配位化合物的磁性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密度泛函理论是研究材料基态物理性质的理论基础,而基于密度泛函理论的第一性原理计算则是研究材料基态性质的强大工具。通过计算,不仅可以解释材料的物理性质,而且可以模拟不同条件下材料的行为。这为预测材料的新性能或者指导新材料的合成提供理论依据。
     有机化合物要获得宏观的磁性,除了顺磁中心以外,还要求分子具有一定的空间构型,以便顺磁中心的自旋磁矩之间可以相互耦合,因此控制晶体中分子的空间排列情况是设计和合成磁性有机化合物的重要因素。根据这一思路,人们设计和合成了许多金属有机配位化合物。然而,这些研究重点都是放在晶体的结构参数和磁性的关系上面,没有涉及到材料的磁性起源及磁性机理,而了解自旋磁矩的分布对于揭示磁性材料中金属离子通过配位体的耦合机制是不可缺少的。
     本论文的目的就是利用基于密度泛函理论的第一性原理计算来研究几种配位化合物的电子结构和自旋磁矩分布,以此来揭示化合物中金属离子通过配位体的磁性耦合机制,这对于理解磁性起源与磁性机理有着重要作用。在计算中,我们选用基于全势线性缀加平面波方法的WIEN2k程序,该程序是晶体电子结构计算中最精确的方法之一。
     首先,我们利用第一性原理方法研究化合物MnCu(pba)(H2O)3·2H2O的电子结构和磁性质。通过计算,发现该化合物存在铜和锰两个磁性中心。铜一桥相互作用显示共价键特征,而锰一桥之间主要是闭壳层相互作用,并且存在强的链内耦合与弱的链间耦合。磁性耦合来源于铜和锰原子向桥联原子的自旋退局域化效应,且具有磁性特征但不具有金属性特征。
     其次,利用第一性原理方法研究化合物Co(endi)2(N3)2的电子结构和磁性质。通过计算,发现该化合物存在铁磁相互作用,存在强的层内耦合与弱的层间耦合。磁性耦合来源于Co2+向叠氮配体的自旋退局域化效应,且具有半金属磁性的特征。
     最后,我们还对2,2’-bipyridine配体化合物进行了研究。从[Cu(μ-cbdca)(bpy)]2计算得到的磁矩分布显示,最大的磁矩分布在Cu原子上,并且联吡啶配体呈现少量的磁矩,这说明Cu原子与联吡啶配体之间存在铁磁耦合相互作用,这一铁磁耦合作用来源于Cu原子向联吡啶配体上原子的自旋退局域化效应,但不具有金属磁性。
The density function theory gives a firmly theoretical foundation for the study of ground states of materials. The first-principles calculation based on the density function theory has become one of the most powerful tools for the study of ground states in condensed matters. With the first-principles calculation, we can not only get the ground state properties of materials, but also simulate their behaviors under different conditions. This means that we can predict novel properties of materials or design the required materials.
     To obtain the macromagnetism of organic compounds, the appropriate steric arrange of molecules is important in addition to the paramagnetic centers, for the purpose of the coupling of spin magnetic moments between the paramagnetic centers. So controlling the molecule arrange in the crystals is critical for the design and synthetise of organic magnetic compounds. On the basis of above thinking, a lot of organic-metallic coordination compounds are obtained. However, these researches focus attention on the structure-magnetism relation of crystals, not involve the magnetic origin and magnetic mechanism of materials which is indispensable for revealing the coupling mechanism of metal ions through bridge ligands in magnetic materials.
     The purpose of this paper is using the first principles based on the density functional theory calculations to study the electronic structure and spin magnetic moments distribution of several coordination compounds, in order to reveal the metal ions through ligand coupling mechanism of the magnetic, which is important for understanding the magnetic origin and magnetic mechanism. In the calculation, we choose based on full-potential linearized augmented plane wave method WIEN2k code, which is one of the most accurate methods for performing electronic structure calculations for crystals.
