高强度Mg-Y-Zn镁合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有比重轻、比强度、比刚度高、导热导电性好、阻尼减振、电磁屏蔽、易于加工成形和容易回收等优点,在汽车、电子通信、航空航天和国防军事等领域具有及其重要的应用价值和广阔的应用前景。但在镁合金研究与应用中存在强度低的基础性问题,制约着高性能镁合金材料的开发与应用。本文研究了合金元素Y、Zn和Zr对Mg-Y-Zn合金组织、性能的影响;分析了凝固过程的冷却速度、固溶温度、固溶后的冷却方式、挤压温度、二次挤压温度等不同工艺对Mg_(97)Y_2Zn_1合金组织性能的影响;并以等通道角挤压法加工制取了高强度Mg-Y-Zn合金;利用热模拟技术研究了Mg_(97)Y_2Zn_1镁合金的中高温变形行为;研究了长周期有序结构对Mg-Y-Zn合金的强化作用。
     研究发现,Y、Zn和Zr合金元素对Mg-Y-Zn合金组织、性能有很大的影响。Mg_(98)Y_1Zn_1、Mg_(97)Y_2Zn_1、Mg_(96)Y_3Zn_1、Mg_(95.5)Y_3Zn_(1.5)、Mg_(94)Y_4Zn_2合金铸态组织都呈现典型的树枝晶结构,Y元素含量或Y和Zn元素总量越高,树枝晶越细,第二相数量增加。XRD分析表明,Mg_(98)Y_1Zn_1合金含有W-Mg_3Zn_3Y_2相和X-Mg12ZnY相,而Mg_(97)Y_2Zn_1、Mg_(96)Y_3Zn_1、Mg_(95.5)Y_3Zn_(1.5)、Mg_(94)Y_4Zn_2则只含有X-Mg12ZnY相。Mg_(97)Y_2Zn_1、Mg_(96)Y_3Zn_1、Mg_(95.5)Y_3Zn_(1.5)合金在400℃经过挤压后,在原始晶界和第二相附近发生了部分再结晶,三种合金在室温和高温都具有较高的强度。Zr元素的加入,不影响合金的相组成,却大大细化了Mg_(97)Y_2Zn_1合金的组织,也提高了合金的力学性能。
     本文研究了凝固过程的冷却速度、固溶温度、固溶后的冷却方式、挤压温度、二次挤压温度等不同工艺对Mg_(97)Y_2Zn_1合金组织、性能的影响。冷却速度越快,树枝晶越精细,力学性能越好。对Mg_(97)Y_2Zn_1合金进行不同温度的固溶处理,发现只有在高于X相熔点温度的固溶处理对组织有较大影响。415℃固溶的Mg_(97)Y_2Zn_1合金在400℃进行挤压后发生完全再结晶,而560℃固溶的合金在400℃进行挤压后只发生部分再结晶。挤压前经过560℃固溶处理合金在挤压和等通道角挤压后的强度都要高于415℃固溶处理过的合金,但延伸率要低于415℃固溶处理过的合金。对Mg_(97)Y_2Zn_1合金在不同温度下进行一次挤压和二次挤压研究发现,在较低温度下挤压后获得较细的组织,随着挤压温度提高,晶粒尺寸逐渐增大,强度下降,而延伸率上升。一次挤压得到的合金只发生部分再结晶,而二次挤压得到的合金发生完全再结晶,但在相同温度下,两者的晶粒尺寸相近。
     对Mg-Y-Zn合金进行等通道角挤压实验发现,随着等通道角挤压道次数的增加,第二相被逐渐细化,挤压态已发生再结晶区域的晶粒尺寸被进一步细化,而未发生再结晶的区域却仍然没有发生再结晶,只是沿着剪切方向形成一些剪切带。随着等通道角挤压道次数的增加,已再结晶区向未再结晶区域逐渐发展。经过一道次的等通道角挤压后,就有大量的超细晶粒形成。在随后道次的挤压过程中,晶粒虽然有所细化,但细化效果远不如第一道次挤压明显。经过等通道角挤压后的Mg-Y-Zn合金的晶粒尺寸要远远小于其它镁合金,其超细晶的形成和Mg-Y-Zn合金含有大量的X相和长周期有序结构有关。Mg_(97)Y_2Zn_1合金的晶粒尺寸被细化到200-500nm,Mg_(95.5)Y_3Zn_(1.5)合金的晶粒尺寸被细化到约200nm。经过等通道角挤压后,Mg-Y-Zn合金的强度得到了提高,Mg_(97)Y_2Zn_1合金的最高屈服强度和抗拉强度分别达到406.2MPa和455.2MPa,Mg_(95.5)Y_3Zn_(1.5)合金的最高屈服强度和抗拉强度分别达到444.6MPa和472.7MPa。由于等通道角挤压的剪切力会使X相内部产生微裂纹,因此材料的延伸率随着道次数的增加而降低。
     利用Gleeble热模拟试验机对Mg_(97)Y_2Zn_1镁合金进行了高温压缩实验研究,在同一应变速率下,随变形温度的升高,Mg_(97)Y_2Zn_1镁合金的流动应力水平逐渐下降;在同一变形温度下,随应变速率增加,Mg_(97)Y_2Zn_1镁合金的流动应力水平逐渐升高。Mg_(97)Y_2Zn_1具有较大的应力指数值。
     研究发现,在Mg-Y-Zn合金进行变形时,位错会在X相、长周期有序结构和基体的界面上塞积,基面滑移受到了抑制。长周期有序结构可以和孪晶发生交互作用,使孪晶界在长周期有序结构区域发生偏离。由于Mg-Y-Zn合金的Y、Zn元素含量高,层错能低,在变形过程中容易形成层错,位错容易在层错区域塞积。而位错的滑移运动也可以使层错产生扭曲和变形。长周期结构和位错的交互作用对Mg-Y-Zn合金的强化产生影响。
Magnesium alloys are the lightest structural materials with high specific strength, good electric conduction, thermal conduction, damping capacity, electromagnetic shielding, formability, as well as easy recycled. It has great application prospect on automobile, electro-communication, aviation, and military industry. However, an important disadvantage of Mg alloys is their low strength, which limited their development and application. The paper investigated the effects of the yttrium, zinc and zirconium additions on microstructure and mechanical properties of Mg-Y-Zn alloys. The effects of cooling rates during solidification, solid solution temperatures