聚砜纳米纤维膜增韧环氧树脂及其碳纤维复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维/环氧树脂基复合材料的增韧方法是先进复合材料研究发展的重要方向,其历程已经从第二代复合材料的热塑性工程塑料物理共混增韧环氧树脂基体,发展到热塑性工程塑料颗粒或溶剂法膜层间增韧的第三代复合材料。物理共混方法存在的问题是复合材料成型加工困难,而后者未解决层间增韧与树脂基体流动性、渗透性和浸润性之间的矛盾。为此提出纳米纤维膜层间增韧碳纤维/环氧树脂复合材料的新方法,利用电纺纳米纤维的直径小、高孔隙率和大比表面积等特性,实现热塑性工程塑料改性复合材料的增韧效果与工艺适应性的统一。
     1.以N,N′-二甲基乙酰胺(DMAC)/丙酮为混合溶剂,采用静电纺丝工艺制备了聚砜(PSF)纳米纤维膜。增加混合溶剂中丙酮比例和纺丝溶液浓度有利于得到单一形貌的聚砜纳米纤维膜。增加纺丝电压,纳米纤维直径变小,而降低纺丝液流速,可以避免串珠形貌的形成。
     2.基于碳纤维的导电性,通过静电纺丝直接将聚砜纳米纤维膜接收于碳纤维/环氧树脂预浸布上,建立了一种层间增韧的新方法,采用纳米纤维膜层间增韧碳纤维/环氧树脂基复合材料,实现增韧复合材料的目的。所用聚砜纳米纤维膜是由无规取向的纳米纤维组成,根据其特殊结构,建立了纳米纤维膜的非均相相分离模型,即在环氧树脂固化过程中,聚砜沿着纳米纤维的方向发生“原位”相分离,聚砜微球呈现无规取向分布的“海岛”结构,而且贯穿于整个复合材料层间。在纳米纤维膜含量为5 wt%时,增韧复合材料的G_(ⅠC)和G_(ⅡC)分别增加了181%和177%,高于同等含量的溶剂法膜增韧复合材料。DMTA测试表明,与溶剂法膜相比,纳米纤维膜与环氧树脂基体的相容性更好。
     3.采用差示扫描量热法(DSC)和近红外光谱(NIR)研究了环氧树脂基体、5wt%聚砜纳米纤维膜和溶剂法膜增韧环氧树脂的等温固化反应动力学。比较了聚砜纳米纤维膜和溶剂法膜增韧环氧树脂的基本动力学参数,表明环氧基团转化率和固化反应速率的变化趋势一致。在固化反应初期,聚砜纳米纤维膜增韧体系的反应速率高于溶剂法膜增韧体系和树脂基体,而聚砜纳米纤维膜和溶剂法膜增韧体系的最终转化率却低于树脂基体,通过NIR测试得到的一级胺的变化趋势,解释了其固化反应机理。
     4.采用混酸氧化处理的碳纳米管(CNTs),通过静电纺丝制备了聚砜(PSF)/碳纳米管(CNTs)杂化的纳米纤维膜。研究了PSF/CNTs的纳米纤维膜增韧增强环氧树脂基体的拉伸、冲击和耐热性能,结果表明碳纳米管含量为3 wt%的PSF/CNTs纳米纤维膜增韧增强环氧树脂的拉伸强度提高12%,冲击强度提高10%,玻璃化转变温度提高4℃。增韧增强的协同效应归因于非均相相分离的聚砜微球和分散于树脂基体或热塑性塑料微球的不同位置碳纳米管的共同作用。
Toughening methods of carbon fiber/epoxy composite are the important target of advanced composite development.In the second generation composite,thermoplastics have been used to toughen epoxy matrix by physical blending.However,composite fibrication was difficult due to the high viscosity of blending systems.In the third generation composite, thermoplastic particles or films prepared by solvent method have been used in the interlaminar toughening composite.However,among these methods some limitations still existed in practical utility,such as the low fluidity of polysulfone(PSF) and permeability of resin matrix etc.Therefore,we suggested a novel method to toughen the composites using electrospun PSF nanofibrous membranes.Unique properties of nanofibrous membranes, such as small diameter,large porosity and high specific surface area, allowed the nanofibers being easily impregnated by epoxy matrix to increase the compatibility,resulting in easy dissolution into matrix.