     First, the first-principles method was applied to study the electronic structure and magnetic properties of MnCu(pba)(H2O)3·2H2O compound. According to the calculated results, there are two magnetic centers (Cu and Mn ions) in the compound. The Cu-bridge interactions exhibit significant covalent character, while the Mn-bridge interactions are mainly closed-shell interplay. There are strong intrachain interactions and weak interchain couplings. Magnetic coupling exhibits the spin delocalization effect from Mn and Cu atoms to the bridging atoms, and does not reveal metallically magnetic properties.
     Secondly, the first principle method was applied to study the electronic structure and magnetic properties of the compound of Co(endi)2(N3)2. According to the calculations, there is ferromagnetic interaction between the compound, and the magnetic coupling comes from Co2+ to the azide ligand spin delocalization effect. Also it reveal semi-metallically magnetic properties.
     Finally, the 2,2’-bipyridine ligands compounds were also studied. It can be seen from the magnetic moment distribution of the compound of Cu(μ-cbdca)(bpy)2, there are the largest magnetic moment distribution on Cu atoms and a small magnetic moment on bipyridine ligand. It indicates that there is ferromagnetic coupling between Cu atoms and the bipyridine ligand, and the ferromagnetic coupling comes from Cu atoms to the bipyridine ligand spin delocalization effect, but does not reveal metallically magnetic properties.
引文
[1]宛德福,马兴隆.磁性物理学.北京:电子工业出版社, 1999: 1-156
    [2]田民波.磁性材料.北京:清华大学出版社, 2001: 11-48
    [3]邹卫东.有机分子的磁性及电导性的密度泛函研究.博士学位论文,华中科技大学, 2004
    [4]高国营.自旋电子学材料的第一性原理研究.博士学位论文,华中科技大学, 2008
    [5]喻力华.新型功能材料的电子结构和磁特性的第一性原理研究.博士学位论文,华中科技大学, 2005
    [6]张月胜.若干分子磁体及磁性强关联体系的第一性原理研究.博士学位论文,华中科技大学, 2005
    [7]屈少华.两种化合物的相变及磁性研究.博士学位论文,华中科技大学, 2008
    [8]贾丽慧.金属配合物分子磁体的合成结构与磁性研究.博士学位论文,华中科技大学, 2007
    [9]王忠龙.几种配位化合物磁性质的第一性原理研究.博士学位论文,华中科技大学, 2008
    [10]樊帅伟.钙、钛和碳掺杂的稀磁半导体及双核锰分子磁体性质的研究.博士学位论文,华中科技大学, 2009
    [11]张静.多铁材料BiMn2O5及有机磁体(EDT-TSF)2FeCl4等物性的理论研究.博士学位论文,华中科技大学, 2010
    [12]傅华华.低维分子磁性材料及自旋阻挫棱型链的磁学和热力学性质研究.博士学位论文,华中科技大学, 2007
    [13]刘青梅.低维分子磁性材料的密度矩阵重整化群研究.博士学位论文,华中科技大学, 2005
    [14] C. Robert and O'handley.现代磁性材料原理和应用(中译本).北京:化学工业出版社, 1999: 14-19, 61-174
    [15]贡长生,张克力.新型功能材料.北京:化学工业出版社, 2001: 240-276
    [16] Y. V. Korshak, A. A. Ovchinnikov, A. M. Shapiro, T. V. Medvedeva, and V. N.Spektor. Organic polymer ferromagnet. JETP Letters, 1986, 43: 399
    [17] Y. Cao, P. Wang, and Z. Hu. Magnetic characterizations of organic ferromagnet- poly-BIPO andits analogue. Solid. State. Commun, 1988, 68: 819
    [18] J. S. Miller. The Quest for Magnetic Polymers - Caveat Emptor. Adv. Mater, 1992, 4: 435
    [19] Y. Nakazawa, M. Tamura, N. Shirakawa, D. Shiomi, M. Takahashi, M. Kinoshita, and M. Ishikawa. Low-temperature magnetic properties of the ferromagnetic organic radical, p-nitrophenyl nitronyl nitroxide. Physical Review B, 1992, 46: 8906
