表面自纳米化不锈钢与钛合金扩散连接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在异种金属材料的固态扩散连接过程中,为了实现原子的互扩散和有效的冶金结合,需在较高温度下进行长时间连接。但由于异种金属材料之间存在较大的物理、化学和力学性能差异,在连接界面处易生成较厚的金属间化合物,扩散层晶粒粗化,接头内应力增大,从而恶化了接头的力学性能。针对这一困扰工程界多年的问题,本文采用高能喷丸(High energy shot peening, HESP)工艺,对0Cr18Ni9Ti不锈钢与TA17近α钛合金的连接界面进行表面自纳米化(Surface self-nanocrystallization,SSNC)处理,获得了一定厚度的纳米晶组织,以期望促进原子在扩散连接过程中的互扩散,降低连接温度,缩短连接时间,抑制脆性金属间化合物的生长,改善接头组织,提高接头力学性能。这由于表面自纳米化纳米组织中含有高体积分数的晶界,能够为原子扩散提供大量通道,同时纳米组织中具有较高的吉布斯自由能,降低了原子的扩散激活能,有利于提高扩散连接过程中原子的扩散系数。
     文中对高能喷丸处理后的不锈钢和钛合金的纳米组织进行了表征;试验研究了不锈钢和钛合金表面层纳米组织的热稳定性;采用恒温恒压、脉冲加压对表面自纳米化0Cr18Ni9Ti不锈钢与TA17近α钛合金进行扩散连接;借助拉伸实验机、金相观察、显微硬度测试、扫描电镜观察、能谱分析、X-射线衍射等分析手段研究了表面自纳米化钛合金与不锈钢扩散连接接头的组织结构和性能。
     研究表明,采用高能喷丸对0Cr18Ni9Ti不锈钢与TA17钛合金进行表面自纳米化处理后,分别在端面以下70μm和50μm左右深度内形成了等轴纳米晶。晶粒细化机理与晶格结构和层错能密切相关,不锈钢的晶粒细化机理为位错+孪生变形+应变诱导马氏体相变机制;钛合金的粒细化机理为孪生+位错滑移机制。在高能喷丸过程中,应力和应变速率随着深度的增加逐渐减小,从而使变形层内的晶粒尺寸随深度增加逐渐增大并过渡到基体晶粒尺寸。
     采用退火处理对钛合金与不锈钢的高能喷丸纳米组织进行了热稳定性试验研究,结果表明不锈钢与钛合金的高能喷丸纳米晶组织分别在不超过650℃和550℃退火时,有相对较好的热稳定性;不锈钢与钛合金纳米组织在850℃退火30min后,晶粒尺寸分别不超过80nm和100nm。
     在800~900℃之间,采用8MPa恒定轴向压力,对表面自纳米化0Cr18Ni9Ti不锈钢和TA17钛合金进行恒温恒压扩散连接(Constant Temperature and Pressure Diffusion Bonding, CTPDB) 20min后,在850℃连接时获得了最高拉伸强度为327MPa接头,比粗晶试样采用相同扩散连接工艺获得的接头拉伸强度高出60MPa以上。
     在650~750℃之间对表面自纳米化0Cr18Ni9Ti不锈钢和TA17钛合金采用脉冲加压扩散连接(Pulse Pressure Diffusion Bonding, PPDB)后,获得了具有一定拉伸强度的连接接头。本文首次在低于800℃以下获得了钛合金与不锈钢的扩散连接接头。经对800℃以下的脉冲加压扩散连接工艺参数进行优化,在升温和降温速度一定,压力脉冲频率一定的条件下,得到优化工艺参数为:连接温度T=750℃,最大脉冲压力Pmax=150MPa,最小脉冲压力P_(min)=80MPa,脉冲次数n=400次,在此工艺下得到的接头拉伸强度达到262MPa。
     在850℃时,采用最小脉冲压力Pmin=8MPa,最大脉冲压力Pmax=50MPa,脉冲频率f=0.5Hz的工艺参数,对表面自纳米化TA17钛合金和0Cr18Ni9Ti不锈钢进行脉冲加压扩散连接80s后,获得了最大拉伸强度为384.0MPa的接头,比粗晶试样采用相同扩散连接工艺获得的接头拉伸强度高出60MPa以上。
     对上述不同扩散连接工艺下得到的接头的物相和组织进行分析研究,结果表明,从不锈钢侧到钛合金侧依次形成了不同的物相,分别为奥氏体(不锈钢基体)、金属间化合物、β-Ti固溶体和α-Ti固溶体(钛合金基体)。金属间化合物中主要有σ相、Fe_2Ti、FeTi等,金属间化合物层的厚度随连接温度的降低而减少。与常规粗晶试样相比,经相同扩散连接工艺连接后,表面自纳米化试样接头中金属间化合物的数量减少,分布得到了改善,从而提高了接头的力学性能。对接头拉伸断口分析表明,断裂发生在金属间化合物与β-Ti固溶体交界区域,拉伸时β-Ti固溶体承受了主要拉伸载荷,金属间化合物是导致裂纹扩展和断裂的主要原因。
     对表面自纳米化试样中原子扩散动力学进行了计算,计算结果与常规粗晶试样中对应的结果对比表明,Fe、Ti原子的扩散激活能降低,扩散系数提高。
     通过本试验研究表明,将表面自纳米化技术应用于钛合金与不锈钢的扩散连接中,实现了钛合金与不锈钢的低温、短时、高效连接,改善了接头组织,提高了接头性能,最大限度地减小了金属间化合物的有害作用,为异种金属的连接提供了一种新的方法。
In order to effective metallurgical bonding of dissimilar metal, diffusion bonding is processed at high temperature for long time. Resultly, thicker intermetallic compounds is yielded easily on the bonding interface, crystal grains grow significantly in the diffusion layer, and innerstress is large in the joint because of tremendous differences of physical, chemical and mechanical property, which deteriorated badly mechanical character of joint. For the sake of putting the axe in the helve, in the paper, surface self-nanocrystallization (SSNC) was apllied to synthesize nanostructured layer on the bonded surfaces of 0Cr18Ni9Ti stainless steel and TA17 titanium alloy bars by means of high energy shot peening (HESP), which aims at increasing atomic diffusion coefficient, reducing bonding temperature and restraining of brittle intermetallic compounds at bonding surface, betterment of microstructure in the diffusion layer, advancing of tensile strength. Because a large volume fraction of grain boundaries in nanostructure may act as fast atomic diffusion channels, and large number of nonequilibrium defects with high stored energy may reduce activation energy, which may increase atomic diffusion coefficient while diffusion bonding.
