Core properties and motion of dislocations in NiAl[J]. Acta Mater., 1998, 46: 903-918.
    [102] P. Gumbsch, R. Schroll, Atomistic aspects of the deformation of NiAl[J]. Intermetallics, 1999, 7: 447-454.
    [103] D. L. Davidson, Transitioin metal alloys: elastic properties and Peierls-Nabarro stresses[J]. Mater. Sci. Eng. A, 2000, 293: 281-291.
    [104] N. I. Medvedeva, O. N. Mryasov, Y. N. Gornostyrev, D. L. Novikov, A. J. Freeman, First-principles total-energy calculations for planar shear and cleavage decohesion processes in B2-ordered NiAl and FeAl[J]. Phys. Rev. B, 1996, 54: 13506-13514.
    [105] O. N. Mryasov, Y. N. Gornostyrev, M. van Schilfgaarde, A. J. Freeman, Superdislocation core structure in LI2 Ni3Al, Ni3Ge and Fe3Ge: Peierls-Nabarro analysis starting from ab-initio GSF energetics calculations[J]. Acta Mater., 2002, 50: 4545-4554.
    [106] T. S. Li, J. W. Morris Jr, D. C. Chrzan, Ab initio study of the ideal shear strength and elastic deformation behaviors of B2 FeAl and NiAl[J]. Phys. Rev. B, 2006, 73: 024105.
    [107] P. Lazar, R. Podloucky, Ab initio study of tension-shear coupling in NiAl[J]. Phys. Rev. B, 2007, 75: 024112.
    [108] C. R. Miranda, S. Scandolo, Computational materials science meets geophysics: dislocations and slip planes of MgO[J]. Comp. Phys. Commun., 2005, 169: 24-27.
    [109] P. Carrez, D. Ferré, P. Cordier, Peierls-Nabarro modeling of dislocations in MgO from ambient pressure to 100 GPa[J]. Modelling Simul. Mater. Sci. Eng., 2009, 17: 035010.
    [110] J. Durinck, A. Legris, P. Cordier, Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: first principle calculatioins[J]. Am. Mineral., 2005, 90: 1072-1077.
    [111] J. Durinck, A. Legris, P. Cordier, Pressure sensitivity of olivine slip systems: first-principle calculations of generalized stacking faults[J]. Phys. Chem. Minerals., 2005, 32: 646-654.
    [112] P. Carrez, P. Cordier, D. Mainprice, A. Tommasi, Slip systems and plastic shear anisotropy in MgSiO ringwoodite: insights from numerical modeling[J]. Eur. J. Mineral., 2006, 18: 149-160.
    [113] J. Durinck, P. Carrez, P. Cordier, Application of the Peierls-Nabarro model to dislocations in forsterite[J]. Eur. J. Mineral., 2007, 19: 631-639.
    [114] D. Ferré, P. Carrez, P. Cordier, First principle determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls-Nabarro model[J]. Phys. Earth planet. Interiors, 2007, 163: 283-291.
    [115] P. Carrez, D. Ferre, P. Cordier,Implications for plastic flow in the deep mantle from modeling dislocations in MgSiO3 minerals[J]. Nature, 2007, 446: 68-70.
    [116] D. Mainprice, A. Tommasi, D. Ferre, P. Carrez, P. Cordier, Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-perovskite at high pressure:implications for the seismic anisotropy in the lower mantle[J]. Earth Planet. Sci. Lett., 2008, 271: 135-144.
    [117] D. Ferre, P. Carrez, P. Cordier, Peierls dislocation modeling in perovskite (CaTiO3): comparison with tausonite (SrTiO3) and MgSiO3 perovskite[J]. Phys. Chem. Minerals, 2008, 271: 135-144.
    [118] A. Metsue, P. Carrez, D. Mainprice, P. Cordier, Numerical modeling of dislocations and deformation mechanisms in CaIrO3 and MgGeO3 post-perovskites: comparison with MgSiO3 post-perovskite[J]. Phys. Earth Planet. Interiors, 2008,In press.
    [119] S. Ogata, J. Li, S. Yip, Ideal pure shear strength of aluminum and copper[J]. Science, 2002, 298: 807-811.
    [120] R. C. Pasianot, A. Moreno-gobbi, On the Peierls stress in Al and Cu: an atomistic simulation and comparison with experiment [J]. Phys. Stat. Sol. B, 2004, 241: 1261-1268.
    [121] P. Szelestey, M, Patriarca, K. Kaski, Computational study of core structure and Peierls stress of dissociated dislocations in nickel[J]. Modelling Simul. Mater. Sci. Eng., 2003, 11: 883-895.
    [122] J. A. Zimmerman, H. J. Gao, F. F. Abraham, Generalized stacking fault energies for embedded atom fcc metal[J]. Modelling Simul. Mater. Sci. Eng., 2000, 8: 103-115.
    [123] Z. L. Zhang, W. Sigle, M. Ruhle, Atomic and electronic characterization of the a[100] dislocation core in SrTiO3[J]. Phys. Rev. B, 2002, 66: 094108.
    [124] Z. L. Zhang, W. Sigle, W. Kurtz, M. Ruhle, Electronic and atomic structure of a dissociated dislocation in in SrTiO3[J]. Phys. Rev. B, 2002, 66: 214112.
    [125] D. J. Siegel, Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys[J]. Appl. Phys. Letts., 2005, 87: 121901.
    [126] P. Lazar, R. Podloucky, Ab initio study of the mechanical properties of NiAl microalloyed by X=Cr, Mo, Ti, Ga[J]. Phys. Rev. B, 2006, 73: 104114.
    [127] C. Brandl, P. M. Derlet, H. Van Swygenhoven, General-stacking-fault energies in highly strained metallic environments: ab initio calculations[J]. Phys. Rev. B, 2007, 76: 054124.