and cooling ways, extrusion and two-step extrusion temperatures on microstructure and mechanical properties of Mg-Y-Zn alloys were also investigated. The high strength Mg-Y-Zn alloys can be prepared by equal channel angular pressing (ECAP). Moreover, the hot simulation was conducted on Mg_(97)Y_2Zn_1 alloy to investigate its hot deformation behavior. The strengthening effects of long period stacking ordered structure on Mg-Y-Zn alloys were also analyzed.
     It is found that the addition of yttrium, zinc and zirconium play very important role in improving microstructure and mechanical properties of Mg-Y-Zn alloys. The as-cast Mg_(98)Y_1Zn_1, Mg_(97)Y_2Zn_1, Mg_(96)Y_3Zn_1, Mg_(95.5)Y_3Zn_(1.5) and Mg_(94)Y_4Zn_2 present a typical dendrite structure. The XRD pattern of as-cast alloys indicates that the Mg_(98)Y_1Zn_1 alloy is consists ofα-Mg, W-Mg_3Zn_3Y_2 and X-Mg12ZnY while Mg_(97)Y_2Zn_1, Mg_(96)Y_3Zn_1, Mg_(95.5)Y_3Zn_(1.5) and Mg_(94)Y_4Zn_2 alloy are consist ofα-Mg and X-Mg12ZnY. After extrusion at 400℃, the dynamic recrystallization (DRX) occurs around secondary phase particles and distorted grains boundaries in Mg_(97)Y_2Zn_1, Mg_(96)Y_3Zn_1 and Mg_(95.5)Y_3Zn_(1.5) alloys, but the DRX process is incomplete. The extruded Mg-Y-Zn alloys exhibit excellent mechanical properties both at ambient temperature and elevated temperature. The addition of zirconium has no effect on phase constituents, but the microstructure of Mg_(97)Y_2Zn_1 alloy is refined and the mechanical properties of Mg_(97)Y_2Zn_1 alloy are improved by the addition of zirconium.
     The paper investigated the effects of cooling rates of solidification, solid solution temperatures and cooling ways, extrusion and two-step extrusion temperatures on microstructure and mechanical properties of Mg-Y-Zn alloys. It was found that the higher cooling rate of solidification, the finer dendrite and higher mechanical properties for Mg-Y-Zn alloys. It was found that at the temperatures above the melting temperature of X-phase eutectic pockets, the solid solution can has significant effects on microstructure. After extrusion at 400℃, the DRX process is completed in Mg_(97)Y_2Zn_1 alloy solution treated at 415℃, but the DRX process is incomplete in the alloy solution treated at 560℃. After extrusion and equal channel angular pressing (ECAP), the alloy solution treated at 560℃exhibits higher strengths and lower elongation than that of alloy solution treated at 415℃. After extrusion and two-step extrusion, the lower extrusion temperature results in the finer grain size. With the extrusion temperature increasing, the grain size is increasing. Both extrusion and two-step extrusion have similar grain size. The DRX process is completed in extruded Mg_(97)Y_2Zn_1 alloy and the DRX process is incomplete in two-step extruded Mg_(97)Y_2Zn_1 alloy.