     After samples SSNCed, microstructures were characterized in the deformation layer, and thermal stability of nanostructure was put on test. Constant temperature and pressure diffusion bonding (CTPDB) and pressure and pulse pressure diffusion bonding (PPDB) were applied to produce SSNCed 0Cr18Ni9Ti stainless steel/TA17 titanium alloy joints. Microstructure observation, micro-hardness testing, scanning electron microscope (SEM) observation, energy dispersive spectroscope (EDS) and X-ray diffraction (XRD) analysis were employed to investigate the structure and performance of the joints.
     After SSNCed for 5min by means of HESP, surface nanostructured layer about 70μm and 50μm thickness were obtained on the stainless steel and titanium alloy ends respectively. Refinement mechanism of coarse grains for metal depend strongly on the lattice structure and the stacking fault energy while SSNCed. For 0Cr18Ni9Ti stainless steel, refinement mechanism is dislocation slip and twinning deformation and strain-induced martensitic transformation, and twinning deformation and dislocation slip for the titanium alloy. Stress and strain rate is reducing with increasing of depth to top surface, resulting that size of grains is increasing in the deformation layer and transition to that of matrix gradually.
     Surface nano-microstructures keep good thermal stability in the stainless steel and titanium alloy when annealing temperature is no more than 550℃and 650℃respectively. Furthermore, nano grains size of stainless steel and titanium alloy don’t exceed 80nm and 100nm respectively even if annealed at 850℃for 30min.
     CTPDB was applied to produce joints of SSNCed TA17/0Cr18Ni9Ti in the temperature rang of 800~900℃under a uniaxial load of 8MPa in vacuum for 20min, and effective joints were formed. When bonding temperature was 850℃, the maximum tensile strength of joint was as high as 327MPa. At the same diffusion bonding technology, the value is higher above 60MPa than that of their conventional coarsegrained bonded joint.
     PPDB was applied to prepare joints of SSNCed TA17/0Cr18Ni9Ti in the temperature rang of 650~750℃in vacuum, and joints with certain tensile strength were achieved. For the first time, joint of titanium alloy/stainless steel was obtained at below 800℃in this paper. While heating rate before pulse and cooling velocity after pulse were 5℃/s, pulse frequency was 0.5Hz, the optimized parameters for PPDB below 800℃were gained as following: bonding temperature was 750℃, pulse pressure was 80~150MPa, pulse pressuring times was 400 cycles. The joint strength under the optimum condition was 262.0MPa.
     By means of PPDB, SSNCed TA17/0Cr18Ni9Ti was bonded at 850℃for 80s. The pulse pressure is 8~50MPa, pulse frequency is 0.5Hz and the cycles is 40times. The joint tensile strength of 384.0MPa was achieved. At the same diffusion bonding technology, the value also is higher above 60MPa than that of their conventional coarsegrained bonded joint.
     Microstructures of joints by mentioned above diffusion bonding technology were researched. The results showed that multi-microstructures, which are in turnγ-Fe, brittle intermetallic compounds,β-Ti andα-Ti from stainless steel side to titanium alloy side, were formed on the joint. The intermetallic compounds are mainly FeTi、Fe2Ti andσphases. Thickness of compounds is decreasing with reducing of bonding temperature. Relativing to conventional coarse-grained joints, the thickness of compounds in SSNCed joints are thinner at the same bonding technology. Research of joint fractures showed theβ-Ti beared principal tensile load while joints were tensile test, and the brittle intermetallic compound is the prime reason of fracture. Diffusion coefficient and activation energy of atoms in the diffusion layer were calculated, the results showed that the activation energy is far lower than that in coarse-grained samples, and the diffusion coefficients is larger than that in coarsegrained samples.
     In the paper, research results showed that application SSNC to diffusion bonding of titanium alloy and stainless steel decreased activation energy of diffusion atoms significantly, increased diffusion coefficient atoms, suppressing remarkably growth of intermetallic compounds, improved microstructures of joints, increased tensile strength of joints. With SSNC treatment before bonding, the temperature and time of diffusion bond is lowered, the performance of joint of is improved, and the negative effects of intermetallic compounds for mechanical behaviour of joint was reduced as possible as. Through this research, an improved technology for the bonding of dissimilar materials was developed.