     1.Polysulfone nanofibrous membranes were prepared by electrospinning of PSF solutions in mixtures of N,N'-dimethylacetamide(DMAC) and acetone.Increasing the acetone amount and the polymer concentration was beneficial to produce electrospun nanofibrous membranes with uniform morphology.Raising the applied voltage tented to produce smaller diameters of the electrospun nanofibers,while applying a lower flow rate was favorable to avoid bead-fiber morphology.
     2.A novel approach for toughening carbon fiber/epoxy composite using electrospun PSF nanofibrous membranes was performed.As-received membranes were composed of nanofibers with random orientation,and were directly electrospun onto layers of carbon fiber/epoxy prepregs to toughen the composites.According to the random dispersed nanofibers on the membranes,the inhomogeneous phase separation of polysulfone,which was generated in-situ along the nanofibers direction during the curing of epoxy matrix,was proposed.PSF spheres exhibited random alignment in "sea-island" morphology and presented uniform dispersion through the composite interlayers.Mode I and II inteflaminar fracture toughness(G_(ⅠC) & G_(ⅡC)) of 5 wt%PSF nanofibrous membranes toughened composite increased by 181%and 177%,which were higher than those of 5 wt%PSF films toughened composite.DMTA tests revealed good compatibility between nanofibrous membranes and epoxy matrix.
     3.The isothermal curing kinetics of epoxy matrix,5 wt%PSF nanofibrous membranes and films toughened epoxy resins were investigated by Differential Scanning Caliorimetry(DSC) and Near Infra-red Spectroscopy(NIR).The fundamental kinetic parameters were compared,and the conversion of epoxide group and the curing rate exhibited identical variations.At the initial curing stage,the curing rate of PSF nanofibrous membranes toughened epoxy resin was faster than that of PSF films toughened epoxy resin and epoxy matrix,whereas the final conversion degree of PSF nanofibrous membranes and films toughened epoxy resins was lower than that of epoxy matrix.The curing mechanism could be explained by the variation of primary amine from NIR testing.
     4.Electrospun nanofibrous membranes of PSF/CNTs hybrid were prepared by using CNTs treated with the mixture of H_2SO_4 and HNO_3.The tensile,impact and thermal properties of nanofibrous membranes toughened and reinforced epoxy matrixes were investigated.When the content of nanofibrous membranes was 3 wt%,the tensile strength and impact strength of toughened and reinforced epoxy matrixes were increased by 12%and 10%,respectively,and the glass transition temperature(T_g) was enhanced by 4℃.The synergism effects of toughening and reinforcing were due to PSF spheres from the inhomogeneous phase separation and CNTs at different sites in epoxy matrix or PSF spheres.
引文
[1]王德中.环氧树脂生产与应用[M].北京:化学工业出版社,2001
    [2]Hojo M,Matsuda S,Tanaka M.Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates[J].Compos.Sci.Technol.,2006,66:665-675
    [3]Sela N,Ishai O.Interlaminar fracture toughness and toughening of laminated composite materials:a review[J].Composites,1989,20:423-435
    [4]张彦中,沈超.液体端羧基丁腈(CTBN)增韧环氧树脂的研究[J].材料工程,1995,5:17-19
    [5]Ramos V D,Costa H M,Soares V L P,et al.Modification of epoxy resin:a comparison of different types of elastomer[J].Polym.Test.,2005,24:387-394