     After ECAP, the secondary phases were broken into uniformly distributed sections. The ultrafine grains were observed after ECAP. The grain size of Mg_(97)Y_2Zn_1 alloy was refined to 200-500nm,and the grain size of Mg_(95.5)Y_3Zn_(1.5) alloy was refined to about 200nm。It is found that the LPS structure contributes to the formation of ultrafine grain size of ECAP processed Mg_(97)Y_2Zn_1 alloy. The ECAP processed Mg-Y-Zn alloy exhibits excellent mechanical properties. The high strengths with the yield strength (YS) of 406.2MPa and the ultimate tensile strength (UTS) of 455.2MPa were obtained for ECAP processed Mg_(97)Y_2Zn_1 alloy. The YS and UTS of ECAP processed Mg_(95.5)Y_3Zn_(1.5) alloy are 444.6MPa and 472.7MPa correspondingly. The elongation is decreased with pass number increasing. It is due to that the process of ECAP introduced micro-cracks in the X-phase, which accelerated the growth and coalescence of the cracks during tensile test.
     The hot simulation was conducted on Mg_(97)Y_2Zn_1 alloy to investigate its hot deformation behavior. With the increasing of strain rate and decreasing of temperature, the flow stress is increasing gradually. And Mg_(97)Y_2Zn_1 alloy has high stress exponent value.
     It is also found that, the dislocations accumulated at the interfaces of X phase, the LPS structure and the matrix. The inhibition of the basal slip in Mg-Y-Zn alloys is due to the formation of X phase and the LPS structure. The deformation twin is deflected in the LPS structure region. The stacking fault energy of Mg-Y-Zn alloy is quite low due to high Y, Zn additions. During the deformation, the stacking faults can be easily introduced in and the dislocation would be accumulated at the front of stacking fault region. The dislocation glide can cross stacking faults and leads them to be bent and form steps. Therefore, it is concluded that interaction between LPS structure and dislocation contributes to the strengthening of Mg-Y-Zn alloy.
引文
[1] Norsk Hydro Databank. Norsk Hydro Research Center Porsgrunn,1996
    [2]刘兵,加强技术创新,为经济结构调整提供强大动力,材料热处理学报, 2001,22 (增刊),1-7
    [3]张娅,Mg-Zn-Y-Zr变形镁合金组织、性能及变形行为研究, [博士学位论文],上海,上海交通大学, 2006
    [4]罗治平,张少卿,魄国等,低Zn、高RE含量Mg-Zn-Zr-RE合金的相组成,航空学报, 1994, l5(7),860-865
    [5] Jin Q.L., Eom J.P., Lim S.G., etc., A Study on the grain refining effects of carbon inoculation by C2Cl6 addition on the AZ31 Magnesium alloy, Materials Science Forum, 2003,419-422, 587-592
    [6] Chadwick G.A., Bloyce A., in: B.L. Mordike (Ed.), Magnesium alloys and their applications, DGM GmbH, Oberursel, 1992, 93–100
    [7] Sommer B.,Kainer K.U., Berek H., Kriecheigenschaften der Kohlenstoffaserversta¨rkten Magnesium legerungen AS41 und AZ91, in: Verbundwerkstoffe und Werkstoffverbunde, DGM GmbH, Frankfurt, 1997, 513–518
    [8] Ataya S.,El-Magd E., Quasi-static behavior of Mg-alloys with and without short-fiber reinforcement, Theoretical and Applied Fracture Mechanics, 2007, 47(2), 102-112
    [9] Eds. Avedisian M., Baker H., Magnesium and magnesium alloys, ASTM specialty handbook, M.ASM, 1999