    [20] A. Zheludev, R. Chiarelli, B. Delley, B. Gillon, A. Rassat, E. Ressouche, and J. Schweizer. Spin density in an organic biradical ferromagnetic crystal. Journal of Magnetism and Magnetic Materials, 1995, 140-144: 1439
    [21] T. Makarova and B. Sundqvist. Nature, 2001, 413: 713
    [22] O. Kahn, Y. Pei, M. Verdaguer, J. P. Renard, and J. Sletten. Magnetic ordering of manganese(II) copper(II) bimetallic chains; design of a molecular based ferromagnet. Journal of the American Chemical Society, 1988, 110: 782
    [23]戴道生,钱昆明.铁磁学(上册).北京:科学出版社, 1987: 1-357
    [24]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社, 2003: 1-206
    [25]谢希德,陆栋.固体能带理论.上海:复旦大学出版社, 1998: 1-137
    [26] P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey. Full-potential, linearized augmented plane wave programs for crystalline systems. Computer Physics Communications, 1990, 59: 399
    [27] P. Blaha, K. Schwarz, G. Madsen, D. kvasnicka, and J. Luitz. WIEN2K, an Augmented Plane Wave+Local orbitals program for calculating crystal properties (Karlheinz Schwarz, Technische Universitat, Wien, Austria). ISBN 3-9501031-1-2, 2001:
    [28] R. Chiarelli, M. A. Novak, A. Rassat, and J. L. Tholence. A ferromagnetic transition at 1.48 K in an organic nitroxide. Nature, 1993, 363: 147
    [29] T. C. Kobayashi, M. Takiguchi, C. U. Hong, K. Amaya, A. Kajiwara, A. Harada, and M. Kamachi. Magnetic phase transition of organic radical magnets. Journal of Magnetism and Magnetic Materials, 1995, 140-144: 1447
    [30] K. Mukai, K. Konishi, K. Nedachi, and K. Takeda. Bulk ferro- and antiferro-magnetic behavior in 1,5-dimethyl verdazyl radical crystals with similar molecular structure. Journal of Magnetism and Magnetic Materials, 1995, 140-144: 1449
    [31] K. Takeda, K. Konishi, M. Hitaka, T. Kawae, T. Tamura, and M. Kinoshita. Pressure-induced reduction of the Curie temperature of the organic ferromagnet p-NPNN. Journal of Magnetism and Magnetic Materials, 1995, 140-144: 1451
    [32] A. Zheludev, E. Ressouche, J. Schweizer, P. Turek, M. Wan, and H. Wang. Neutron diffraction studies of the first purely organic ferromagnetic crystal. Journal of Magnetism and Magnetic Materials, 1995, 140-144: 1441
    [33] Y. Pei, M. Verdaguer, O. Kahn, J. Sletten, and J. P. Renard. Ferromagnetic transition in a bimetallic molecular system. Journal of the American Chemical Society, 1986, 108: 7428
    [34] D. K. Towle, S. K. Hoffmann, W. E. Hatfield, P. Singh, and P. Chaudhuri. Magnetic and structural properties of acetato(dien)copper(1+) perchlorate: aμ-acetato-bridged quasi-one-dimensional complex. Inorganic Chemistry, 1988, 27: 394
    [35] J. S. Miller and A. J. Epstein. Organic and Organometallic Molecular Magnetic Materials-Designer Magnets. Angewandte Chemie International Edition in English, 1994, 33: 385
    [36] C. Livage, C. Egger, and G. Férey. Hybrid Open Networks (MIL 16):Crystal Structure, and Ferrimagnetism of Co4(OH)2(H2O)2(C4H4O4)3·2H2O, a New Layered Cobalt(II) Carboxylate with 14-Membered Ring Channels. Chemistry of Materials, 1999, 11: 1546