引文
[1]何康生,曹雄夫.异种金属连接[M].北京:机械出版社,1986.
    [2]张英才,陈虹.钛/钢复合材料热等静压扩散焊的研究[J].稀有金属,1994,18(6):464-465.
    [3]王敏敏,赵永庆,周廉.影响钛合金蠕变行为的因素分析[J].稀有金属材料与工程,2002,31(2)135-138.
    [4] P. He, J.C. Feng, B.G. Zhang, Y.Y. Qian. A new technology for diffusion bonding intermetallic TiAl to steel with composite barrier layers[J]. Materials Characterization, 2003, 50: 87-92.
    [5] H.J. Liu, J.C. Feng, Y.Y. Qian. Interface structure and formation mechanism of diffusion-bonded joints of SiC ceramic to TiAl based alloy[J]. Scripta Mater. 2000, 43: 49-53.
    [6] T. Noda, T. Shimizu, M. Okabe et al. Joining of TiAl and steels by induction brazing[J]. Materials Science and Engineering, 1997, A239-240: 613-618.
    [7] A.M. Kliauga, D. Travessa, M. Ferrante. Al2O3/Ti interlayer/AISI 304 diffusion bonded joint Micro structural characterization of the two interfaces[J]. Materials Characterization, 2001,46: 65-74.
    [8] Nelly Gidikova. Themodiffusion treatment of steel with Ti Thermodynamics and phase composition[J]. Materials Science and Engineering, 1997,A222: 84-90.
    [9] K. Lu, J. Lu.Nanostructured surface layer on metallic induced by surface mechanical attrition treatment[J]. Mater. Sci. Eng. 2004,A 375-377 (7):38-45.
    [10] Nairong Tao, Hongwang Zhang, Jian Lu etc..Devleopment of Nanostructures in Metallic Materials with Low Stacking Fault Energies During Surface Mechanical Attrition Treatment(SMAT)[J].Mater.Trans., 2003,44(10):1919-1925.
    [11] K.Y.Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu. Nanostructure formation mechanism of a-titanium using SMAT[J]. Acta Mater. 2004,52 (14):4101-4110.
    [12] Z.B. Wang ,J. Lu , K. Lu. Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment[J]. Acta Materialia, 2005,53 (4) :2081-2089.
    [13] Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu.Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment[J]. Acta Materialia 2003,51(14): 4319-4329.
    [14] Duohui BEI, Jianfeng GU and Jiansheng PAN. Gaseous Nitriding Process of Surface Nanocrystallized (SNCed) Steel[J]. J. Mater. Sci. Technol., 2002,18(6):566-568.
    [15]孙荣禄,张九海.钛及钛合金与钢焊接的问题及研究现状[J].宇航材料工艺, 1997,(2):7-11.
    [16]林柏年.剧烈塑性变形纳米材料[M].科学出版社, 2006.
    [17]陈达.纳米晶体的结构模型及性质研究[J].金属学报. 1994, 30(8): A348-A354.
    [18]常明,孙伟,郭长海等.纳米晶体结构与性能的模拟研究[J].物理学报. 1997, 46(7): 1326-1331.
    [19]卢柯.纳米晶体材料的研究进展[J].中国科学基金. 1994, 4: 245-251.
    [20]刘学东,卢柯,胡壮麒等.α-Fe(Si)纳米相的晶格畸变[J]. 1994, 39(3): 217-218.
    [21]常明,孙伟,邢金华,等.模拟纳米晶体原子分布及X-射线散射理论图案[J].物理学报. 1997, 46(7): 1319-1325.
    [22] Birringer R,Gleiter H, Klein HP, et.al.. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?[J].Phys Letter, A 1984,102:365.
    [23] Lu.K and Wang. JT. Relationship between crystallization temperature and pre-existing nuclei in amorphous Ni-P alloys[J]. Mater Sci&Eng, 1988,97:399-402.
    [24]杨剑,臊凤恩.纳米材料综述[J].材料导报. 1997, 11(2): 6-10.
    [25] Aning A O,W hangz,Courttney TH. Tungsten solution Kinetics and Amorphization of Nickel in mechanically alloyed Ni-W alloys[J]. Acta metal moder. 1993,41(1): 165-175.
    [26]卢柯,周飞.纳米晶体材料的研究现状[J].金属材料. 1997, 33(1): 99-106.
    [27]曹杨,陈光,颜银标.钢铁材料表面滋生纳米化及其应用前景.钢铁研究学报,2005,17(2):1-5.
    [28] N.R. Tao, Z.B. Wang, W.P. Tong,et.al.. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002,50:4603-4616.
    [29] Wu X, Tao N, Hong Y, et.al.. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment[J]. Acta Mater.2005;53:681.
    [30] H.Q. Sun , Y.N. Shi , M.X. Zhang, et.al.. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J].Acta Materialia,55(2007):975-982.
    [31]武晓雷.应变诱导晶粒细化与伸长率[J].材料热处理学报,2005,26(3):43-46.
    [32]胡兰青,李茂林,王科等.铝合金表面纳米化处理及显微结构特[J].中国有色金属学报. 2004, 14(12): 2016-2020
    [33]胡兰青,李茂林,卫英慧等.铝合金高能喷丸表层纳米化的TEM观察[J].电子显微学报. 2004,23(4): 386-386.