    [6]Hedrick J L,Yilgor I,Jurek M,et al.Chemical modification of matrix resin networks with engineering thermoplastics:1.synthesis,morphology,physical behavior and toughening mechanisms of poly(arylene ether sulfone) modified epoxy networks[J].Polymer,1991,32(11):2020-2032
    [7]Varley R J,Hodgkin J H,Simon G P.Toughening of a trifunctional epoxy system Part Ⅵ.structure property relationships of the thermoplastic toughened system[J].Polymer,2001,42(8):3847-3858
    [8]Wise C W,Cook W D,Goodwin A A.CTBN rubber phase precipitation in model epoxy resins[J].Polymer,2004,41(12):4625-4633
    [9]Hedrick J L,Jurek M J,Vilgor I,et al.Chemical Modifaction of matrix resin networks with engineering thermoplastics.Ⅲ.Synthesis and properties of epoxy networks modified with amine terminated poly(aryl ether sulfone) oligomers[J].Polym.Prepr.,1985,26:293-295
    [10]梁伟荣,王惠民,郑志才.聚醚砜增韧环氧树脂的结构与性能[J].热固性树脂,1997,4:12-14
    [11]Cho J B,Hwang J W,Cho K,et al.Effects of morphology on toughening of tetrafunctional epoxy resins with poly(ether imide)[J].Polymer,1993,34(23):4832-4836
    [12]Min H S,Kim S C.Fracture toughness of polysulfone/epoxy semi-IPN with morphology spectrum[J].Polym.Bull.,1999,42:221-227
    [13]Kim Y S,Kim S C.Properties of polyethedmide/dicyanate semi-interpenetrating polymer network having the morphology spectrum[J].Macromolecules,1999,32(7):2334-2341
    [14]Stevanovi'c D.Delamination properties of a vinyl-ester/glass fiber composite toughened by particulate-modified interlayers[C].Canberra:Department of Engineering,Australian National University,2001
    [15]益小苏.先进复合材料技术的挑战与创新[J].航空制造技术,2004:7:24-30
    [16]Altstadt V,Gerth D,Stangle M.Interlaminar crack growth in third-generation thermoset prepreg system[J].Polymer,1993,34(4):907-909
    [17]高峰.复合材料层压板层间颗粒增韧技术[D].西安:西北工业大学硕士学位论文,2004
    [18]Hoisington M A,Seferis J C.Model multilayer toughened thermosetting advanced composites[M].Inc.Keith Riew and Antony J.Kinloch,editors,Toughened plastics I,Advances in chemistry,chapter 21,American Chemical Society,Washington D.C.,1993
    [19]Woo E M,Mao K L.Interlaminar morphology effects on fracture resistance of amorphous polymer modified epoxy/carbon fiber composites[J].Compos.Part A,1996,27:625-631
    [20]Odagiri N,Kishi H,Nakae T.T800/3900-2 toughened epoxy prepreg system:toughening concept and mechanism[C].Proc.of the 6~(th) Conf.of the American Society for Composites,New York,1991
    [21]Masters J E.Improved impact and delamination resistance through interleaving[J].Key Engineering Materials,1989,37:317-320
    [22]Aksoy A,Carlsson L A.Inrelaminar shear fracture of interleaved graphite/epoxy composites [J].Compos.Sci.Technol.,1992,43:55-69
    [23]Naffakh M,Dumon M,Gerad J F.Study of a reactive epoxy-amine resin enabling in situ dissolution of thermoplastic films during resin transfer molding for toughening composites[J].Compos.Sci.Technol.,2006,66:1376-1384
    [24]Yun N G,Won Y G,Kim S C.Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J].Polymer,2004,45(20):6953-6958
    [25]矫桂琼,宁荣昌,卢智先,等.层间增韧复合材料研究[J].宇航材料工艺,2001,4:36-39
    [26]宋涛,宁荣昌.热塑/热固共混树脂胶膜对复合材料抗冲击损伤性能影响[J].玻璃钢/复合材料,1998,3:10-13
    [27]Ioannis S,Chronakis.Novel nanocomposites and nanoceramics based on polymer nanofibers using elctrospinning process-A review[J].J.Mater.Process.Tech.,2005,167:283-293
    [28]Rormhals A.Process and apparatus for preparing artificial threads[P].US Patent:1975504,1934
