可调谐射频磁探针的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁探针的结构简单,在测量变化磁场的相关实验中得到广泛应用。但在实际的磁探针测量中总是存在着由容性耦合而产生的共模干扰信号,并且在高空间分辨率的磁场测量中,磁感应耦合信号随探针线圈有效面积的减小而降低,这就需要提高磁探针的输出电压。
     论文提出了一种利用可调谐变压器来提高磁探针输出电压的方法。可调谐射频变压器采用在原线圈并联可变电容、副线圈串联可变电容的结构,同时采用平面、分立式法拉第屏蔽抑制变压器原、副线圈间寄生的容性耦合。测量结果表明:在采用对称中心抽头变压器及法拉第屏蔽的情况下,磁探针的容性耦合大幅度降低。当调节并联或串联电容时,磁探针输出电压均出现共振现象,并且调节并联电容时(不加串联电容)得到的共振输出电压高于调节串联电容时(不加并联电容)的对应值。在典型条件下,共振输出电压比传统磁探针的输出电压(无可变电容)提高了约一个量级。磁探针的共振输出电压随同轴线长度的增加先减小后增大呈现非单调性,在中间长度时取得最小值。此外还研究了原、副线圈的电感,原、副线圈间的互感等参量对共振输出电压的影响。
     采用互感理论和传输线理论建立了调谐磁探针的电路模型,并推导了其解析共振条件。分析可知:输出电压取得最大值时,电路并不是处于简单的并联共振状态,而是由包括传输线阻抗的系统阻抗决定,并分析了影响共振条件的各参量。计算了各参量对输出电压的影响,相应的计算结果与测量结果符合较好。计算结果还表明:调节并联可变电容时,变压器原线圈的电压与磁探针输出电压同时达到最大值,而调节串联可变电容时,变压器原线圈的电压先于磁探针输出电压达到最大值。在不加可变电容的情况下,只调节同轴线的长度时,磁探针的输出电压同样存在着共振现象,并出现周期性的变化。加可变电容的情况下,磁探针的共振输出电压随同轴线长度的增加先减小后增大,在中间长度时取得最小值,但相应的调谐电容随长度的增加而减小,并存在周期性的变化规律。调谐并联可变电容得到的共振输出电压随原、副线圈间互感的增加先增大后减小,在中间互感时取得最大值,调谐串联电容得到的共振输出电压随互感的增加而增大。还计算了原、副线圈的电感等参量对共振输出电压及相应调谐电容的影响。
Magnetic probes (B-dot) have been widely used to measure the time varying magnetic flux density in the experiment because of the simple structure. However, the common mode interference signals come from the capacitive coupling always exist in the actual measurement of magnetic probe, and the magnetic induction signal decreases with the reduce of the effective probe coil area in the high spatial resolution measurements of the magnetic field. Thus, it is necessary to increase the output voltage of magnetic probes.
     A tunable center-tapped transformer is proposed to improve the output voltage of a radio-frequency magnetic probe. The tuning is implemented by using two variable capacitors: one is parallel with the primary winding of the center-tapped transformer and the other is in series with the secondary winding. In addition, a planar faraday shield consisting of two separate slotted-metal-plates is installed between the primary and secondary windings of the transformer to further suppress the electrostatic coupling. It is found that the electrostatic coupling is suppressed effectively by using the center-tapped and the faraday shield. Tuning the parallel capacitor or the series capacitor can result in a resonance in the output voltage of the rf magnetic probe. The parallel-connected variable capacitor (without the series capacitor) is better than the series-connected variable capacitor (without the parallel capacitor) in improving the tunable magnetic probe output. The largest output voltage, achieved with the tunable magnetic probe under the optimal condition, is higher than that with a conventional one by an order of magnitude. The resonance output voltage presents a non-monotone behavior with the length of the coaxial, namely it obtains minimums at the middle length. Influences of parameters such as the inductance of the primary and secondary windings on the output voltage, the mutual inductance between the primary and secondary windings are also presented.
     A circuit model of magnetic probe with the theory of mutual circuit and the transmission line effect, and the resonant condition is analytically. A maximum output voltage, the circuit is not at a simple parallel resonance state, but is determined by the system impedance including the impedance of transmission line, and the impact of the conditions of the resonance parameters are analytically. The agreements between the numerical results and measurements are qualitatively good. The voltage of transformer's primary coils and the output voltage reached the maximum with the parallel variable capacitor, but different with the series variable capacitor. Without the variable capacitor, the output voltage also exist a resonance phenomenon with the variation of the length of the coaxial, and shows a periodical change. When with the variable capacitor, the resonance output voltage presents a non-monotone behavior with the length of the coaxial, namely it obtains minimums at the middle length. However, the relative tuning capacitor is decrease with the increase of the length of the coaxial, and also shows a periodical change. The resonance output voltage of parallel-connected capacitor presents a non-monotone behavior with the mutual inductance, namely it obtains maximum at the middle stage, but the series-connected is increase with the mutual inductance. Influences of parameters such as the inductance of the primary and secondary windings on the resonance output voltage and the tuning capacitor are also presented.