    [34]丛洪涛,孙秀魁,徐坚等.纳米晶Al的制备及拉伸性能(1)[J].材料研究学报. 1998, 12(6): 645-650.
    [35]丛洪涛,孙秀魁,徐坚等.纳米晶Al的制备及拉伸性能(2)[J].材料研究学报. 1998, 12(6): 651-654
    [36]雍兴平,刘刚,吕坚.低碳钢表面纳米化处理及结构特征[J]. 2002, 38(2): 157-160
    [37] Xingping YONG, Gang LIU, et.al.. Characteration and properties of nanostructured surface layer in a low carbon steel subjected to SMAT[J]. J.Mater.Sci.Technol. 2003, 19(1): 1-4.
    [38]雍兴平著,李建萍译.表面机械研磨低碳钢的纳米表层的特征与性能[M].国外金属加工. 2003, 24(4): 4-8.
    [39]冯淦,石连捷.低碳钢超声喷丸表面纳米化的研究[J].金属学报. 2000, 36(3):300-304.
    [40] Y.S.Zhang, Z. Han, K. Wang, et.al.. Friction and wear behaviors of nanocrystalline surface layer of pure copper[J].Wear,2006,260:942-948.
    [41] W.S. Zhao, N.R. Tao, J.Y. Guo, et.al.. High density nano-scale twins in Cu induced by dynamic plastic[J]. deformation.Scripta Mater. 2005,53:745-749.
    [43]张洪旺,刘刚,黑祖昆等.表面机械研磨诱导AISI304不锈钢表层纳米晶化Ⅰ—组织与性能[J].金属学报,2003,39(4):342-346.
    [44]张洪旺,刘刚,黑祖昆等.表面机械研磨诱导AISI304不锈钢表层纳米晶化Ⅱ—晶粒细化机制[J].金属学报,2003,39(4):347-350.
    [45]张聪慧,刘研蕊,兰新哲.钛合金表面高能喷丸纳米化后的组织与性能[J].热加工工艺, 2006, 35(2): 5-7
    [46]何利舰,张小农.钛及钛合金的表面技术新进展[J].上海金属, 2005, 27(3): 39-45.
    [47]张淑兰,陈怀宁,林泉洪等.工业纯钛焊接接头的表面纳米化及其性能[J].焊接学报. 2005, 26(3): 73-76.
    [48]张淑兰,陈怀宁,林泉洪等.工业纯钛的表面纳米化及其机制.有色金属,2005, 55(4):5-8.
    [49]温爱玲,陈春焕等.高能喷丸表面纳米化对工业纯钛组织性能的影响[J].表面技术,2003, 32(3):16-18.
    [50] Weisong ZHAO, Wei ZHANG. Microstructure Evolution and Tensile Properties of Pure Ti Subjected to Rapidly Heating and Quenching. J.Mater.Sci.Technol. 2006, 22(2):190-194.
    [51] A.V.Sergueeva, V.V.Stolyarov, R.Z.Valiev, A.K.Mukherjee. Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation[J]. Scripta mater., 2000. 43:819-824.
    [52] Chichili DR, Ramesh KT, Hemker KJ. The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling[J]. Acta Mater,1998;46:1025.
    [53] R.K.Islamgaliev, F.Chmelik, R.Kuzel. Thermal stability of submicron grained copper and nickel. Mater.Sci.Eng.,1997,A237(1):43-51.
    [54] V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, et.al.. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling[J]. Mater.Sci.Eng., 2003,A343(1-2)43-50.
    [55] R.Wadsack, R.Pippan, B.Schedler. Structural refinement of chromium by severe plastic deformation[J]. FusionEng.Des. 2003,66-68:265-269.
    [56] Z.Horita, T.Fujinami, M.Nemoto,et.al.. Improvement of mechanical properties for Al alloys using equal-channel angular pressing[J]. Mater.Process.Tech-nol., 2001,117(3):288-292.
    [57] Y.H.Zhao, X.Z.Liao, Z.Jin, et.al.. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing[J]. Acta Mater., 2004,52(15):4589-4599.
    [58] D.G.Morris, M.A.Munoz-Morris. Microstructure of severely deformed Al-3Mg and its evolution during annealing[J]. Acta Mater., 2002,50(16):4047-4060.
    [59] K.T.Park, D.H.Shin. Annealing behavior of submicrometer grained ferrite in a low carbon steel fabricated by severe plastic deformation[J]. Mater.Sci.Eng., 2002,A334(1-2):79-86.
    [60] L. Wang, X.Y. Qin, W.Xiong, et.al.. Thermal stability and grain growth behavior of nanocrystalline Mg2Si[J].Mater.Sci.Eng.,2006, A 434:166-170.
    [61] Claudio L. DE. Castro, Brian S. Mitchell. Crystal growth kinetics of nanocrystalline aluminum prepared by mechanical attrition in nylon media[J]. Mater. Sci.eng., 2005,A396:124-128.
    [62] I.Altenberger,E.A.Stach. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scrip. Mater.2003,48:1593-1601.
    [63] Beck P.A. Hu,H. Recrystallization, grain growth and textures[M]. London,A.S.M.,Metals Park,Ohio,and Chapman&Hall, 1966.
    [64]吴秋允.电镀纳米镍的结构及热稳定性[J].材料研究学报,1997,11(3):313.