    [29]Doshi J,Reneker DH.Electrospinning process and application of electrospun fibers[J].J.Electrostat.,1995,35:151-160
    [30]Fang X,Reneker DH.DNA fibers by electrospinning[J].J.Macromol.Sci.B,1997,36:169-173
    [31]Yuan X,Zhang Y,Dong C,Sheng J.Morphology of ultrafine polysulfone fibers prepared by electrospinning[J].Polym.Int.2004,53:1704-1710
    [32]姚永毅,朱谱新,叶海,等.静电纺丝法和气流-静电纺丝法制备聚砜纳米纤维[J].高分子学报,2005,5:687-692
    [33]朱丹丹,李从举,李小宁,等.聚醚砜电纺纤维结构与形态的研究[J].云南大学学报,2005,27(3A):231-233
    [34]Choi S S,Lee S G,Joo C W,et al.Formation of interfiber bonding in electrospun poly(etherimide) nanofiber web[J].J.Mater.Sci.,2004,39:1511-1513
    [35]Fennessey S F,Farris R J.Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J].Polymer,2004,45(12):4217-4225
    [36]Kim J,Reneker D H.Mechanical peoperties of composites using ultrafine electrospun finers[J].Polym.Comp.,1999,20(1):124-131
    [37]Fong H.Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins[J].Polymer,2004,45(7):2427-2432
    [38]Dzenis Y.Spinning continuous fibers for nanotechnology[J].Science,2004,304:1979-1919
    [39]Dzenis Y A,Reneker D H.Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces[P].US Patent:6265333,2001
    [40]黄争鸣,刘玲.一种夹层复合材料及其制备方法[P].中国专利:200510027914.8
    [41]Yamanaka K,Takagi Y,Inoue T.Reaction-induced phase separation in rubber-modified epoxy resins[J].Polymer,1989,30(10):1839-1844
    [42]Inoue T.Reaction-induced phase decomposition in polymer blends[J].Prog.Polym.Sci.,1995,20(1):119-153
    [43]Kim B S,Chiba T,Inoue T.Morphology development via reaction-induced phase separation in epoxy/poly(ether sulfone) blends:morphology control using poly(ether sulfone) with functional end-groups[J].Polymer,1995,36(1):43-47
    [44]甘文君.热塑性改性环氧体系的粘弹相分离[D].上海:复旦大学博士学位论文,2003
    [45]Min B G,Hodgkin J H,Stachurski Z H.Reaction mechanisms,microstructure and fracture properties of thermoplastic polysufone-modified epoxy resins[J].J.Appl.Polym.Sci.,1993,50:1065-1073
    [46]Yoon T,Kim B S,Lee D S.Structure development via reaction-induced phase separation in tetrafunctional epoxy/polysulfone blends[J].J.Appl.Polym.Sci.,1997,66:2233-2242
    [47]Oyanguren P A,Aizpurua B,Galante M J.Design of the ultimate behavior of terafunctional epoxies modified with polysufone by controlling microstructure development[J].J.Polym.Sci.Pol.Phys.,1999,37:2711-2725
    [48]Giannotti M I,Solsona M S,Galante M J,et al.Morphology control in polysufone-modified epoxy resins by demixing behavior[J].J.Appl.Polym.Sci.,2003,89:405-412
    [49]孙佳宁,谢续明,黄鹏程.聚砜改性环氧树脂共混体系相结构的调控[J].材料研究学报,1998,12(3):272-276
    [50]谢续明,孙佳宁.固化促进剂对环氧共混体系相结构的影响[J].材料研究学报,1998,12(6):615-618
    [51]杨卉,谢续明.环氧树脂/聚砜共混体系相结构的调控研究-环氧予聚物分子量的影响[J].高分子学报,2000,4:215-218
    [52]He S,Shi K,Bai J,et al.Studies on the properties of epoxy resins modified with chain-extended ureas[J].Polymer,2001,42(23):9641-9647
    [53]Auad M L,Proia M,Borrajo J.Rubber modified vinyl ester resins of different molecular weights[J].J.Mater.Sci.,2002,37(12):4117-4126
    [54]赵石林,秦传香.双马来酰亚胺/环氧树脂胶粘剂增韧改性研究[J].化学与粘合,2000,2:61-64
    [55]孙以实.环氧树脂的弹性体增韧改性[J].热固性树脂,1990,3:1-5.
    [56]殷立新,王风处.热固性树脂的刚性增韧Ⅰ:环氧-聚砜体系的断裂韧性及其增韧机理[J].复合材料学报,1991:8(3):37-41
    [57]孙志杰,殷立新,梁志勇,等.PSF/环氧共混基体体系增韧机理研究[J].复合材料学报,2000,17(1):42-45
    [58]徐修成,殷立新,宋文辉.环氧-聚醚砜体系及其增韧机理的研究[J].宇航材料工艺,1996.1:32-37
    [59]Iijima S.Helical microtubes of graphitic carbon[J].Nature,1991,354:56-58.