    [10] Polmear I. J., Magnesium alloys and applications, Materials Science & Technology, 1994, (1), 1-16
    [11] Suzuki M., Inoue R., Sugihara M., etc., Effects of yttrium on creep behavior and deformation substructures of magnesium, Materials Science Forum, 2000, 350-351, 151-156
    [12] Tumura T., Kono N., Motegi T., etc., Grain refining mechanism and casting structure of Mg - Zr alloy, Journal of Japan Institite of Light metals, 1998,48 (4),79-83
    [13] Qian M., Graham D., Zheng, L., etc., Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys, Materials Science Forum, 2003, 419-422, 593-598
    [14]刘正,张奎,曾小勤,镁基轻质合金理论基础及其应用,北京:机械工业出版社,2002
    [15]刘畅,周宏,孙广平等,稀土Y、Ce和Si对AM50合金铸态及固溶处理组织的影响,材料热处理,2006, 35 (10), 7-9
    [16]徐光宪.稀土,北京:冶金工业出版社, 1995, 475-485
    [17] Mizer D., Peter B. C., A study of precipitaion at elevated temperature in a Mg-28.7%Y alloy, Metallurgical Transaction, 1972, 3, 3262-3264
    [18]郭旭涛,李培杰,曾大本等.稀土在耐热镁合金中的应用,稀土,2002, 23 (2), 63-67
    [19] Drits M. E., Sviderkaya Z. A., Rokhlin L. L. etc., Effect of alloying on properties of Mg-Gd alloys, Metallovedenie Termicheskaya Obrabotka Metallov, 1979, 11, 62-64
    [20] Lorimer G.W., Apps P.J., Karimzadeh H., etc., Improving the performance of Mg-Rare Earth Alloys by the use of Gd or Dy Additions, Materials Science Forum, 2003, 419-422, 279-284
    [21] Luo Z.P., Song D.Y., Zhang S.Q., Strengthening effects of rare earths on wrought Mg-Zn-Zr-RE alloys, J. Alloys Compd., 1995, 230,109-114
    [22] Emely E.F. Principles of magnesium technology, Oxford, Pergamon Press, 1966
    [23] Yuuji N., Takuhiro N., Masao K., etc., Phase diagrams of magnesium rich portion, aging characteristics and tensile properties of Mg-heavy rare earth metal (Gd,Dy)2Nd alloys, Japanese of Light Metals, 1995, 452, 276-281
    [24] Andrade, U., Meyers, M.A., Vecchio, K.S., etc., Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper, Acta Metall. Mater., 1994, 42, 3183-3195
    [25] IsIamgliev R.K.,Yunusova N.F., Sabirov I.N., etc., Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation, Mater. Sci. Eng. A,2001, 877, 319- 321
    [26] Zhu Y.T., Lowe T.C., Jiang H., etc., Method for Producing Ultrafine-grained Materials using Repetitive Corrugation and Straightening, USP619 7129 , 2001.
    [27] Lee S.H., Saito Y., Tsuji N., etc., Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process, Scripta Mater., 2002, 46(4), 281
    [28] Beygelzimer Y., Orlov D., Korshunov A., etc., Features of Twist Extrusion: Method, Structures & Material Properties, Solid State Phenomena, 2006,114 , 69-78
    [29] Kim W.J., Hong S.H., High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy, J. Mater. Sci., 2000,35,2779
    [30] Salishchev G.A., Imayev R.M., Senkov O.N., etc.,Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working, Mater. Sci. Eng. A, 2000, 286(8), 236-243
    [31] Wert J.,PatonN.,Hamilton C. etc., Grain Refinement in 7075 Aluminum by Thermomechanical Processing, Metall. Trans., 1981,12A, 1267-1276.