引文
[1] Segre S E, Allen J E. Magnetic probes of high frequency response. Journal of Scientific Instruments, 1960, (10): 369.
    [2] Hutchinson I H. Principles of Plasma Diagnostics, Cambridge University Press, 1987. 384.
    [3] Chen X. Magnetic probes for small-signal detection in a large background field. Review of Scientific Instruments, 1988, 59(4): 616-618.
    [4] Kurchatov I V. On the possibility of producing thermonuclear reactions in a gas discharge. Journal of Nuclear Energy , 1957, 4(2): 193-198.
    [5] Artsimovich L A, Andrianov A M, Bazilevskaya O A, et al. An investigation of high-current pulsed discharges. Journal of Nuclear Energy, 1957, 4(2): 203-204.
    [6] Segre S E, Allen J E. Magnetic probes of high frequency response. Journal of Scientific Instruments, 1960, (10): 369.
    [7] Phillips R C, Turner E B. Construction and Calibration Techniques of High Frequency Magnetic Probes. Review of Scientific Instruments, 1965, 36(12): 1822—1825.
    [8] Malmberg J H. Magnetic Probe Resolution. Review of Scientific Instruments, 1964, 35(11): 1622-1623.
    [9] Mase A, Bruskin L G, Oyama N, et al. Measurement of magnetic fluctuations of electromagnetic plasma waves by cross-polarization scattering. AIP, 1997.
    [10]TanakaS, Ichimura M, Takayama S, et al. Low frequency fluctuations measured by probes in the GAMMA10 tandem mirror: Review of Scientific Instruments. 1999: 70, 979—982.
    [11] Yamaguchi Y, Ichimura M, Higaki H, et al. Active diagnostic of the eigenmode formation in the ion-cyclotron frequency range in the GAMMA10 central cell. AIP, 2006.
    [12] Borg G G, Cross R C. Guided propagation of Alfven and ion-ion hybrid waves in a plasma with two ion species. Plasma Physics and Controlled Fusion, 1987, (6): 681.
    [13] Kim Y J, Gentle K W, Ritz C P, et al. The structure of magnetic fluctuations in tokamaks: Observations in the TEXT tokamak. Physics of Fluids B: Plasma Physics, 1991, 3(3): 674-687.
    [14] Orvis D J, Jarboe T R. Calibration of magnetic probes mounted in a copper wall. Review of Scientific Instruments, 1995, 66(5): 3263-3268.
    [15] Strait E J. Frequency response of metal-clad inductive magnetic field probes. Review of Scientific Instruments, 1996, 67(7): 2538—2540.
    [16] Bretz N. Diagnostic instrumentation for microturbulence in tokamaks. Review of Scientific Instruments, 1997, 68(8): 2927-2964.
    [17] Castro R M, A M V, Silva R P, et al. A complex probe for measurements of turbulence in the edge of magnetically confined plasmas. Review of Scientific Instruments, 1997, 68(12): 4418-4423.
    [18] Wroblewski D. Neural network evaluation of tokamak current profiles for real time control. AIP, 1997.
    [19] Galambos J P, Bohnet M A, Jarboe T R, et al. Internal toroidal field measurements on the helicity injected tokamak using the transient internal probe. AIP, 1997.
    [20] 屈少华.5~30MHz高频磁探针的研制.半导体杂志,1998,(01).
    [21] Takechi M, Toi K, Group C H. Movable magnetic probe array for toroidal Alfven eigenmodes study in the compact helical system heliotron/torsatron: Review of Scientific Instruments. 1999: 70, 442-444.
    [22] Fujita J, Matsuura K, Kawahata K, et al. A rotating coil probe for the magnetic field measurement on a long pulsed tokamak. AIP, 1999.
    [23] Edgell D H, Kim J S, Bogatu I N, et al. Magnetohydrodynamic mode identification from magnetic probe signals via a matched filter method. Review of Scientific Instruments, 2002, 73(4): 1761-1765.
    [24] Van S M, Jachmich S, Weynants R R. An experimental and theoretical study on the formation of electric field induced flow shear in the tokamak edge. Journal of Nuclear Materials Plasma-Surface Interactions in Controlled Fusion Devices 15, 2003, 313-316: 1326— 1330.