    [60]Treacy M M J,Ebbesen T W,Gibson J M.Exceptionally high Young's modulus observed for individual carbon nanotubes[J].Nature,1996,381:678-680.
    [61]Murakami Y,Shibata T,Okuyama K.Structural,magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds[J].J.Phys.Chem.Solid,1993,54(12):1861-1870.
    [62]Huang Y H,Qkada M.Tanaka K.Estimation of superconducting transition temperature in metallic carbon nanotubes[J].Phys.Rev.B,1996,53(9):5129-5132.
    [63]Shen J,Huang W,Wu L,et al.Study on amino-functionalized multiwalled carbon nanotubes[J].Mat.Sci.Eng.A,2007,464:151-156.
    [64]扬占红,李新梅,李晶.碳纳米管纯化技术研究[J].中南工业大学学报,1999,30:389-393.
    [65]Tsang S C,Chen Y K,Green M L H,et al.A simple chemical method of opening and filling carbon nanotubes[J].Nature,1994,372:159-162.
    [66]Shen J,Huang W,Wu L et al.The reinforcement role of different amino-functionalized multiwalled carbon nanotubes in epoxy nanocomposites[J].Compos.Sci.Technol.,2007,67:3041-3050.
    [67]Biercuk MJ,Llaguno MC,Radosavljevic M.Carbon nanotube composites for thermal magnetism[J].Appl.Phys.Lett.,2002,15:2767-2769.
    [68]李兆敏,王聪,韩克清,等.表面官能化多壁碳纳米管/环氧树脂复合材料的制备及性能[J].材料科学与工程学报,2007,25(3):395-398
    [69]Wang J,Fang Z,Gu A,et al.Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix[J].J.Appl.Polym.Sci.,2006,100,97-104
    [70]Arai M,Noro Y,Sugimoto K,et al.Mode Ⅰ and mode Ⅱ interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer[J].Compos.Sci.Technol.,2008,68:516-525.
    [71]Zhong W,Li J,Lekehart L R.Graphitic carbon nanofiber(GCNF)/polymer materials.Ⅱ.GCNF/epoxy monoliths using reactive oxydianiline linker molecules and the effect of nanofiber reinforcement on curing conditions[J].Polym.Compos.,2005,26(2):128-135
    [72]Taylor G I.Electrically driven jets[J].Proc.R.Soc.,London,Ser A,1969,313:453-475
    [73]Reneker D H,Chun L.Nanometre diameter fibers of polymer,produced by electrospinning[J].Nanotechnology,1996,7:216-223
    [74]Reneker D H,Kataphinan W,Theron A,et al.Nanofiber garlands of polycaprolactone by electrospinning[J].Polymer,2002,43(25):6785-6794
    [75]Royal K,Gary T.Microscale polymeric helical structures produced by electrospinning[J].Appl.Phys.Lett.,2004,84(23):4807-4809
    [76]Yu J,Fridrikh S V,Rutledge G C,Production of submicrometer diameter fibers by two-fluid electrospinning[J].Adv.Mater.,2004,16(17):1562-1566
    [77]Fong H,Chun I,Reneker D H.Based nanofibers formed during electrospinning[J].Polymer,1999,40(16):4585-4592
    [78]王新威,胡祖明,潘婉莲,等.电纺丝制备高聚物纳米纤维[J].东华大学学报,2005,31(1):115-119
    [79]Shin Y M,Hohman M M,Brenner M P,et al.Experimental characterization of electrospinning:the electrically forced jet and instabilities[J].Polymer,2001,42(25):09955-09967
    [80]Yarin A L Koombhongse S,Reneker D H.Taylor cone and jetting from liquid droplets in electrospinning[J].J.Appl.Phys.,2001,90(10):4836-4846
    [81]Dutra R C L,Soare B G,Campo E A,et al.Hybrid composites based on polypropylene and carbon fiber and epoxy[J].Polymer,2000,41(10):3841-3849
    [82]Mujika F,Debenito A,Fernandez B,et al.Mechanical properties of carbon woven reinforced epoxy matrix composites.A study on the influence of matrix modification with polysulfone[J].Polym.Compos.,2002,23(3):372-382
    [83]Fernandez B,Arbelaiz A,Diaa E,et al.Influence of polyethersulfone modification of a tetrafunctional epoxy matrix on the fracture behavior of composite laminates based on woven carbon fibers[J].Polym.Compos.,2004,25(5):480-488
