二氧化锡纳米纤维结构构建及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化锡是一种对环境友好、宽禁带(3.6eV)的N型半导体氧化物材料,近些年来,对其进行形貌、结构的改性备受关注,因其改性后的材料拥有独特的光学,电学以及化学性能被广泛应用于各个领域。本课题利用静电纺丝技术协同高温煅烧或碳化处理,制备了实心、空心以及皮芯结构的二氧化锡纳米纤维,并将其应用于光催化降解染料基材、气敏元件以及锂离子负极材料中,重点研究了不同结构二氧化锡纳米纤维的成型机理,以及结构对其性能的影响机制。
     通过二氧化锡水溶胶,以提拉-浸渍的方法涂覆于高强涤纶纤维并进行光催化降解亚甲基蓝染料实验。其中,使用空气等离子体对纤维进行亲水性预处理,利用力-距离曲线分析单根纤维的模量变化,并进行了纤维的形貌观察和力学性能测试。结果表明,等离子处理有效的提高了纤维对二氧化锡溶胶的吸附能力使其光催化效果明显提高。光催化后,纤维形貌能够保持完整;较之催化前,单根纤维模量降低,强度增加,伸长率下降。
     利用静电纺丝方法制备二氧化锡/聚醋酸乙烯酯杂化纳米纤维,并应用于光催化降解亚甲基蓝染料。实验证明:纤维的光催化效率随着二氧化锡含量的增加而增加;光催化后,纤维形貌保持完好,纤维模量降低,强力增强。同时,使用二氧化钛掺杂能够有效提高该纤维的光催化性能。
     分别选择聚醋酸乙烯酯和聚乙烯吡咯烷酮为高分子中间体,五水四氯化锡为二氧化锡前驱体,使用静电纺丝及煅烧处理制备网状及纤维状二氧化锡纳米纤维,并应用于光催化降解染料及锂离子电池负极材料中。通过透射电镜、热重分析、红外光谱分析等手段追踪纤维结构变化。实验证明,网络状二氧化锡纳米纤维在锂离子电池测试中有利于保持电极材料的完整性而具有较好的循环性能;纤维状二氧化锡纳米纤维能够最大程度的吸附并降解染料,在光催化降解染料中表现出优异的性能。同时,使用二氧化硅颗粒掺杂及蚀刻技术成功制备了高比表面积的二氧化锡纳米纤维。
     依据柯肯达尔效应理论,制备了中空结构二氧化锡纳米纤维及二氧化钛/二氧化锡皮芯结构纳米纤维,详细分析了不同结构的成型机理。利用中空结构二氧化锡纳米纤维的结构优势,在气敏测试中表现出了对乙酰乙酯直线型的响应值以及对乙醇在低浓度下灵敏的响应,特别是该材料对气体测试后的响应恢复时间迅速。将二氧化钛/二氧化锡皮芯结构纳米纤维应用于锂离子电池负极材料时,表现出比中空二氧化锡纳米纤维更稳定的循环性能。
     利用同轴静电纺丝技术,分别从静电纺丝参数、芯层活性物质含量以及结构构建角度分析了提高锡基纳米纤维作为锂离子负极材料性能的改进方法。同时,使用不同种高分子中间体,即聚丙烯腈,聚乙烯毗咯烷酮,聚甲基丙烯酸甲酯,制备锡基皮芯结构纳米纤维,深入探讨了高分子中间体对其形貌及电化学性能的影响。
Tin dioxide is an environmentally-friendly N-type, broad band gap (3.6eV) oxide semiconductor. Nowadays, morphology and structure modification of nano-tin dioxide has attracted much attention because they enable the utilization of the unique optical, electronic, and chemical properties of tin dioxide in different applications.In this research, one-step method for the fabrication of tin dioxide solid, hollow and core-shell nanofibers by directly annealing electrospun composite nanofibers were proposed. And their applications in photocatalysis, gas sensor and lithium ion battery were also tested. It is focus on the forming mechanisms of different structures of tin dioxide nanofibers, and the effect of different morphologies on their applications.
     Tin dioxide hydrosol was deposited on high tenacity polyester fibers by dip-coating method. The photocatalytic properties of samples were analyzed through the degradation of methylene blue. Atmospheric plasma treatment was used as pre-treatment to improve its hydrophilism. The modulus of monofilament was tested using the force-distence curves, the morphologies and mechanical properties of samples were observed as well. The study revealed that the photocatalytic activity of tin dioxide coated high tenacity polyester fibers were enhanced due to the wettability of high tenacity polyester surfaces improved by plasma treatment. After photocatalysis, the morphologies can be hold as pretreated ones; the modulus of monofilament was decrease, strength was increased as well as elongation was decreased.