    [32] Yeh J. W., Yuan S. Y., Peng C. H., Microstructure and tensile properties of an Al-12wt Pct Si alloy produced by reciprocating extrusion, Metall. Mater. Trans., 1999, 30A, 2503-2512
    [33] Tao N.R., Sui M.L., Lu J.m, etc., Surface nanocrystallization of iron induced by ultrasonic shot peening, NanoStructured Materials, 1999, 11(4), 433-440
    [34] Segal V. M., Reznilkov V. I., Drobyshekij A. E., etc., Russian Metallurgy (Eng1. Translation), 1981,1, 115
    [35] Valiev R.Z., Islamgaliev R.K., Alexandrov I.V., Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 2000, (45), 103-189
    [36] Keiichiro Oh-Ishi, Horita Z, Furukawa M, etc., Optimizing the rotation conditions for grain refinement in equal-channel angular pressing, Metal. Mater. Trans. A, 1998, (29A), 2011-2013
    [37] Lee J.C., Suh J.Y., Ahn J.P., Work-softening behavior of the ultrafine-grained Al alloy processed by high-Strain-rate, Dissimilar-Channel angular pressing, Metallurgical and Mater.Trans. A, 2003, 34A, 625-631
    [38] Chakkingal U., Suriadi A.B., Thomson P. F.,Microstructure development during equal channel angular drawing of Al at room temperature, Scripta Mater., 1998, 39(6), 677-684
    [39] Nam C. Y., Han J. H., Chung Y. H., etc., Effect of precipitates on microstructural evolution of 7050 Al alloy sheet during equal channel angular rolling, Mater. Sci. Eng. A, 2003, 347(1-2), 253-257
    [40] Saito Y., Utsunomiya H., Suzuki H., et al. Improvement in the r-value of aluminum strip by a continuous shear deformation process, Scripta Mater., 2000, 42(12), 1139-1144
    [41] Tetsuo S. Syuichi,H. Yoshihiro S., Improvement of the r-value in 5052 aluminum alloy sheets having through-thickness shear texture by 2-pass single-roll drive unidirectional shear rolling, Scripta Mater., 2001,44(11), 2569-2573
    [42] Shan A.D. Park J. W., Moon I. G., Principals of indirect equal channel angular drawing for processing of ultrafine grained materials, Material Science Forum, 2006, 503-504, 877-881
    [43] Chen B., Lin D.L., Zeng X.Q, etc., Single roll drive equal channel angular process—a potential severe plastic deformation (SPD) process for industrial application, Materials Science Forum, 2006, 503-504, 557-560
    [44] Huang J.Y.,Zhu Y.T.,Jiang H.G., etc.,Microstructures and dislocation configurations in bulk nanostructred Cu processed by repetitive corrugation and straightening, Acta Mater., 2001, 49, 1497-1505
    [45] Harry C..R., Adiabatic plastic deformation, Ann.Rev.Mater.Sci.,1979, 9,283
    [46] Lee S. H., Saito Y., Tsuji N., etc., Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process,Scripta Mater.,2002,46(4), 281-285
    [47] Seong H.L., Tetsuo S., Yoshihiro S., etc.,Strenthening of Sheath-Rolled Aluminum Based MMC by the ARB Process, Materials Transactions 1999,40(12), 1422-1428
    [48]赵新奇,张俊宝,徐政等,累积叠轧焊制备超细晶IF钢微观组织与力学性能,上海有色金属, 2002, 23(3), 107-110
    [49] Kolobov Yu, R,, Kieback B,, Ivanov K, V,, etc., The structure and microhardness evolution insubmicrocrystalline molybdenum processed by severe plastic deformation followed by annealing, International Journal of Refractory Metals & Hard Materials, 2003, 21,69
    [50] Sergueeva A. V., Stolyarov V. V., Valiev R. Z., etc., Advanced mechanical properties of pure titanium with ultrafine grained structure. Scripta Materialia, 2001, 45(7), 747-752
    [51] Genki S., Katsuaki N., Zenji H., etc., Application of high pressure torsion to bulk samples, Materials Science Forum, 2006, 503-504, 391-396
    [52] Islamgaliev R. K.,Yunusova N. F., Sabirov I. N., etc., Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation, Mater. Sci. Eng. A,2001,319–321, 877-881
    [53] Sun P. L., Kao P. W., Chang C. P., Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion, Materials Science and Engineering, 2000, A283, 82-85
    [54] Zhao Y. H., Liao X. Z., Jin Z., etc., Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater., 2004, 52, 4589-4599