    [84]Kim J Y,Lee H K,Kim S C.Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscopy[J].J.Membrane.Sci.,1999;163:159-166
    [85]Lee H J,Jung B,Kang Y S,et al.Phase separation of polymer casting solution by nonsolvent vapor[J].J.Membrane.Sci.,2004,245:103-112
    [86]Li D,Xia Y.Electrospinning of nanofibers:reinventing the wheel?[J].Adv.Mater.,2004,16(14):1151-1170
    [87]Ramakrishna S,Fujihara K,Teo W E,et al.Electrospun nanofibers:solving global issues[J].Mater.Today,2006,9(3):40-50
    [88]Ma Z,Kotaki M,Ramakrishna S.Surface modified nonwoven polysulfone(PSU) fiber mesh by electrospinning:A novel affinity membrane[J].J.Membrane.Sci.,2006,272:179-187
    [89]Yoshimoto H,Shin Y M,Terai H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering[J].Biomaterials,2003,24:2077-2082
    [90]Wen Y.Novel continuous carbon and ceramic nanofibers and nanocomposites[D].PhD Thesis,University of Nebraska,Department of Chemical and Materials Engineering,2004
    [91]Theron SA,Yarin AL,Zussman E,et al.Multiple jets in electrospinning:experiment and modeling[J].Polymer,2005,46(9):2889-2899
    [92]Yun N G,Won Y G,Kim S C.Toughening of epoxy composite by dispersing polysulfone particle to form morphology spectrum[J].Polym.Bull.,2004,52:365-372
    [93]Mcgrail P T,Jenkins S D.Some aspects of interlaminar toughening reactively terminated thermoplastic particles in thermoset composites[J].Polymer,1993,34(4):677-683
    [94]Reydet E G,Vicard V,Pascault J P,et al.Polyetherimide-modified epoxy networks:influence of cure conditions on morphology and mechanical properties[J].J.Appl.Polym.Sci.,1997,65:2433-2445
    [95]Huang P,Zheng S,Huang J,et al.Miscibility and mechanical properties of epoxy resin/polysulfone blends[J].Polymer,1997,38(22):5565-5571
    [96]Martinez I,Martin M D,Eceiza A,et al.Phase separation in polysulfone-modified epoxy mixtures:Relationships between curing conditions,morphology and ultimate behavior[J].Polymer,2000,41(3):1027-1035
    [97]Jin S,Kim H C.Thermal stability and toughening of epoxy resin with polysulfone resin[J].J.Polym.Sci.Pol.Phys.,2001,39:121-128
    [98]Oyanguren P A,Galante M J,Andromaque K,et al.Development of bicontinuous morphologies in polysulfone-epoxy blends[J].Polymer,1999,40(19):5249-5255
    [99]Woo E M,Mao K L.Evaluation of interlaminar-toughened poly(ether-imide)-modified epoxy/carbon fiber composites[J].Polym.Compos.,1996,17(6):799-805
    [100]高峰,矫桂琼,宁荣昌,等.层间颗粒增韧复合材料层压板的Ⅱ型层间断裂韧性[J].西北工业大学学报,2005,2(23):184-188
    [101]刘玲,黄争鸣,黄国华,等.层间环氧纳米纤维薄膜对层合板力学性能的影响[J].复 合材料学报,2006,23(3):15-19
    [102]Legrand M,Bellenger V.Estimation of the cross-linking ratio and glass transition temperature during curing of amine-cross-linked epoxies[J].Compos.Sci.Techno.,2001,61:1485-1489
    [103]Kim W G,Lee J Y.Contributions of the network structure to the cure kinetics of epoxy resin systems according to the change of hardeners[J].Polymer,2003,43(21):5713-5722
    [104]Bonnaud L,Pascault J P,Sautereau H.Kinetic of a thermoplastic-modified epoxy-aromatic diamine formulation:modeling and influence of a trifunctional epoxy prepolymer[J].Eur.Polym.J.,2000,36:1313-1321
    [105]Vyazovkin S,Sbirrazzuoli N.Kinetic methods to study isothermal and nonisothermal epoxy/anhydride cure[J].Macromol.Chem.Phys.,1999,200:2294-2303
    [106]Rosu D,Cascaval C N,Mustats F,et al.Cure kinetics of epoxy resins by non-isothermal DSC data[J].Thermochim.Acta,2002,383:119-127