     Tin dioxide/polymer vinyl acetate hybrid nanofibers were fabricated by electrospinning, and the photocatalytic properties of samples were analyzed through the degradation of methylene blue. It is revealed that the photocatalytic activity of tin dioxide/polymer vinyl acetate nanofibers were improved by adding more content of tin dioxide. After photocatalysis, the sample was still retained fibrous structure, but the modulus of single nanofiber was decreased while the strength was increased.At the same time, the photocatalytic property was also improved by adding titanium dioxide doping.
     Two types of tin dioxide nanofibers, one was cobweb-like structure and the other was fibrous structure were prepared by electrospinning and calcination of polyvinyl acetate/stannic chloride pentahydrate and polyvingl pyrrolidone/stannic chloride pentahydrate precursors, respectively. They were applied in the photocatalytic degradation and the lithium-ion battery tests. The transformation process of nanofibers'structure was tracked by transmission electron microscope, thermogravimetric analysis, Fourier transform infrared spectroscopy and others tests. Experiments have shown that the cobweb-like structure of tin dioxide nanofibers showed better cycling performance in lithium-ion battery tests because it had better ability to preserve the integrity of the electrode structure. On the other hand, the fibrous structure of tin dioxide nanofibers exhibited better photocatalytic activity because they provided higher surface area for absorbing and degrading dye. Additionally, high specific surface areas of tin dioxide nanofibers were obtained by adding silicon dioxide doping and then etched it.
     According to Kirkendall effect, hollow tin dioxide nanofibers and core/shell tin dioxide/titanium dioxide nanofibers were prepared. The forming mechanisms of those nanofibers were analyzed in details. The hollow tin dioxide nanofibers exhibited an excellect gas sensitivity to ethyl acetate.It also has a high response to a low concentration of ethanol. Especially, the speed of response was fast to all of test-gases. For the core/shell tin dioxide/titanium dioxide nanofibers, they have better cycle performance than hollow tin dioxide nanofibers during lithium-ion battery test.
     In order to improve tin's cycle performance in the lithium-ion battery test, core/shell tin/carbon nanofibers were prepared by coaxial electrospinning and carbonization. The elelctrospinning parameters, the ratio of active materials and the structure design were adjusted to get better electrochemical properties. Meanwhile, when the different intermediate polymers, i.e. polyvingl pyrrolidone and polymethyl methacrylate used in the core electrospinning solution, the nanofibers were showed different electrochemical properties during lithium-ion battery test. So the relationship among intermediate polymers and the morphologies of nanofibers and the electrochemical properties were discussed in details as well.
引文
1. Nandana B,Subhas C Kundu.Electrospinning:A fascinating fiber fabrication technique[J]. Biotechnology Advances,2010,28:325-347
    2. Wu N, Xia X, Wei Qf,et al. Preparation and properties of organic/inorganic hybrid nanofibres[J]. Fibers&Textiles in Eastern Europe.2010,18:21-23
    3. Rutledge GC. Fridrikh SV. Formation of fibers by electrospinning[J]. Advanced Drug Delivery Reviews,2007,59:1384-1391
    4. Ji LW, Zhang XW. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries[J]. Nanotechnology,2009,20:155-158
    5. Liu J, Xue DF. Hollow nanostructured anode materials for Li-Ion batteries [J].Nanoscale Research Letters.2010,5:1525-1534
    6. Dvininov E, Ignata M, Barvinschib P, et al. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching [J].Journal of Hazardous Materials,2010,177:150-158
    7. Dharmaraj N, Kim CH, Kim KW,et al. Spectral studies of SnO2 nanofibres prepared by electrospinning method [J]. Spectrochimica Acta Part A,2006,64:136-140
    8.徐毓龙.氧化物与化合物半导体基础[M].西安:电子科技大学出版社,1991.212
    9. Zhang LS, Jiang LY, Yan HJ, et al.Mono dispersed SnO2 nanoparticles on both sides of single layer grapheme sheets as anode materials in Li-ion batteries[J]. Journal of Materials Chemistry,2010, 20:5462-5467
    10. Li, L.M., et al., Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries[J]. Electrochemistry Communications,2010.12(10):1383-1386
    11. Gong SP, Liu JQ, Xia J, et al.Gas sensing characteristics of SnO2 thin films and analyses of sensor response by the gas diffusion theory[J]. Materials Science and Engineering B,2009,164:85-90.