    [37] J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Cortés, L. Lezama, and T. Rojo. Polynuclear NiII and MnII azido bridging complexes. Structural trends and magnetic behavior. Coordination Chemistry Reviews, 1999, 193-195: 1027
    [38] O. Cador, C. Mathonière, and O. Kahn. Single-Crystal Polarized Optical Absorption Spectroscopy of the One-Dimensional Ferrimagnet MnIICuII(pba)(H2O)3·2H2O (pba = 1,3-Propylenebis(oxamato)). Inorganic Chemistry, 2000, 39: 3799
    [39] E. Colacio, M. Ghazi, R. Kivek?s, and J. M. Moreno. Helical-Chain Copper(II) Complexes and a Cyclic Tetranuclear Copper(II) Complex with Single Syn?Anti Carboxylate Bridges and Ferromagnetic Exchange Interactions. Inorganic Chemistry, 2000, 39: 2882
    [40] C. Janiak. A critical account on [small pi]-[small pi] stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions, 2000: 3885
    [41] C. Ruiz Pérez, M. Hernández Molina, P. Lorenzo Luis, F. Lloret, J. Cano, and M. Julve. Magnetic Coupling through the Carbon Skeleton of Malonate in Two Polymorphs of {[Cu(bpy)(H2O)][Cu(bpy)(mal)(H2O)]}(ClO4)2 (H2mal = Malonic Acid; bpy = 2,2‘-Bipyridine). Inorganic Chemistry, 2000, 39: 3845
    [42] C. Ruiz Pérez, J. Sanchiz, M. H. Molina, F. Lloret, and M. Julve. Ferromagnetism in Malonato-Bridged Copper(II) Complexes. Synthesis, Crystal Structures, and Magnetic Properties of {[Cu(H2O)3][Cu(mal)2(H2O)]}n and {[Cu(H2O)4]2[Cu(mal)2(H2O)]} [Cu(mal)2(H2O)2] {[Cu(H2O)4][Cu(mal)2(H2O)2]} (H2mal = malonic Acid). InorganicChemistry, 2000, 39: 1363
    [43] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, and K. Kim. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 2000, 404: 982
    [44] H. Y. Shen, W. M. Bu, D. Z. Liao, Z. H. Jiang, S. P. Yan, and G. L. Wang. A new mixed-ligand one dimensional complex via hydrogen bonds: Cu(Mal)(bpy)·2H2O (Mal=Malonate ion, bpy=2,2'-bipyridine). Inorganic Chemistry Communications, 2000, 3: 497
    [45] K. Nakatani, P. Bergerat, E. Codjovi, C. Mathoniere, Y. Pei, and O. Kahn. Optimization of a molecular-based [manganese copper] magnet: MnCu(pbaOH)(H2O)2 (pbaOH = 2-hydroxy-1,3-propylenebis(oxamato)) with Tc = 30 K. Inorganic Chemistry, 1991, 30: 3977
    [46] K. L. Yao, Y. S. Zhang, Z. L. Liu, L. H. Yu, and X. L. Wang. The magnetic behavior and electronic structure of manganese (II)-azido complex [Mn(L)2(N3)2]n studied by first-principle calculation. Physics Letters A, 2006, 359: 227
    [47] Y. S. Zhang, K. L. Yao, Z. L. Liu, L. H. Yu, X. L. Wang, and Z. B. Li. The electronic structure of polymeric complex Co(thiazole)2Cl2 studied by first-principle calculation. Physics Letters A, 2006, 360: 380
    [48] Y. L. Li, K. L. Yao, and Z. L. Liu. Spin distribution and electronic structure of the ferromagnetic half-metal [Mn(bipy)(N3)2]: Ab initio study. Physica B: Condensed Matter, 2007, 395: 28