    [65] A.Cziraki,et al. Thermal stability of nanocrystalline nickel electrodeposits: differential scanning calorimetry, transmission electron microscopy and magnetic studies [J].Mater.Sci.Eng.A,1994,179:1
    [66] Wang J, Wolf D, et al. Computer simula-tion of the structure and thermo-elastic properties of a model nanocrystalline material [J]. Philosophical Magazine A,1996, (73): 517.
    [67] A Michels. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials[J]. Acta Mater.,1999,47:2143.
    [68] Zener C. Private communication to C.S.Smith,Trans. Met. Soc. A.I.M.E 1948,175:15.
    [69] P. Choi, M. da Silva, U. Klement, et.al.. Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P [J]. Acta Mater., 2005,53:4473.
    [70] A.A. Talin , E.A. Marquis. Thermal stability of Ni-Mn electrodeposits[J]. Acta Mater., 2006,54: 1935.
    [71] M. da Silva. Electrodeposited nanocrystalline Co-P alloys: Microstructural characterization and thermal stability[J]. Mater.Sci.Eng.,2007,A445:31.
    [72]邓安华.有色金属中的原子扩散[J].上海有色金属, 1999,20(1):36-41.
    [73]崔忠圻主编.金属学与热处理[M].北京,机械工业出版社, 2003.
    [74]曹茂盛,关长斌,徐甲强编著.纳米材料导论[M].哈尔滨,哈尔滨工业大学出版社, 2001.
    [75]巩雄,张桂兰,汤国庆,等.纳米晶体材料研究进展.化学进展, 1997, 9(4):349-360.
    [76] Z.B. Wang, N.R. Tao, W.P. Tong,et.al.. Diffusion of Cr in Nanostructured Fe and Low Carbon Steel Produced by means of Surface Mechanical Attrition Treatment[J]. Defect and Diffusion Forum Vol. 2006,249:147-154.
    [77]卑多慧,吕坚,顾剑封,卢柯,潘健生.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,2002,23(1):19-24.
    [78] W.P.Tong, H.W.Zhang, N.R. Tao,et.al.. Low Temperature Nitriding By Means of SMAT[J]. Transcation of Metals and heattreatment, 2004,25(5):301-306.
    [79] Tong WeiPing, Tao NaiRong,Wang ZhenBo,et.al.. Nitriding Iron and 38CrMoAl Steel with a Nanostructured Surface Layer[J].中国科学院研究生院学报,2005,22(2):230-238.
    [80]谭天亚,傅正义,张东明.扩散焊接异种金属及陶瓷/金属的研究进展[J].硅酸盐通报,2003,1:59-63.
    [81]许贵芝.俄罗斯真空扩散焊技术应用点滴[J].焊接研究与生产, 1996, 5(1):38-39.
    [82]周印梅,杨文明.钢与钛衬里的银钎焊[J].压力容器, 1997,(6):80-82.
    [83]丁立平.材料的扩散焊接[J].国外金属材料, 1992,(5):28-41.
    [84]孙荣禄,杨文杰,张九海等.钛合金与不锈钢真空扩散焊接的研究[J].佳木斯工学院学报,1997,15(1):46-51.
    [85] P. He, J.C. Feng, B.G. Zhang,et.al.. Microstructure and strength of diffusion-bonded joints of TiAl based alloy to steel[J]. Materials Characterization, 2002, 48:401-406.
    [86] Wengbo HAN, Jiuhai ZHANG. Diffusion bonding between TiAl based alloys and steels[J]. J.Mater. Sci. Technol., 2001,17(1):191-192.
    [87] Han Wenbo, Zhang Kaifeng, Wang Guofeng. Superplastic forming diffusion bonding for honeycomb structure of Ti-6Al-4V alloy[J]. J. Mater. Pro. Tech., 2007,183:450-454.
    [88] Peng He, Jiuhai Zhang, Ronglin Zhou et al. Diffusion bonding technology of a titanium alloy to a stainless steel web with an Ni interlayer[J]. Materials Characterization, 1999, 43:287-292.
    [89]葛利玲,王敏,姚泽坤等.异种钢材的恒温超塑性扩散焊工艺[J].焊接学报, 2000,21(1):75-78.
    [90] Jindrich Ziegelheim, Shunsuke Hiraki, Hiroaki Ohsaws. Diffusion bondabiliy of similar/daisimilar light metal sheets[J]. J. Mater. Pro. Tech., 2007,186:87-93.
    [91] G.Q. Wu, Z.F. Li, G.X. Luo, et.al.. Dynamic simulation of solid-state diffusion bonding[J].Mater. Sci.and Eng., 2007,A452-453:529-535.
    [92] B.Qin, G.M. Sheng, J.W. Huang, et.al.. Phase transformation diffusion bonding of titanium alloy with stainless steel[J]. Materials Characterization, 2006,56:32-38.
    [93] M. Ghosh. S. Chatterjee. Diffusion bonded transition joints of titanium to stainless steel with improved properties[J]. Materials Science and Engineering, 2003, A358: 152-158
    [94] M. Ghosh, K. Bhanumurthy, G.B. Kale etal. Diffusion bonding of titanium to 304 stainless steel[J]. Journal of Nuclear Materials, 2003, 322: 235-241
    [95] M. Ghosh, S. Chatterjee, B. Mishra. The effect of intermetallics on the strength properties of diffusion bonds formed between Ti-5.5Al-2.4Al and 304 stainless steel[J]. Mate. Sci. and Eng., 2003, A363: 268-274
    [96] HE Peng, FENG Ji-cai, QIAN Yi-yu. Analysis of diffusion bond interface of TiAl base alloy with Ti,TC4 alloy and 40Cr steel[J]. Journal of Harbin Institute of Technology, 2000, 7(2): 78-81.