    12. Long YZ.Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics[J]. Chemical Society Reviews,2012.41(12): 4560-4580
    13. Gyger F, Ubner M, Feldmann C,et al.Nanoscale SnO2 hollow spheres and their application as a gas-sensing material[J]. Chemistry of Materials.2010,22:4821-4827
    14. Cho NG. Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors[J]. Sensors and Actuators B-Chemical,2011,160(1):1468-1472
    15. Park JA,Moon J, LEE SJ,et al. SnO2-ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor [J].Sensors and Actuators B,2010,145:592-595
    16. Song XF, Tong QQ, Zhang XF, et al.A humidity sensor based on KCl-doped SnO2 nanofibers[J]. Sensors and Actuators B,2009,138:368-373
    17.黄剑锋.溶剂-凝胶原理与技术[M],北京:化学工业出版社,2005:190
    18. Gu F,Wang SF,Lu MK,et al.Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method[J], J. Phys. Chem. B,2004,108 (24):8119-8123
    19. Chiu HC,Yeh CS.Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol[J], J. Phys.Chem. C,2007,111 (20):7256-7259
    20. Wu SS, Cao HQ,Yin SF,et al.Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals[J], J. Phys. Chem. C,2009,113 (41):17893-17898
    21. Ghoshtagore RN. Mechanism of CVD thin film SnO2 formation [J], J. Electrochem. Soc.1978, 125(1):110-117
    22. Remes ZD, Vanecek M, Yates HM,et al.Optical properties of SnO2:F films deposited by atmospheric pressure CVD[J], Thin Solid Films.2009,517(23):6287-6289
    23. Zhang Y. Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties[J], Sensors and Actuators B-Chemical,2010,144(1):43-48
    24. Lou XW, Li CM, Archer LA. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible Lithium storage[J], Advanced Materials,2009,21(24):2536-2539
    25. Wu SS,Cao HQ, Tin SF, et al. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals[J]. Journal of Physical Chemistry C,2009,113:17893-17898
    26. Wang QQ, Lin BZ, Xu BH,et al. Preparation and photocatalytic properties of mesoporous SnO2-hexaniobate layered nanocomposite[J]. Microporous and Mesoporous Materials,2010,130:344-351
    27.宋光泉.大学通用化学实验技术[M],北京:5,高等教育出版社,192-198
    28. Hou.LR,Yuan CZ,Peng Y.Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites [J]. Journal of Hazardous Materials B,2007,139:310-315
    29. Ma HC,Teng K, Fu YH,et al. Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction[J].Energy Environ. Sci.,2011,4,3067-3074
    30. Chu D,Mo JH,Peng Q,et al. Enhanced photocatalytic properties of SnO2 nanocrystals with decreased size for ppb-level acetaldehyde decomposition[J]. ChemCatChem,2011,3:371-377
    31. Han YT, Wu X, Ma YL. Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications[J].CrystEngComm,2011,13:3506-3510
    32.刘锦淮.纳米敏感材料与传感技术[M],北京:科学出版社,2011:58
    33.何钢.检测与控制器件[M],北京:中国轻工业出版社,1996:90
    34.宋钫.生物分级多孔结构二氧化锡的制备及气敏性能研究[D]:[博士学位论文].上海:上海交通大学材料科学与工程学院,2012
    35.周晓明.二氧化锡纳米材料的制备及其气敏性能研究[D]:[硕十学位论文].吉林:吉林大学原子与分子物理研究所,2010
    36.陈周兵.二氧化锡组装纳米结构微球的制备及其乙醇气敏性研究[D]:[硕士学位论文].北京:北京化工大学化学学院,2010
    37. Yang DJ, Kamienchick I, Youn DY, et al.Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading [J]. Advanced Functional Materials,2010,20(24):4258-4264
    38. Kim WS, Lee BS, Kim DH, SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance[J]. Nanotechnology,2010,21:245605-245612
    39.黄可龙.锂离子电池原理与关键技术[M],北京:化学工业出版社,2008:34
    40. Wachtler M, Besenhard JO, Winter M. Tin and tin-based intermatallics as new anode materials for lithium-ion cell [J], Journal of Power Sources,2001,94(2):189-193
    41. Coutney IA, Mckinnon WR, Dahn JR. On the aggragation of tin in SnO composite glasses caused by the reversible reaction with lithium [J], Journal of Electrochemistry Society,1999,146(1):59-68
    42. Harris WS, Ph. D. Thesis UCRL-8381, University of Califomia [D], Berkeley,1958
    43. Zhang T, Fu LJ, Gao J, Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery [J], Journal of Power Sources,2007,174:770-773