    [25] Pollock B B, Froula D H, Davis P F, et al. High magnetic field generation for laser-plasma experiments. Review of Scientific Instruments, 2006, 77(11): 114703.
    [26] Strait E J. Magnetic diagnostic system of the DIII-D tokamak. Review of Scientific Instruments, 2006, 77(2): 023502.
    [27] Shen B, Sun Y W, Wan B N, et al. Poloidal beta and internal inductance measurement on HT-7 superconducting tokamak. Review of Scientific Instruments, 2007, 78(9): 093501.
    [28] Howard S J, Horton R D, Hwang D Q, et al. Calibration of magnetic probes in the vicinity of a conducting well. Review of Scientific Instruments, 2008, 79(2): 023503.
    [29] Light M, Chen F F. Helicon wave excitation with helical antennas. Physics of Plasmas, 1995, 2(4): 1084-1093.
    [30] Light M, Sudit I D, Chen F F, et al. Axial propagation of helicon waves. Physics of Plasmas, 1995, 2(11): 4094-4103.
    
    [31] Chen F F. Physics of helicon discharges. Physics of Plasmas, 1996, 3(5): 1783-1793.
    [32] Ellingboe A R, Boswell R W. Capacitive, inductive and helicon-wave modes of operation of a helicon plasma source. Physics of Plasmas, 1996, 3(7): 2797—2804.
    [33] Boswell R W, Chen F F. Helicons-the early years. Plasma Science, IEEE Transactions on, 1997, 25(6): 1229-1244.
    [34] Chen F F, Boswell R W. Helicons-the past decade. Plasma Science, IEEE Transactions on, 1997, 25(6): 1245-1257.
    [35] Sakakibara S, Yamada H, Yamazaki K, et al. Magnetic diagnostics in the large helical device. Fusion Engineering and Design Fusion Plasma Diagnostics, 1997, 34-35: 707— 709.
    [36] Schneider D A, Borg G G, Kamenski I V. Measurements and code comparison of wave dispersion and antenna radiation resistance for helicon waves in a high density cylindrical plasma source. Physics of Plasmas, 1999, 6(3): 703—712.
    [37] Black DC, Mayo RM. Developement of A High Sensitivity, Inductively Coupled, Miniature magnetic probe. Fusion Engineering, 1995. SOFE ' 95. ' Seeking a New Energy Era'., 16th IEEE/NPSS Symposium, 1995, 2: 928-9312.
    [38] Black D C, Mayo R M. High sensitivity, inductively coupled miniature magnetic probe array for detailed measurement of time varying magnetic field profiles in plasma flows. Review of Scientific Instruments, 1996, 67(4): 1508-1516.
    [39] Hopwood J, Guarnieri C R, Whitehair S J, et al. Electromagnetic fields in a radio-frequency induction plasma. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1993, 11(1): 147-151.
    [40] Piejak R, Godyak V, Alexandrovich B. Magnetic field distribution measurements in a low-pressure inductive discharge. Journal of Applied Physics, 1995, 78(9): 5296— 5301.
    [41] Meyer J A, Wendt A E. Measurements of electromagnetic fields in a planar radio-frequency inductively coupled plasma source. Journal of Applied Physics, 1995, 78(1): 90—96.
    [42] Vahedi V, Lieberman M A, Dipeso G, et al. Analytic model of power deposition in inductively coupled plasma sources. Journal of Applied Physics, 1995, 78(3): 1446— 1458.
    [43] Meyer J A, Mau R, Wendt A E. Plasma properties determined with induction loop probes in a planar inductively coupled plasma source. Journal of Applied Physics, 1996, 79(3): 1298-1302.
    [44] Godyak V, Piejak R, Alexandrovich B. Magnetic and electric probe diagnostics in inductive plasmas. AIP, 1996.
    [45] Piejak R, Godyak V, Alexandrovich B. The electric field and current density in a low-pressure inductive discharge measured with different B-dot probes. Journal of Applied Physics, 1997, 81(8): 3416-3421.
    [46] Godyak V A, Piejak R B. Electromagnetic field structure in a weakly collisional inductively coupled plasma. Journal of Applied Physics, 1997, 82(12): 5944—5947.
    [47] Godyak V A, Piejak R B, Alexandrovich B M, et al. Experimental Evidence of Collisionless Power Absorption in Inductively Coupled Plasmas. Physical Review Letters, 1998, 80 (15): 3264.