    [49] Z. L. Wang, K. L. Yao, Z. L. Liu, and H. J. Xu. 4-Carboxypyridinium 3-carboxy-4- hydroxybenzenesulfonate. Acta Crystallographica Section E, 2008, 64: 1192
    [50] Z. L. Wang, K. L. Yao, Z. L. Liu, and L. Zhu. The first-principle study on the electronic structure and magnetic properties of polymer Cu(HCO2)(NO3)(pyz) {pyz = Pyrazine}. Solid State Communications, 2008, 146: 412
    [51] S. W. Fan, K. L. Yao, Z. G. Huang, J. Zhang, G. Y. Gao, and G. H. Du. Ti-doped AlN potential n-type ferromagnetic semiconductor: Density functional calculations. Chemical Physics Letters, 2009, 482: 62
    [52] S. W. Fan, K. L. Yao, and Z. L. Liu. Half-metallic ferromagnetism in C-doped ZnS: Density functional calculations. Applied Physics Letters, 2009, 94: 152506
    [53] H. J. Xu, Z. L. Wang, and K. L. Yao. The electronic structures and magnetic properties of the vanadates M(pyrazine)V4O10 [I, M=Co; II, M=Zn] studied by first-principlescalculations. Physica B: Condensed Matter, 2009, 404: 1729
    [54] S. Sikorav, I. Bkouche-Waksman, and O. Kahn. Crystal structure and magnetic and EPR properties of bis(μ-azido)tetrakis(4-tert-butylpyridine)dicopper(II) perchlorate: a new copper(II) dinuclear complex with a large stabilization of the ground triplet state. Inorganic Chemistry, 1984, 23: 490
    [55] B. N. Figgis, P. A. Reynolds, and A. H. White. Charge density in the CoCl42- ion: a comparison with spin density and theoretical calculations. Journal of the Chemical Society, Dalton Transactions, 1987: 1737
    [56] M. Julve, M. Verdaguer, J. Faus, F. Tinti, J. Moratal, A. Monge, and E. Gutierrez-Puebla. Exchange interaction through extended molecular bridges: magnetic properties ofμ-4,4'-bipyridine andμ-pyrazine copper(II) binuclear complexes and crystal structures of (μ-4,4'-bipyridine)bis[(diethylenetriamine)(perchlorato)copper(II)] perchlorate and aquo(4,4'-bipyridine)(diethylenetriamine)copper(II) perchlorate. Inorganic Chemistry, 1987, 26: 3520
    [57] V. I. Anisimov, J. Zaanen, and O. K. Andersen. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 1991, 44: 943
    [58] E. Bakalbassis, C. Tsipis, A. Bozopoulos, W. Dreissig, H. Hartl, and J. Mrozinski. Discrepancy between the structural and magnetic dimensionality in the (μ-terephthalato)bis[(diethylenetriamine)Cu(II)]perchlorate complex. Inorganica Chimica Acta, 1991, 186: 113
    [59] E. Colacio, J. M. Dominguez Vera, J. P. Costes, R. Kivekas, J. P. Laurent, J. Ruiz, and M. Sundberg. Structural and magnetic studies of a syn-anti carboxylate-bridged helix-like chain copper(II) complex. Inorganic Chemistry, 1992, 31: 774
    [60] E. Colacio, J. M. Dominguez Vera, J. M. Moreno, J. Ruiz, R. Kivek?s, and A. Romerosa. Structure and magnetic properties of a syn-anti carboxylate bridged linear trinuclear copper(II) complex with ferromagnetic exchange interaction. Inorganica Chimica Acta, 1993, 212: 115