    [97]冯吉才,李卓然,何鹏等. TiAl/40Cr扩散连接接头的界面结构及相成长[J].中国有色金属学报,2003,13(1):162-166.
    [98] N. Orhan, T.I. Khan, M. Ero?lu. Diffusion bonding of a microduplex stainless steel to Ti-6Al-4V[J]. Scripta Materiallia, 2001, 45: 441-446.
    [99] G.B. Kale, R.V. Patil, P.S. Gawade. Interdiffusion studies in titanium-304 stainless steel system[J]. Journal of Nuclear Materials, 1998, 257: 44-50.
    [100] S.Kundu, S.Chatterjee. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel[J]. Mater. Sci. and Eng., 2007,doi:10.1016/j.msea.2007.07.033.
    [101] S.Kundu, M. Ghosh, S.Chatterjee. Diffusion bonding of commercially pure titanium and 17-4 precipitation hardening stainless steel[J]. Mater. Sci. and Eng., 2006,428:18-23.
    [102]周荣林,何鹏,李小强等.钛合金/不锈钢网的扩散连接[J].宇航材料工艺,1999,(1):46-51.
    [103] M. Ghosh, Samar Das, P.S.Banarjee, et.al.. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium-stainless steel couple[J]. Mater. Sci. and Eng., 2005, A390: 217-226
    [104] M. Ferrante, E.V. Pigoretti. Diffusion bonding of Ti-6Al-4V to AISI316L stainless steel: mechanical resistance and interface microstructure[J]. Journal of Materials Scicence, 2002, 37: 2825-2833
    [105] M. Ghosh, S. Chatterjee. Characterization of transition joints of commercially pure titanium to 304 stainless steel[J]. Materials Characterization, 2002, 48: 393-399.
    [106]孙荣禄,张九海,黄喜东.中间过渡金属V+Cu对钛合金与不锈钢扩散焊接头性能的影响[J].焊接,1997,(2):2-6.
    [107]钱红,叶赐麒,闫玉芹.中间过渡层在真空扩散焊中的应用[J].北京工业大学学报,1992,18(1):30-37.
    [108]李小强,李元元,张大童等.钛合金/镍/不锈钢网的扩散连接技术[J].中山大学学报(自然科学版), 2003,42(3):92-94.
    [109]邹茉莲,刘泽文.钛合金TC4与1Cr18Ni9Ti不锈钢的扩散焊工艺探索[J].北京航空航天大学学报, 1995,21(3):45-50.
    [110]孙荣禄,张九海,黄喜东.中间过渡金属V+Cu对钛合金与不锈钢扩散焊接头性能的影响[J].焊接, 1997,(2):2-6.
    [111] P. He, J.C. Feng, B.G. Zhang,et.al.. A new technology for diffusion bonding intermetallic TiAl to steel with composite barrier layers. Materials Characterization, 2003, 50: 87-92.
    [112]何鹏,冯吉才,韩杰才等. TiAl/V/Cu/40Cr钢扩散连接界面组织结构对接头强度的影响[J].焊接, 2002(7):12-14.
    [113]何鹏. TiAl与40Cr钢复合阻隔法扩散连接机理及工艺研究[D].博士学位论文,哈尔滨,哈尔滨工业大学,2001.
    [114]张鹏程,申亮,徐青等.铍/HR-1不锈钢热等静压扩散连接界面特性研究[J].稀有金属材料与工程, 2002, 31(1):41-43.
    [115] M.F. Islam, N. Ridley. Isostatic diffusion bonding of a microduplex stainless steel[J]. Scripta Materials, 1998, 38(8): 1187-1193.
    [116] G. Le Marois, Ch.Dellis, J.M. Gentzbittel, F. Moret. HIP’ing of copper alloy to stainless[J]. Journal of Nuclear Materials, 1996, 233-237: 927-931.
    [117] M. Holmquist, V. Recina, J. Ockborn et al. Hot isostatic diffusion bonding of titanium alloy Ti-6Al-4V to gamma titanium aluminide IHI alloy 01A[J]. Scripta Materialia, 1998, 39(8): 1101-1106.
    [118] H.P.Buchkremer, P.J.Ennis, D.Stover. Manufacture and stress rupture properties of hipped austenitic-ferritic transition joints[J]. Journal of Materials of Processing Technology, 1999, 92-93: 386-370.
    [119]康人木. Be/中间层/HR-1不锈钢扩散连接工艺和机理的研究[D].硕士学位论文,重庆,重庆大学,2004.
    [120]裴大荣,郭悦霞.层状爆炸金属复合材料的界面特性与金相观察[J].稀有金属材料与工程, 1995,24(6):48-52.
    [121] Machare Y, Y.Komizo, T.G. Langdon. Principles of superplastic diffusion bonding[J]. Materials Science and Technology, 1988, 4(8): 669-673.
    [122]王洪顺,海杰,赵艳君等.α、β相分布形态对TC11钛合金高温循环蠕变速率的影响[J].沈阳航空工业学院学报, 2000,17(4):14-16.