    [55] Wang Z. C., Prangnell P. B., Microstructure refinement and mechanical properties of severely deformed Al–Mg–Li alloys, Mater. Sci. Eng. A, 2002, A328, 87-97
    [56] Mabuchi M., Iwasakih H., Yanase K., etc.,Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE, Scripta Mater., 1997, 36, 681-686
    [57] Yamashita A., Horita Z., Langdon T. G., Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A, 2001, 300, 142-147
    [58] Watanabe H., Mukai T., Ishikawa K., etc., Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion, Scripta Mater., 2002, 46, 851-856
    [59] Kim W.J., Hong S.I., Kim Y.S., etc., Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Mater.,2003(51), 3293-3307
    [60]吴伟,张禄廷,陈立佳,等通道角度挤压对两种镁合金拉伸性能的影响,沈阳工业大学学报, 2003 ,125(11), 18-22
    [61] Chuvil’deev V.N.,Nieh T.G.,Gryaznov M.Yu., etc., Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP, Scripta Mater., 2004(50), 861-865
    [62] K. M′athisa,b, J. Gubiczac, N.H. Namc, Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing, J. Alloys Compd., 2005, 394, 194-199
    [63]姜巨福,罗守靖,等径角挤压对AZ91D镁合金力学性能的影响,热加工工艺, 2004, (8), 3-8
    [64] Ruslan V., Nanostructuring of metals by severe plastic deformation for advanced properties, Nature materials, 2004,3, 511-516
    [65] Zhernakov V.S., Latysh V.V., Zharikov A.I., etc., The developing of nanostructured SPD Ti for structural use. Scripta mater. , 2001 ,44, 1771-1774
    [66] Srinivasan R., Cherukuri B., Chaudhury P. K., Scaling up of equal channel angular pressing (ECAP) for the production of forging stock, Materials Science Forum, 2006, 503-504, 371-374
    [67] Kawamura Y., Hayashi K., Inoue A., etc.,Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa, Mater. Trans., 2001, 42(7), 1172-1176
    [68] Kawamura Y., Yoshihito M., Takayoshi Y., etc.,Structure and mechanical properties of rapidly solidified Mg97Zn1RE2 alloys Source, Materials Science Forum, 2003, 419-422, 751-756
    [69] Itoi T., Seimiya T., Kawamura Y., etc., Microstructure of high strength Mg97Zn1Y2 alloys prepared by extrusion of gas-atomized powder, Materials Science Forum, 2003, 419-422, 721-726
    [70] Inoue A., Kawamura Y., Matsushita, M., etc., Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system, Journal of Materials Research, 2001, 16,7, 1894-1900
    [71] Matsuda M., Ii S..,Kawamura Y., etc., Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy, Materials Science and Engineering A, 2005, 393, 269-274
    [72] Yamasaki M., Anan T., Yoshimoto S., Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Mater., 2005, 53,799-803
    [73] Nishida M., YamamuroT., NaganoM., etc., Electron microscopy study of microstructure modifications in RS P/M Mg97Zn1Y2 alloy, Materials Science Forum, 2003, 419-422, 715-720
    [74] Itoi T., Seimiya T., Kawamura Y., etc., Long period stacking structures observed in Mg97Zn1Y2alloy, Scripta Materialia, 2004, 51(2), 107-111
    [75] Yoshikawa M. Kohzu M., Watanabe H., etc., Quality improvement of rapidly solidified magnesium alloy by plastic processing, Materials Science Forum, 2003, 419-422, 769-774
    [1] Kawamura Y., Hayashi,K. Inoue A.,etc., Rapidly solidified powder metallurgy magnesium alloys with novel mechanical properties, Materials Science Forum, 2002, 386-388, 529-534
    [2]张荣生,刘海洪,快速凝固技术,北京:冶金工业出版社, 1994
    [3] Abe E., Kawamura Y., Hayashi K., etc., Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM, Acta Materialia, 2002, 50, 3845-3857
    [4] Luo Z.P., Zhang S.Q., J. Mater. Sci. Lett., 2000, 191, 813-815.
    [5]史菲,郭学锋,张忠明,普通凝固Mg2Zn2Y合金中的准晶相,中国有色金属学报, 2004, 14 (1), 112-116
    [6] Singh A., Tsai A.P., On the cubic W phase and its relationship to the icosahedral phase in Mg–Zn–Y alloys, Scripta Materialia, 2003, 49, 143-148
    [7]罗治平,张少卿,魄国等,低Zn、高RE含量Mg-Zn-Zr-RE合金的相组成,航空学报, 1994, l5(7), 860-865
    [8] Bhan S., Lal A., The Mg-Zn-Zr System, J. Phase Equil., 1993,14(5), 634-637
    [9] Padezhnova E.M., Mel'nik E.V., Miliyevskiy R.A., etc.,Investigation of the Mg - Zn - Y system, Russian Metallurgy (Metally), 1982, 4, 185-188