    [107]张明,安学锋,唐邦铭,等.高性能双组份环氧树脂固化动力学研究和TTT图绘制[J].复合材料学报,2006,23(1):17-25
    [108]Wang Q,Storm B K,Houmler L P.Study of the isothermal curing of an epoxy prepreg by near-infrared spectroscopy[J].J.Appl.Polym.Sci.,2003,87:2295-2305
    [109]Poisson N,Lachenal G,Sautereau H.Near- and mid-infrared spectroscopy studied of an epoxy reactive system[J].Vib.Spectrosc.,1996,12:237-247
    [110]Su C C,Woo E M.Cure kinetics and morphology of amine-cured 4,4'-diamiodiphenylmethane epoxy blends with poly(ether imide)[J].Polymer,1995,36(15):2883-2894
    [111]Varley R J,Hodgkin J H,Hawthorne D G,et al.Toughening of a trifunctional epoxy system Part Ⅲ.Kinetic and morphological study of the thermoplastic modified cure process[J].Polymer,2001,41(9):3425-3436
    [112]Sbirrazzuoli N,Mititelu-Mija A,Vincent L,et al.Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures[J].Thermochim.Acta,2006,447:167-177
    [113]Vyazovkin S,Sbirrazzuoli N.Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry[J].Macromolecules,1996,29(6):1867-1873
    [114]Steven S,Assche G V,Vuchelen W.Role of complex formation in the polymerization kinetics of modified epoxy-amine systems[J].Macromolecules,2005,38(6):2281-2288
    [115]Varley R J,Heath G R,Hawthorne D G,et al.Toughening of a trifunctional epoxy system:1.Near infra-red spectroscopy study of homopolymer cure[J].Polymer,1995,36(7):1347-1355
    [116]St John N A,George G A.Cure kinetics and mechanisms of a tetraglycidyl -4,4'-diaminodiphenylmethane/diaminodiphenylsulphone epoxy resin using near i.r.spectroscopy[J].Polymer,1992,33(13):2679-2687
    [117]Rigail-Cedeno A,Sung C S P.Fluorescence and IR characterization of epoxy cured with aliphatic amines[J].Polymer,2005,46(22):9378-9384
    [118]Min B G,Stachurski Z H.Quantitative analysis of the cure reaction of DGEBA/DDS epoxy resins without and with thermoplastic polysulfone modifier using near infra-red spectroscopy[J].Polymer,1993,34(17):3620-3627
    [119]Cole K C,Hechler J J,Noel D.A new approach to modeling the cure kinetics of epoxy amine thermosetting resins.2.application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) Sulfone[J]. Macromolecu- les, 1991,24(11): 3098-3110
    [120] Lee J Y, Shimb M J, Kim S W. Effect of modified rubber compound on the cure kinetics of DGEBA/MDA system by Kissinger and isoconversional methods[J].Thermochim. Acta, 2001,37:45-51
    [121] Kissinger E. Reaction kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29: 1702-1706
    [122] Catalani A, Bonicelli M G. Kinetics of the curing reaction of a diglycidyl ether of bisphenol A with a modified polyamine[J]. Thermochim. Acta, 2005,438:126-129
    [123] Dale W S, Ryan S J. How nano are nanocomposites?[J]. Macromolecules, 2007, 40(24): 8501-8517
    [124] Koziol K, Vilatela J, Moisala A, et al. High-Performance Carbon Nanotube Fiber[J]. Science, 2007,318:1892-1895
    [125] Jana S, Zhong W, Gan Y. Characterization of the flexural behavior of a reactive graphitic nanofibers reinforced epoxy using a non-linear damage model[J]. Mat. Sci. Eng. A, 2007, 445-446:106-112
    [126] Zhang J, Zou H, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes[J]. J. Phys. Chem. B, 2003,107:3712-3718.
    [127] Zhu J, Peng H, Rodriguez-Macias F, et al. Reinforcement epoxy polymer composites through covalent integration of functionalized nanotubes[J]. Adv. Funct. Mater., 2004,14(7): 643-648

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700