    [128] Y. Qi, R. K. Mishra, Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum[J]. Phys. Rev. B, 2007, 75: 224105.
    [129] S. Taketomi, R. Matsumoto, N. Miyazaki, Atomic simulatioin of the effects of hydrogen on the mobility of edge dislocatioin in alpha iron[J]. J. Mater. Sci., 2008, 43: 1166-1169.
    [130] M. S. Duesbery, G. Y. Richardson, The dislocation core in crystalline materials[J]. Crit. Rev. Sol. State Mat. Sci., 1991, 17: 1-46.
    [131] G. Schoeck, W. Puschl, Dissociated dislocations in the Peiels potential[J]. Mater. Sci. Eng. A, 1994, 189: 61-67.
    [132] S. Takeuchi, Metastablity of the undissociated state of dissociated dislocations[J]. Mater. Sci. Eng. A, 2005, 400-401: 84-88.
    [133] G. Vanderschaeve, D. Caillard, On the mobility of dislocations in semiconductor crystals[J]. Mater. Sci. Eng. A, 2007, 462: 418-421.
    [134] T. S. Byun, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels[J]. Acta Mater., 2003, 51: 3063-3071.
    [135] G. Schoeck, The dissociated energy of extended dislocations in fcc lattices[J]. Phil. Mag. A, 1999, 79: 1207-1215.
    [136] Y. N. Gornostyrev, M. I. Katsnelson, N. I. Medvedeva, O. N. Mryasov, A. J. Freeman, A. V. Trefilov, Peculiarities of defect structure and mechanical properties of iridium: results of ab initio electronic structure calculations[J]. Phys. Rev. B, 2000, 62: 7802-7808.
    [137] Q. F. Feng, R. Wang, Atomistic simulation of the atomic structure and diffusion within the core region of an edge dislocation in aluminum[J]. Phys. Rev. B, 2000, 62: 9317-9324.
    [138] H. Hakkinen, S. Makinen, M. Manninen, Edge dislocations in fcc meatls: microscopic calculations of core structure and positron states in Al and Cu[J]. Phys. Rev. B, 1990, 41: 12441-12451.
    [139] P. Szelestey, M, Patriarca, K. Kaski, Dissociated dislocations in Ni: a computational study[J]. Mater. Sci. Eng. A, 2005, 390: 393-399.
    [140] J. N. Wang, Prediction of Peierls stresses for different crystals [J]. Mater. Sci. Eng. A, 1996, 206: 259-269.
    [141] F. R. N. Nabarro, J. P. Hirth, Dislocations in Solids, Vol.11, W. Cai, V. V. Bulatov, J. P. Chang, J. Li, S. Yip, Dislocation core effects on mobility, 2004,1-117.
    [142] J. Cai, J. S. Wang, Modeling generalized stacking faults in Au using the tight-binding potential combined with a simulated annealing method[J]. Eur. Phys. J. B, 2002, 28: 45-48.
    [143] N. Bernstein, E. B. Tadmor, Tight-binding calculations of stacking energies and twinnability in fcc metals[J]. Phys. Rev. B, 2004, 69: 094116.
    [144] V. Vitek, Theory of the core structures of dislocations in body-centered-cubic metals[J]. Cry. Latt. Defects, 1974, 5: 1-34.
    [145] V. Vitek, Structure of dislocation cores in metallic materials and its impact on their plastic behavior[J]. Prog. Mater. Sci., 1992, 36: 1-27.
    [146] S. Ismail-Beigi, T. A. Arias, Ab initio study of screw dislocations in Mo and Ta: a new picture of plasticity in bcc transition metals[J]. Phys. Rev. Lett., 2000, 84:1499-1502.
    [147] C. Woodward, S. I. Rao, Ab-initio simulation of isolated screw dislocations in Mo and Ta[J]. Phil. Mag. A, 2001, 81:1305-1316
    [148] C. Woodward, First-principle simulations of dislocation cores[J]. Mater. Sci. Eng. A, 2005, 400-401: 59-67.
    [149] G. Monnet, D. Terentyev, Structure and mobility of the < 111 > edge dislocation in BCC iron studied by molecular dynamics[J]. Acta Mater., 2009, In press.
    [150] G. Schoeck, The Peierls energy revisited[J]. Phil. Mag. A, 1999, 79: 2629-2636.
    [151] Y. Yao, T. C. Wang, C. Y. Wang, Peierls-Nabarro model of interfacial misfit dislocation: An analytic solution[J]. Phys. Rev. B, 1999, 59: 8232-8236.
    [152] Y. Yao, T. C. Wang, The modified Peierls–Nabarro model of interfacial misfit dislocation[J]. Acta Mater. 1999, 47: 3063-3068.
    [153] N. I. Medvedeva, Y. N. Gornostyrev, O. Y. Kontsevoi, A. J. Freeman, Ab-initio study of interfacial strength and misfit dislocations in eutectic composites: NiAl/Mo[J]. Acta Mater., 2004, 52: 675-682.
    [154] S. Johansson, M. Christensen, G. Wahnstrom, Interface Energy of Semicoherent Metal-Ceramic Interfaces[J]. Phys. Rev. Lett., 2005, 95: 226108.
    [155] Y. Zhang, Y. Yao, The two-dimensional Peierls-Nabarro model for interfacial misfit dislocation networks of cubic lattice[J]. Eur. Phys. J. B, 2007, 55: 355-362.
    [156] Y. Zhang, Y. Yao, The multiscale model combining elastic theory with ab initio calculations for metal-ceramic interfaces[J]. Mod. Phys. Lett. B, 2008, 22: 3035-3143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700