    [10] Inoue A., Kawamura Y., Matsushita M., etc., Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system, J. Mater. Res. Soc., 2001,16,1894-1900
    [11] Yoshimoto S., YamasakiM., Kawamura Y., Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure, Materials Trans., 2006, 47(4), 959-965
    [12] Hume-Rothery W., Mabbott G.W., Channel-Evans K.M., Phil. Trans. Royal Soc. London, 1934, A233, 1-97
    [13] Kim, I.J. Bae D.H., Kim D.H., Precipitates in a Mg-Zn-Y alloy reinforced by an icosahedral quasicrystalline phase, Mater. Sci. Eng. A, 2003, 359, 313-318
    [14]毛卫民,赵新兵,金属的再结晶与晶粒长大,北京:冶金工业出版社, 1994
    [15] Xiao X.L., Luo C.P., Nie J.F., Muddle B.C., Acta Metall. Sinica, 2001,37,1-7
    [16] Nishida M., Kawamura Y., Yamamuro T., Formation process of unique microstructure in rapidly solidified Mg97Y2Zn1 alloy, Mater. Sci. Eng. A, 2004, 375-377, 1217-1223
    [17] Luo Z.P., Song D.Y., Zhang S.Q., Strengthening effects of rare earths on wrought Mg-Zn-Zr-RE alloys, J. Alloys Compd., 1995, 203(2), 109-114
    [1] Nishida M., Yamamuro T., Nagano M., etc., Electron microscopy study of microstructure modifications in RS P/M Mg97Zn1Y2 alloy, Materials Science Forum, 2003, 419-422, 715-720
    [2] Itoi, T., Seimiya, T., Kawamura, Y., etc., Microstructure of high strength Mg97Zn1Y2 alloys prepared by extrusion of gas-atomized powder, Materials Science Forum, 2003, 419-422, 721-726
    [3] Inoue, A., Kawamura, Y., Matsushita, M., etc., Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system, Journal of Materials Research, 2001, 16(7), 1894-1900
    [4] Itoi T., Seimiya T., Kawamura Y., etc.,Long period stacking structures observed in Mg97Zn1Y2alloy, Scripta Mater., 2004, 51(2), 107-111
    [5] Yoshikawa, M., Kohzu, M., Watanabe, H., etc.,Quality improvement of rapidly solidified magnesium alloy by plastic processing, Materials Science Forum, 2003, 419-422, 769-774
    [6]毛卫民,赵新兵,金属的再结晶与晶粒长大,北京:冶金工业出版社,1994
    [7]石凤健,ECAP工艺与材料组织性能控制的研究,[硕士学位论文],江苏:江苏大学,2003
    [8]汪凌云,黄光胜,范永革等,变形AZ31镁合金的晶粒细化,中国有色金属学报,2003, 13(3), 594-598
    [1] Inoue A., Kawamura Y., Matsushita M., etc., Novel hexagonal structure and ultrahigh-strength solid solution in the Mg-Zn-Y system, J Mater Res, 2001, 16, 1894-1900
    [2] Sun P.L., Kao P.W., Chang C.P., Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion, Mater. Sci. Eng., 2000, A283, 82-85
    [3] Zhao Y.H., Liao X.Z., Jin Z., etc., Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater., 2004, 52, 4589-4599
    [4] Wang Z.C., Prangnell P.B., Microstructure refinement and mechanical properties of severely deformed Al–Mg–Li alloys, Mater. Sci. Eng., 2002, A328, 87-97
    [5]石凤健,ECAP工艺与材料组织性能控制的研究,[硕士学位论文],江苏,江苏大学,2003
    [6] Shan A.D., Moon I.G., Park J.W., Estimation of friction during equal channel angular (ECA) pressing of aluminum alloys, Journal of Materials Processing Technology, 2002, 122, 255-259
    [7] Iwahashi Y., Wang J., Horita Z., etc., Principle of equal channel angular pressing for processing of Ultra-fine grained materials, Scr. Mater., 1996 ,35 (2), 143-146
    [8] Li Y.Y., Liu Y, Ngai T. L., etc., Effects of die angle on microstructures and mechanical properties of AZ31 magnesium alloy processed by equal channel angular pressing, Trans. Nonferrous Met. Soc. China, 2004, 14(1), 53-57
    [9]唐志宏,等径角挤压过程变形行为的研究,[硕士学位论文],湖南,中南大学,2002 Raghavan S., Dayton O., Computer simulation of the equichannel angular extrusion (ECAE) process, Scripta Mater., 2001, 44, 91-96
    [10] Iwahashi Y., Horita Z., Process of grain refinement in equal channel angular pressing, Acta Mater., 1998, 46, 3317-3331
    [11] Shin D.H., Pak, J.J. Kim Y.K., etc., Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing, Mater. Sci. Eng. A, 2002, 325, 31–37
    [12] Yamashita A., Yamaguchi D., Horita Z., etc., Influence of pressing temperature on microstructural development in equal-channel angular pressing, Mater. Sci. Eng.A, 2000, 287, 100-106
    [13] Patrick B. B., Minoru F., Zenji H., etc.,Influence of pressing speed in microstructural development in equal-channel ngular pressing, Metallurgical and Materials Transactions, 1999, 30A(8), 1989-1997