    [123]王敏.钢材超塑性扩散连接接头的质量分析[J].钢铁研究学报, 2000,12(6):37-42.
    [124]张柯柯,杨蕴林,王长生等.钢的恒温超塑性固相焊接研究[J].材料科学与工艺, 1999,7(增刊):100-103.
    [125]杨蕴林,李志.钢恒温超塑焊接后的热处理及其冲击性能[J].金属热处理, 1995, 8:24-29.
    [126]张柯柯,杨蕴林,王长生等.钢在恒温超塑焊接过程中焊接面断口分析[J].洛阳工学院学报, 2001, 22(4):7-10.
    [127]杨蕴林,李志,李炎.恒温超塑焊接接头断口分析[J].金属学报, 1995, 31(8):384-387.
    [128]杨蕴林,李志,文九巴等.结构钢与工具钢的恒温超塑性固相焊接[J].焊接学报, 1996, 17(1):31-38.
    [129] Hidetoshi Somekawa, Hiroyuki Hosokawa, Hiroyuki Watanabe, et al. Diffusion bonding in superplastic magnesium alloys[J]. Materials Science and Engineering, 2003, A339; 328-333.
    [130] O.A. Kaibyshev. Grain refinement in commercial alloys due to high plastic deformations and phase transformations[J]. Journal of Materials Processing Technology, 2001, 117: 300-306.
    [131]林祥丰,王蕾,张瑞容等.钢的相变超塑性扩散焊研究[J].南京航空航天大学学报, 1996, 28(2):199-204.
    [132]刘建华,李志远,胡伦骥等.钢铁材料的相变超塑性焊接[J].华中理工大学学报, 1995,23(1):15-19.
    [133]韩文波,张九海.钢与不锈钢的相变超塑扩散连接[J].材料科学与工艺,1999,7(增刊):112-116.
    [134]鲁世红,恽君璧.共析钢的相变超塑性扩散连接[J].南京航空航天大学学报,2001,33(6):555-558.
    [135]王文燕,阳永春.相变与超塑性固态焊接[J].金属热处理,1997, (10):3-6.
    [136] M. Sireesha, Shaju K. Albert, S. Sundaresan. Thermal cycling of transition joints between modified 9Cr-1Mo steel and alloy 800 for steam generator application[J]. Internation Journal of Pressure Vessels and Piping, 2002, 79: 819-827.
    [137] H. Kato, M. Shibata, K.Yoshikawa. Diffusion welding of Ti/Ti and Ti/stainless rods under phase transformation[J]. Materials Science and Technology, 1986, 2: 405-409.
    [138] B.L.Shen, T. Yamasaki, Y. Ogino, H.M. Kimura et al. Effect of liquid phase on superplastic deformation and diffusion bonding of Cu-Mg-TiC nanocrystalline composite[J]. Scripta Mater, 2001, 44: 2133-2136.
    [139]崔建忠,郑广栋,马龙翔.相变扩散焊接中热循环的作用[J].东北工学院学报,1991,12(5):454-457.
    [140]熊建钢,刘建华,李志远等.相变超塑性焊接工艺及机理研究[J].热加工工艺,1996,(1):17-19.
    [141]朱林崎.国外超塑成形/扩散连接技术发展现状[J].宇航材料工艺,1996,(2):108-109.
    [142] Horng-Yu, Shyong Lee, Yu-Hwang You. Genuine solid-state bonding characteristics of superplastic Al-alloys[J]. Journal of Materials Processing Technology, 2002. 122: 226-231.
    [143] Hirofumi Yoshimura, Jun Nakahigashi. Ultra-fine-grain refinement and superplasticity of titanium alloys obtained through protium treatment[J]. International Journal of Hydrogen Energy, 2002, 27: 769-774.
    [144] Y.W. Xun, M.J. Tan. Applications of superplastic forming and diffusion bonding to hollow engine blades[J]. Journal of Materials Processing Technology, 2000, 99: 80-85.
    [145] Low-pressure diffusion bonding of SAE316 superplastic interlayer[J]. Scripta Metallurgica et Materialia, 1995, 33(8): 1277-1281.
    [146]秦斌.钛合金与不锈钢扩散连接工艺及理论研究[D].博士学位论文,重庆,重庆大学,2006.
    [147]胡振海,张建浩,朱平.乌克兰巴顿焊接研究所技术发展综述[J].上海航天. 1999,(6):49-55.
    [148]朱平.一种新型的扩散焊连接技术[J].制导与引信. 1999, (4):49-51.
    [149]胡振海,张建浩,朱平等.乌克兰巴顿焊接研究所技术发展综述[J].上海航天, 1999,(6):49-56.
    [150] X.J. Yuan, G.M. Sheng, B. Qin, et.al.. Impulse pressuring diffusion bonding of titanium alloy to stainless steel[J]. Materials Characterization, 2008,59(7):930-936.
    [151]郭伟.颗粒增强铝基复合材料液相冲击扩散焊接机理研究[D].博士学位论文,哈尔滨,哈尔滨工业大学,2004.
    [152]夏立芳,张振信.金属中的扩散.哈尔滨工业大学出版社. 1988
    [153]何康生,曹雄夫.异种金属焊接[M].北京:机械工业出版社. 1981,104,173-176,373-384
    [154]张鹏程.铍/HR-1不锈钢扩散焊和钎焊及界面特性研究[D].博士学位论文,四川,中国工程物理研究院, 2003.