    44. Beaulieu LY, Hewitt KC, Dahn JR, et al. The electrochemical reaction of Li with amorphous Si-Sn alloys [J]. J Electrochern Soc,2003,150(2):A149-A156
    45. He XM, Pu WH, Wang L. Synthesis of spherical nano tin encapsulated pyrolytic polyacrylonitrile composite anode material for Li-ion batteries [J], Solid State Ionics,2007,178,833-836
    46. Noh M, Kwon Y, Lee H, et al., Amorphous carbon-coated tin anode material for lithium secondary battery [J]. Chem. Mater.,2005,17:1926-1929
    47. Han S, Jang B, Kim T, et al. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes [J]. Adv. Funct. Mater.,2005,15:1845-1850
    48. Lee KT, Jung YS, Oh SM. Synthesis of tin-encapsulated sphedcal hollow carbon for anode material in lithium secondary batteries [J], J. Am. Chem. Soc.,2003,125:5652-5653
    49. Ke FS, Huang L, Jiang HH, et al. Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of hign preferential (110) orientation for lithium ion batteries [J], Electrochem. Commun., 2007,9:228-232
    50. Cui GL, Hu YS, Zhi LJ, et al. A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries [J], Small,2007,3:2066-2069
    51. Winter M, Besenhard JO. Electrochemical lithiation of tin and tin-based intermetallies and composites [J], Electrochimica Acta,1999,45:31-50
    52. Tirado JL. Inorganic materials for the negative electrode of lithium-ion batteries:state-of-the-art and future prospects [J], Materials Scicence & Engineering R,2003,40:103-136
    53. Wachtler MW, Besenhard JO. Anodic materials for rechargeable Li-batteries [J], J. Power Sources, 2002,105:151-157
    54. Yang J, Wachtler M, Winter M, Besenhard JO, Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries [J], Electrochem. Solid State Lett,1999,2:161-169
    55. Yarin AL, Zussman E, Wendorff JH,et al. Material encapsulation and transport in core-shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels[J], J. Mater. Chem.,2007,17: 2585-2599
    56. Peng XH, Santulli AC, Sutter EL,et al Fabrication and enhanced photocatalytic activity of inorganic core-shell nanofibers produced by coaxial electrospinning[J],Chem. Sci.,2012,3,1262-1272
    57. c/o SNT Co. Bin DING.Dye sensitized metal oxide semiconductor electrode and method for manufacturing the same, and dye sensitized solar cell [P] USA, US EP1801909 A1.2007-06-17
    58. Zhang P, Shao CL, Zhang MY, et al.Controllable synthesis of Zn2TiO4@carbon core/shell nanofibers with high photocatalytic performance[J], Journal of hazardous material.2012,229:265-272
    59. Choi SW,Park JY,Kim SS. Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties[J], Nanotechnology.2009,20:465603-465609
    60. Kayaci F, Ozgit-Akgun C,Donmez I,et al.Polymer-Inorganic core-shell nanofibers by electrospinning and atomic layer deposition:flexible Nylon-ZnO core-shell nanofiber mats and their photocatalytic activity[J], ACS applied materials&interfaces.2012,4(11):6185-6194
    61. Cho NG, Yang DJ, Jin MJ,et al.Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors[J], Sensors and actuators B-Chemical,2011,160(1):1468-1472
    62. Choi SH, Ankonina G, Youn DY,et al.Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties[J], ACS Nano,2009,3 (9):2623-2631
    63. Kim WS, Lee BS,Kim DH,et al.SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance[J], Nanotechnology,2010,21:1-7
    64. Cheng YL, Zhang JF, Zhang YF, et al.Preparation of hollow carbon and silicon carbide fibers with different cross-sections by using electrospun fibers as templates[J], European journal of inorganic chemistry,2009,28:4248-4254
    65. Zhao Y, He XL, Li JP, et al.Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties [J], Sensors and actuators B-Chemical,2012,1:82-87
    66. Xia, X., Dongxian Jun, Qufu Wei, et al., Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Express Polymer Letters,2012.6(2):169-176