    [14] Wang J.T, Kang S.B., Kim H.W., Shear features during equal channel angular pressing of a lamellae eutectic alloy, Mater. Sci. Eng.A, 2004, 383, 356–361
    [15]靳丽,等通道角挤压变形镁合金微观组织与力学性能研究,[博士学位论文],上海,上海交通大学,2006
    [16] Matsuura M., Konno K., Yoshida M., etc., Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1 Alloy, Materials Transactions, 2006, 47(4), 1264-1267
    [17] Geng H.B, Kang S.B, He S.Y., Microstructural evolution and thermal stability of ultra-finegrained Al-4Mg alloy by equal channel angular pressing, Journal of Materials Science & Technology, 2004, 20(3), 315-318
    [18] Mu?oz-Morris M.A., Garcia Oca C., Gonzalez-Doncel G., Morris D.G., Microstructural evolution of dilute Al–Mg alloys during processing by equal channel angular pressing and during subsequent annealing, Mater. Sci. Eng.A, 2004, 375–377, 853–856
    [19] Wang J.T., Liang M.X., Kuang Q., Gurvan M., Chen G., Xia K., Microstructure and mechanical properties of alloy AZ31 after equal channel angular pressing,Materials Forum,2005,29,370-375
    [20] Kim W.J., Hong S.I., Kim Y.S., etc., Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Mater., 2003, 51, 3293-3307
    [21] Jin L., Lin D.L., Mao D.L., etc., Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion, Mater. Lett., 2005, 2267-2270
    [22] Chen B., Lin D.L., Jin L., etc., Equal channel angular pressing of AZ91 and its effects on microstructure and mechanical properties, Mater. Sci. Eng. A., in press
    [23] Yamashita A., Yamaguchi D., Horita Z., etc.,Influence of pressing temperature on microstructural development in equal-channel angular pressing, Mater. Sci. Eng. A, 2000, 287, 100–106.
    [24] Shin D.H., Pak J.J., Kim, Y.K. etc.,Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing, Mater. Sci. Eng. A, 2002, 325, 31–37.
    [25] Itoi T., Seimiya T., Kawamura Y., etc.,Long period stacking structures observed in Mg97Zn1Y2 alloy, Scripta Mater., 2004, 51, 107–111
    [1]张新明,陈健美,邓运来等,Mg-Gd-Y-Zr耐热镁合金的压缩变形行为,中国有色金属学报,15 (12),1925-1932
    [2]郭强,张辉,陈振华等,AZ31镁合金的高温热压缩流变应力行为的研究,湘潭大学自然科学学报,26(3),108-111
    [3] Chang T.C., Wang J.Y., Grain refining of magnesium alloy AZ31 by rolling, Journal of Materials Processing Technology, 2003, 140, 588-591
    [4] Bozzini B., Cerri E., Numerical reliability of hot working processing maps, Mater. Sci. Eng. A, 2002, A328, 344-347
    [5] Cerri E., Spigarelli S., Evangelista E., etc., Hot deformation and processing maps of a particulate-rein-forced 6061+20% Al2O3 composite, Mater. Sci. Eng. A, 2002, A324, 157-161
    [6]俞冰,Gleeble热/力模拟试验机应用,钢铁研究,1995,86(5),39-43
    [7] Seshacharyulu T., Medeiros S C., Hot working of commercial Ti-6Al-4V with an equiaxed a-b microstructure: materials modeling considerations, Mater Sci. Eng.A, 2000, A284, 184-194
    [1] Inoue A., Kawamura Y., Matsushita M., etc., Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system, J. Mater. Res. Soc., 2001,16,1894-1990
    [2] Matsuda M., Ando S., Nishida M., Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase, Materials Transactions, 2005, 46(2), 361-364
    [3] Matsuda M., Ii S., Kawamura Y., etc., Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy, Mater. Sci. Eng. A, 2005, 393, 269-274
    [4] Ping D.H., Hono K., Kawamura Y.,etc., Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy, Phil. Mag. Lett., 2002, 82, 543-551
    [5] Matsuda M., Iib S., Kawamura Y., etc., Interaction between long period stacking order phaseand deformation twin in rapidly solidified Mg97Zn1Y2 alloy, Mater. Sci. Eng. A, 2004, 386, 447–452
    [6] Suzuki M., Inoue R., Sugihara M., etc., Maruyama K., Oikawa H., Effects of yttrium on creep behavior and deformation substructures of magnesium, Materials Science Forum, 2000, 350-351, 151-156
    [7] Nishida M., Kawamura Y., Yamamuro T., Formation process of unique microstructure in rapidly solidified Mg97Y2Zn1 alloy, Mater. Sci. Eng. A, 2004, 375-377, 1217-1223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700