    [155]肖纪美.合金相与相变[M].北京,冶金工业出版社,2003.
    [156]孙振岩,刘春明.合金中的扩散与相变[M].沈阳,东北大学出版社. 2002,154-176.
    [157]周波.不锈钢与钛合金脉冲加压扩散焊接工艺研究[D].硕士学位论文,重庆,重庆大学,2004.
    [158]王敏.钢材超塑性扩散连接接头的质量分析[J].钢铁研究学报. 2000, 12(6):37-42.
    [159]宋西平,孟为如,邵潭华. TC4钛合金惯性摩擦焊焊缝微组织形成的研究[J].材料工程, 1996,(2):24-26.
    [160]周印梅,杨文明.钢与钛衬里的银钎焊[J].压力容器. 1997,6:80-82.
    [161]刘中青.异种材料的焊接[M].北京,科学出版,1990,68-77.
    [162]宋维锡.金属学(修订本)[M].冶金工业出版社. 1979,186-197.
    [163] R.V.Patil, G.B.Kale, P.S.Gawde, Diffusion reactions in titanium/Inconel-600 system[J]. Journal of Nuclear Materials. 2001, (297): 153-160.
    [164]胡赓详,钱苗根.金属学[M].上海科学技术出版社. 1980,32-39.
    [165]何鹏,冯吉才.扩散连接接头金属间化合物新相的形成机理[J].焊接学报, 2001, 1(22):53-55.
    [166] Aleman B.Gutierrez I, Urcola J.Interface microstructures in diffusion bonding of titanium tostainless steel and low alloy steels[J]. Mater Sci Technol. 1993, 9(6): 33-41.
    [167]黄家伟.近α相钛合金与奥氏体不锈钢的相变超塑性扩散焊接研究[D].重庆大学,硕士学位论文. 2004.
    [168]李华瑞.材料X-射线衍射分析实用方法[M].北京,冶金工业出版社. 1994:78-87.
    [169]刘建路,张其春,林金辉.纳米粒子的平均晶粒尺寸和晶格畸变的同时测定[J].现代技术陶瓷, 2002, 1: 34-38.
    [170]孙文华,魏铭鉴等.测定纳米晶粒尺寸的分峰法[M].武汉工业大学学报, 1994, 16(2):51-54.
    [171]范学运,马仕明.材料中晶粒尺寸及微观畸变对X衍射线形的影响[M].中国陶瓷工业, 2002, 9(1):43-47.
    [172]陈伟平,董学仁,王少清等.纳米颗粒测试的几种方法[J].济南大学学报(自然科学版). 2005, 19(3):207-210.
    [173]陆金生. X-射线衍射技术在纳米材料中的应用[J].现代科学仪器, 2003, 2:34-35.
    [174] Amar K. De, David C. Murdock, Martin C. Mataya,et.al.. Quantitative measurement of deformation-induced martensitein 304 stainless steel by X-ray diffraction[J]. Scripta Materialia. 2004. 50:1445–1449.
    [175] S. Nourbakhsh, M. Blicharski, J. Nutting. Titanium science and technology[M], DGM, Germany ,1984:1729.
    [176] M. Blicharski, S.Nourbaksh, J.Nutting. Structure and properties of plastically deformedα-Ti. Metal Science, 1979, 13(9):516-522.
    [177] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov. Structure and properties of ultrafine grained materials produced by severe plastic deformation[J ]. Scripta Metall Mater., 1993 ,168,(2):141-151.
    [178]巴德玛,马世宁,李长青. C-Si合金钢表面纳米晶热稳定性的研究[J].材料工程,2008, 8:22-27.
    [179] C. Suryanarayana. Nanocrystalline materials[J]. Int. Mater. Rev., 1995, 40(2):41-64.
    [180]胡兰青,马晋芳,许并社. Al-Zn-Mg合金的表面纳米晶化及其热稳定性[J].材料热处理学报, 2007, 28(8):344-347.
    [181] C.莱茵斯, M.皮特尔斯编,陈振华译.钛与钛合金.北京,化学工业出版社,2005.
    [182]何鹏,冯吉才,钱乙余.TiAl/40Cr钢扩散连接界面组织结构对接头强度的影响[J].材料科学与工艺,2003,11(2):144-147.
    [183]袁新建.钛合金与不锈钢脉冲加压扩散连接工艺及界面结构研究[D].硕士学位论文,重庆,重庆大学,2006.
    [184]叶大伦,胡建华.实用无机热物理学数据手册[M].北京,冶金出版社,2002.
    [185]郭平.乌克兰巴顿焊接研究所的焊接工艺研究和应用[J].上海航天,1996, 5:45-48.
    [186] http://baike.baidu.com/view/1169398.htm.
    [187] V.N. Prevezentsev, V.N. Chuvildeev, S.A. Larin. Deformation micromechanisms and superplastic flow rheology in a wide strain rate range[J]. Superplasticity in Advanced Materials, 1994, 5:613-620.
    [188] G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, et.al.. Development of Ti-6Al-4V Sheet with low temperature superplastic properties[J]. J. Materials Processing Technology, 2001,116 (2-3):265-268.
    [189]袁新建,盛光敏,秦斌等.脉冲加压扩散连接工艺参数对钛合金与不锈钢接头强度的影响[J].航空材料学报,2006, 26(4):51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700