    [61] C. S. Hong, J. Kim, N. H. Hur, and Y. Do. The First (μ-Oxo)diferric Chain Complex:Andruh. { [Co (μ-bpe) (bpe)2 (H2O)2](0.5bpe) (H2O) (ClO4)2}n: : atransition metal-organo network with a novelsupramolecular architecture (bpe=1,2-bis(4-pyridyl)ethane). Polyhedron, 1998, 18: 243
    [64] L. Gasque, R. Moreno Esparza, E. Mollins, J. L. BriansóPenalva, L. Ruiz-Ramírez, and G. Medina Dickinson. Aqua(4,4'-dimethyl-2,2'-bipyridine-N,N') (malonato-O,O') copper(II) Dihydrate. Acta Crystallographica Section C, 1998, 54: 1848
    [65] V. Laget, C. Hornick, P. Rabu, M. Drillon, and R. Ziessel. Molecular magnets: Hybrid organic-inorganic layered compounds with very long-range ferromagnetism. Coordination Chemistry Reviews, 1998, 178-180: 1533
    [66] Y. Pei, M. Verdaguer, O. Kahn, J. Sletten, and J. P. Renard. Magnetism of manganese(II)copper(II) and nickel(II)copper(II) ordered bimetallic chains. Crystal structure of MnCu(pba)(H2O)3·2H2O (pba = 1,3-propylenebis(oxamato)). Inorganic Chemistry, 1987, 26: 138
    [67] V. Baron, B. Gillon, A. Cousson, C. Mathoniere, O. Kahn, A. Grand, L. Ohrstrom, B. Delley, M. Bonnet, and J.-X. Boucherle. Spin Density Maps for the Ferrimagnetic Chain Compound MnCu(pba)(H2O)3·2H2O (pba = 1,2-Propylenebis(oxamato)): Polarized Neutron Diffraction and Theoretical Studies. Journal of the American Chemical Society, 1997, 119: 3500
    [68] S. Pillet, M. Souhassou, C. Mathonière, and C. Lecomte. Electron Density Distribution of an Oxamato Bridged Mn(II)?Cu(II) Bimetallic Chain and Correlation to Magnetic Properties. Journal of the American Chemical Society, 2004, 126: 1219
    [69] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996, 77: 3865
    [70]王忠龙,徐辉进,魏慧丽,姚凯伦,孙利. MnCu(pba)(H2O)3·2H2O电子结构和磁性质的第一性原理研究.广西大学学报:自然科学版, 2010, 35: 347
    [71]王忠龙,徐辉进,姚凯伦.三唑配体化合物的电子结构和磁性质的第一性原理研究.材料导报, 2010, 24: 70
    [72] J. S. MILLER, A. J. EPSTEIN, and W. M. REIFF. Molecular/Organic Ferromagnets. Science, 1988, 240: 40
    [73] A. Escuer, R. Vicente, J. Ribas, M. S. El Fallah, X. Solans, and M. Font Bardia. Two newμ-azido nickel(II) uniform chains: syntheses, structures, and magneto-structural correlations. Inorganic Chemistry, 1993, 32: 3727
    [74] O. Kahn. Molecular magnetism. VCH Publishers, 1993:
    [75] R. Cortes, J. L. Pizarro, L. Lezama, M. I. Arriortua, and T. Rojo. Ferromagnetic Interactions in the First Bis(u-end-on-azido)manganese(II) Dinuclear Compound: [Mn(terpy)(N3)2]2-2H2O. Inorganic Chemistry, 1994, 33: 2697
    [76] J. Ribas, M. Monfort, C. Diaz, C. Bastos, and X. Solans. Ferromagnetic nickel(II) polynuclear complexes with end-on azido as bridging ligand. The first nickel(II)-azido one-dimensional ferromagnetic systems. Inorganic Chemistry, 1994, 33: 484
    [77] J. Ribas, M. Monfort, B. K. Ghosh, R Cortes, X. Solans, and M. Font-Bardia. Two New Antiferromagnetic Nickel(II) Complexes Bridged by Azido Ligands in the Cis Position. Effect of the Counteranion on the Crystal Structure and Magnetic Properties.Inorganic Chemistry, 1996, 35: 864