    67.管自生.光助溶胶-凝胶法制备二氧化钛光功能薄膜的研究[D]:[博士学位论文].北京:中国科学院,2000
    68. Yang N, Wang JH, Guo YZh,et al.SnO2 nanofibers prepared by sol-gel template method[J]. Rare Metal Materials and Engineering,2008,37(4):694-696
    69. Leandro PR,Dayse IS,Luis VASEffect of pH of colloidal suspension on crystallization and activation energy of deep levels in SnO2 thin films obtained viasol-gel[J]. Journal of Physics and Chemistry of Solids,2009,70:1312-1316
    70. Harmd W,Wu YC, Boulle A,et al.Microstructural study of SnO2 thin layers deposited on sapphire by sol-gel dip-coating[J].Thin Solid Films,2009(518):1-5
    71.张谷令,应用等离子体物理学[M],北京:首都师范大学出版社,2008:1-9
    72.屈广周.DBD等离子体降解活性炭吸附的有机物及活性炭再生研究[D]:[博十学位论文].大连:大连理工大学,2010
    73.李彬.空气DBD等离子体对Twaron纤维表面及Twaron/PPESK复合材料界面的影响[D]:[硕士学位论文].大连:大连理工大学,2011
    74.谢洪德.柞丝绸氧等离子体接枝与化学接枝的比较[J].国外丝绸,2003,5:17-19
    75.黄锋林,PVDF/SiO2复合纳米纤维膜结构调控及其性能的研究[D]:[博士学位论文].江苏:江南大学,2008
    76. Yoon Y,Moon HS,Lyoo WS, et al. Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment[J]. Carbohydrate Polymers,2009,75:246-250
    77.清华大学电机工程与应用电子技术系.纳米二氧化钛等离子体放电催化空气净化技术[Z],应用技术,2006
    78. CSPM4400扫描探针显微镜说明书[Z],广州本原纳米仪器有限公司
    79. Waltman RJ,Guo XC.AFM force-distance curves for perfluoropolyether boundary lubricant films as a function of molecular polarity[J]. Tribology letters 2012,45 (2):275-289
    80. Lucia F,Josef K, Frank W, et al. Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements[J]. Journal of Colloid and Interface Science 2010,347:15-24
    81.蔡振钱,申乾宏,高基伟,等.TiO2/SnO2复合薄膜的光催化活性研究[J].陶瓷学报,2006,27(3):282-284
    82. Liu RL,Huang YX,Xiao AH,et al. Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers[J].Journal of Alloys and Compounds,2010,503:103-110
    83.蔡振钱,申乾宏,高基伟,等.TiO2/SnO2复合薄膜的低温制备及其光催化性能[J].无机材料学报,2007,22(4):733-736
    84. Zhang HJ, Chen GH, Bahnemann D W.Photoelectrocatalytic materials for environmental applications [J]. Journal of Materials Chemistry,2009,19:5089-5121
    85. Qian HS,Hui Y,Qiang X, et al.In-situ preparation of TiO2/SnO2 nanocrystalline sol for photocatalysis[J] Materials Letters,2010,64:442-444
    86. Qing BY, Zhen YL, You LH,et al.Influence of solvents on the formation of ultrathin uniform Poly(vinyl pyrrolidone) nanofibers with electrospinning[J], Journal of Polymer Science:Part B:Polymer Physics,2004,42:3721-3726
    87. Darrell H, Reneker Alexander L, Yarin.Electrospinning jets and polymer nanofibers[J]. Polymer,2008, 49:2387-2425
    88. Rodriguez-Vazquez M. Degradation and stabilisation of poly(ethylene-stat-vinyl acetate): 1-spectroscopic and rheological examination of thermal and thermo-oxidative degradation mechanisms. Polymer Degradation and Stability,2006,91(1):154-164
    89. Dai ZR,Pan ZW, Wang ZL.Ultra-long single crystalline nanoribbons of tin oxide[J].Solid state communications,2001,118:351-354.
    90. Hagemeyer, A.High surface area tin oxide [J]. Applied Catalysis A-General,2007.317(2):139-148
    91. Xia X, Li SL, Wang X, et al. Structures and properties of SnO2 nanofibers derived from two different polymer intermediates[J]. J Mater Sci,2013,48:3378-3385
    92. Acarbas O, Suvaci E, Dogan A. Preparation of nanosized tin oxide (SnO2) powder by homogeneous precipitation[J]. Ceramics International,2007,33(4):537-542
    93. Wang X, Fan HQ, Ren PR. UV light-assisted synthesis of coral SnO2:Characterization and its enhanced photocatalytic properties[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2012,402: 53-59
    94.吴吕聚.微/纳结构栖牲层腐蚀及其模型研究[D]:[博士学位论文].浙江:浙江大学,2006
    95.梁庆,苑伟政,虞益挺,等.牺牲层刻蚀实验的在线观察与研究[J].纳米技术与精密工程,2007,5(3):169-172
    96.封志强,高长有,沈家骢.纳米金掺杂中空微胶囊的制备与表征[J].高分子学报,2008,8:823-826
    97.孟永德.钻基皮芯纳米结构材料与空心纳米结构的制备与性能研究[D]:[博士学位论文].山东:山东大学,2007
    98. Sing KSW, Everett DH, Haul RAW, et al. International union of pure and applied chemistry with special reference to the determination of surface area and porosity [J]. Pure & Appl. Chem.,1985,57:603-619.