    
    [48] Godyak V A, Piejak R B, Alexandrovich B M. Experimental setup and electrical characteristics of an inductively coupled plasma. Journal of Applied Physics, 1999, 85(2): 703-712.
    [49] Godyak V A, Piejak R B, Alexandrovich B M, et al. Nonlinear skin effect in inductive discharge. 2000.
    [50] Chen F F. Collisional, magnetic, and nonlinear skin effect in radio-frequency plasmas. Physics of Plasmas, 2001, 8(6): 3008-3017.
    [51] Lebib S, Cabarrocas P R. Effects of ion energy on the crystal size and hydrogen bonding in plasma-deposited nanocrystalline silicon thin films. Journal of Applied Physics, 2005, 97(10): 104334.
    [52] Kim J H, Lee H J, Kim Y T, et al. Effects of the axial external magnetic field on the reduction of the dielectric window damage due to capacitive coupling in the inductively coupled plasma. AVS, 1997.
    [53] K. H. Dippel W T. K. H. Dippel and W. Teckenburg, Proceedings of the Fourth International Conference on Phenomena in Ionized Gases, Uppsala, 1959, edited by N. R. Nilsson (North-Holland, Amsterdam, 1960), Vol. 1, p. 533.
    [54] Eckert H U. Dual Magnetic Probe System for Phase Measurements in Thermal Induction Plasmas. Journal of Applied Physics, 1972, 43(6): 2707-2713.
    [55] Godyak V A, Kolobov V I. Negative Power Absorption in Inductively Coupled Plasma. Physical Review Letters, 1997, 79(23): 4589.
    [56] Godyak V A, Piejak R B, Alexandrovich B M. Effective electron collision frequency and electrical conductivity of radio frequency plasmas. Journal of Applied Physics, 1999, 85(6): 3081-3083.
    [57] Decker G, Honea D L. Magnetic probes with nanosecond response time for plasma experiments. Journal of Physics E: Scientific Instruments, 1972, (5): 481.
    [58] T D E, Holmes L S, Kasha M A. A multi-coil magnetic probe. Journal of Scientific Instruments, 1963, (7): 364.
    [59] Phillips R C, Turner E B. Construction and Calibration Techniques of High Frequency Magnetic Probes. Review of Scientific Instruments, 1965, 36(12): 1822-1825.
    [60] Serov R, Richardson M C, Burtyn P. Probe for the measurement of magnetic fields with sub-nanosecond resolution. Review of Scientific Instruments, 1975, 46(7): 886—888.
    [61] Richard H., And Stanley L. Leonard E H. Plasma Diagnostic Techniques. Pure and Applied Physics Series Vol. 21, Academic Press, 1965.
    [62] Franck C M, GrulkeO, KlingerT. Magnetic fluctuation probe design and capacitive pickup rejection.Review of Scientific Instruments,2002,73(11):3768-3771.
    [63]El-fayoumi I M,Jones I R.Theoretical and experimental investigations of the electromagnetic field within a planar coil,inductively coupled RF plasma source.Plasma Sources Science and Technology,1998,(2):162.
    [64]Bruzzone H,Moreno C,Kelly H.Measurements of current sheets in plasmas with a finite-sized magnetic probe.Measurement Science and Technology,1991,(12):1195.
    [65]Bilbao L,Grondona D.Measurement of plasma current distribution using magnetic probes.Measurement Science and Technology,1994,5(3):288.
    [66]Borg G G,Jahreis T.Radio-frequency power combiner for cw and pulsed applications.Review of Scientific Instruments,1994,65(2):449-452.
    [67]Loewenhardt P K,Blackwell B D,Zhang B.A simple miniature magnetic probe with inherent electrostatic rejection.Review of Scientific Instruments,1993,64(11):3334-3335.
    [68]Piejak R,Godyak V,Alexandrovich B.Validation of current density measurements with a B-dot probe.Review of Scientific Instruments,2001,72(10):4002-4004.
    [69]Chakrabarty C K.Magnetic field measurements for N2 and H2 discharges from a low frequency RF inductively coupled plasma source.Measurement,2006,39(8):736-739.
    [70]丁振峰,袁国玉.共振型射频磁探针.中国发明专利,申请号:2006102005293.
    [71]L.B.Cebik W.Some Aspects of Series and Parallel Coaxial Cable Assemblies.2001.
    [72]丁振峰.射频感性耦合等离子体源的平面法拉第屏蔽系统.中国发明专利,申请号:200710157592.
    [73]张肃文.高频电子线路,高等教育出版社,2004.66-70.
    [74]盛振华.电磁场微波技术与天线,西安电子科技大学出版社,2004.49-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700