    [78] R Cortes, M. Drillon, X. Solans, L. Lezama, and T. Rojo. Alternating Ferromagnetic- Antiferromagnetic Interactions in a Manganese(II)-Azido One-Dimensional Compound: [Mn(bipy)(N3)2]. Inorganic Chemistry, 1997, 36: 677
    [79] A. Escuer, R Vicente, F. A. Mautner, and M. A. S. Goher. Structure and Magnetic Behavior of a New 1-D Compound with Simultaneous End-On Azido and Carboxylato Bridges. Unexpected Strong Ferromagnetic Coupling for a Cu-N-Cu Bond Angle of 111.9o as a Consequence of Ligand HOMOs Countercomplementarity. Inorganic Chemistry, 1997,36:1233
    [80] M. A. Aebersold, B. Gillon, O. Plantevin, L. Pardi, O. Kahn, P. Bergerat, I. von Seggern, F. Tuczek, L. Ohrstrom, A. Grand, and E. Lelievre Berna. Spin Density Maps in the Triplet Ground State of [Cu2(t-Bupy)4(N3)2](C104)2 (t-Bupy = p-tert-butylpyridine): A Polarized Neutron Diffraction Study. Journal of the American Chemical Society, 1998, 120:5238
    [81] X. Y Wang, L. Wang, Z. M. Wang, and S. Gao. Solvent-Tuned Azido-Bridged Co2+ Layers: Square, Honeycomb, and Kagome. Journal of the American Chemical Society, 2006, 128: 674
    [82] F C. Liu, Y F Zeng, J. P. Zhao, B. W Hu, X. H. Bu, J. Ribas, and S. R Batten. An unusual 3-D asymmetric mixed valence copper-azido complex with pyrazinecarboxylate as co-ligand showing rare net topology: Hydrothermal synthesis, structure and magnetic properties. Inorganic Chemistry Communications, 2007, 10: 129
    [83] X. T Wang, Z. M. Wang, and S. Gao. Honeycomb Layer of Cobalt(II) Azide Hydrazine Showing Weak Ferromagnetism. Inorganic Chemistry, 2007, 46: 10452magnetism of three azido-bridged Co2+ compounds with a flexible coligand 1, 2-(tetrazole-1-yl) ethane. Inorg. Chem, 2008, 47: 8134
    [85] R.-Y. Li, X.-Y. Wang, T. Liu, H.-B. Xu, F. Zhao, Z.-M. Wang, and S. Gao. Synthesis, Structure, and Magnetism of Three Azido-Bridged Co2+ Compounds with a Flexible Coligand 1,2-(Tetrazole-1-yl)ethane. Inorganic Chemistry, 2008, 47: 8134
    [86] X. Y. Wang, Z. M. Wang, and S. Gao. Detailed Magnetic Studies on Co(N3)2(4-acetylpyridine)2: a Weak-Ferromagnet with a Very Big Canting Angle. Inorganic Chemistry, 2008, 47: 5720
    [87] X. Y. Wang, Z. M. Wang, and S. Gao. Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chemical Communications, 2008: 281
    [88] Y. S. Zhang, K. L. Yao, and Z. L. Liu. Two ferromagnetic azido-bridged copper(II) complexes studied by first-principle electronic-structure calculation. The Journal of Chemical Physics, 2005, 123: 124308
    [89] Y. S. Zhang, K. L. Yao, and Z. L. Liu. The ferromagnetic copper (II)-azido compound [Cu(L)2(N3)2]n [L=4-(dimethylamino)pyridine] studied by first-principle calculation. Physica B: Condensed Matter, 2005, 358: 216
    [90] R. Baldomá, M. Monfort, J. Ribas, X. Solans, and M. A. Maestro. Combined Effects of Diamines and Carboxylate Bridges on Structural and Magnetic Properties of a Series of Polynuclear Copper(II) Complexes with 1,1-Cyclobutanedicarboxylic Acid. Inorganic Chemistry, 2006, 45: 8144
    [91] K. J. Barnham, M. I. Djuran, P. d. S. Murdoch, J. D. Ranford, and P. J. Sadler. Ring-Opened Adducts of the Anticancer Drug Carboplatin with Sulfur Amino Acids. Inorganic Chemistry, 1996, 35: 1065
    [92] C. Livage, C. Egger, M. Nogues, and G. Ferey. Hybrid open frameworks (MIL-n). Part 5 Synthesis and crystal structure of MIL-9: a new three-dimensional ferrimagnetic cobalt(II) carboxylate with a two-dimensional array of edge-sharing Co octahedra with 12-membered rings. Journal of Materials Chemistry, 1998, 8: 2743
    [93] M. Kondo, T. Okubo, A. Asami, S.-i. Noro, T. Yoshitomi, S. Kitagawa, T. Ishii, H. Matsuzaka, and K. Seki. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a Pillar Ligand). Angewandte Chemie International Edition, 1999, 38: 140
    [94] Z. L. Huang, M. Drillon, N. Masciocchi, A. Sironi, J. T. Zhao, P. Rabu, and P. Panissod. Ab-Initio XRPD Crystal Structure and Giant Hysteretic Effect (Hc = 5.9 T) of aNew Hybrid Terephthalate-Based Cobalt(II) Magnet. Chemistry of Materials, 2000, 12: 2805
    [95] B. Moulton and M. J. Zaworotko. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chemical Reviews,2001, 101: 1629
    [96] A. Castineiras, A. G Sicilia-Zafra, J. M. Gonzalez-Perez, D. Choquesillo-Lazarte, and J. Niclos-Gutierrez. Intramolecular "Aryl-Metal Chelate Ring" 71,71-Interactions as Structural Evidence for Metalloaromaticity in (Aromatic a,a'-Diimine)-Copper(II)Chelates: Molecular and Crystal Structure of Aqua(l,10-phenanthroline) (2-benzylmalonato) copper(II) Three-hydrate. Inorganic Chemistry, 2002, 41: 6956
    [97] Y. Rodriguez Martin, M. Hernandez Molina, F. S. Delgado, J. Pasan, C. Ruiz Perez, J. Sanchiz, F. Lloret, and M. Julve. Structural versatility of the malonate ligand as a tool for crystal engineering in the design of molecular magnets. CrystEngComm, 2002, 4: 522
    [98] J. Pasan, F. S. Delgado, Y Rodriguez Martin, M. Hernandez Molina, C. Ruiz Perez, J. Sanchiz, F. Lloret, and M. Julve. Malonate-based copper(II) coordination compounds: ferromagnetic coupling controlled by dicarboxylates. Polyhedron, 2003, 22: 2143
    [99] J. Pasan, J. Sanchiz, C. Ruiz-Perez, F Lloret, and M. Julve. {[Cu(H2O)3] [Cu(phmal)2]}: a new two-dimensional copper(II) complex with intralayer ferromagnetic interactions (phmal = phenylmalonate dianion). New Journal of Chemistry, 2003, 27: 1557
    [100] J. Pasan, J. Sanchiz, C. Ruiz-Perez, F. Lloret, and M. Julve. Phenylmalonate- Containing Copper(II) Complexes: Synthesis, Crystal Structure and Magnetic Properties. European Journal of Inorganic Chemistry, 2004, 2004: 4081
    [101] J. Pasan, J. Sanchiz, C. Ruiz-Perez, F. Lloret, and M. Julve. Polymeric Networks of Copper(II) Phenylmalonate with Heteroaromatic N-donor Ligands: Synthesis, Crystal Structure, and Magnetic Properties. Inorganic Chemistry, 2005, 44: 7794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700