    99.柳翱,巴晓微,刘颖,等.BET容量法测定固体比表面积[J].长春工业大学学报,2012,33(2):197-199
    100.张以梅,周倩,陈胜利,等.单分散SiO2无孔微球比表面积标准物质的研制[J].化工学报,2009,60(5):1327-1331
    101. Galindo HM, Carvajal Y, Njagi E, et al Facile one-step template-free synthesis of uniform hollow microstructures of cryptomelane-type manganese Ooxide K-OMS-2[J]. Langmuir 2010,26(16): 13677-13683
    102. Cheng YL, Huang WZ, Zhang YF, et al. Preparation of TiO2 hollow nano fibers by electrospining combined with sol-gel process[J]. CrystEngComm,2010,12:2256-2260
    103. Choi JK, Hwang IS, KimSJ, et al.Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers [J]. Sensors and Actuators B,2010,150:191-199
    104.白春礼.分子科学前沿[M],北京:科学出版社,2007:492
    105. Peng Q, Sun XY,Spagnola JC,et al.Bi-directional kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition[J].Acs nano,2009,3 (3),546-554
    106.张代东.材料科学基础[M],北京:北京大学出版社,2011:253
    107.陈永.多孔材料制备与表征[M],北京:中国科技大学出版社,2010:180
    108. Kong JH, Tan HR,Tan SY, et al.A generic approach for preparing core-shell carbon-metal oxide nanofibers:morphological evolution and its mechanismw[J]. Chem. Commun.,2010,46:8773-8775
    109. Yu QZ, Qin YM. Fabrication and formation mechanism of poly(L-lactic acid)ultrafine multi-porous hollow fiber by electrospinning[J]. eXPRESS Polymer Letters,2013,7(1):55-62
    110.张联盟.材料科学基础[M],武汉:武汉理工大学出版社,2008:172
    111.张其土.无机材料科学基础[M],上海:华东理工大学出版社,2007:215
    112. Yin YD, Rioux RM, Erdonmez CK,et al.Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J]. Science,2004,304:711-714.
    113.刘建雄.特殊形貌一维半导体纳米材料制备及形成机理研究[D]:[博士学位论文].昆明:昆明理工大学,2011
    114. Park JY, Asokan K, Choi SW,et al.Growth kinetics of nanograins in SnO2 fibers and size dependent[J]. Sensors and Actuators B,2011,152:254-260
    115. Fan HJ, Knez M, Scholz R,et al.Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect:The Basic Concept[J]. Nano Letters.2007,7(4):993-997
    116. Shek CH, Lai JKL, Lin GM. Grain growth in nanocrystalline SnO2 prepared by sol-gel route [J]. NanoStructured Materials,2009,11(7):887-893
    117. Lai JKL, Shek CH, Lin GM.Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing[J]. Scripta Materialia,2003,49:441-446
    118. Wang ZY, Wang ZC, Madhavi S,et al. One-Step Synthesis of SnO2 and TiO2 Hollow Nanostructures with Various Shapes and Their Enhanced Lithium Storage Properties[J]. Chem. Eur. J.2012,18: 7561-7567
    119. Li D, Mcann JT, Xia YN. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces [J]. Small,2005,1(1):83-86
    120. Yu JH, Fridrikh SV, Rutledge GC. Production of submicrometer diameter fibers by two-fluid electrospinning [J]. Advanced Materials,2004,16 (17):1562-1566
    121.薛雷刚.锂离子电池锡基负极材料的制备及储能行为研究[D]:[博士学位论文].上海:复旦大学,2011
    122. Han XJ, Huang ZM, He CL,et al.Coaxial Electrospinning of PC(shell)/PU(core) Composite Nanofibers for Textile Application[J]. Polymer composites,2008,10:579-584
    123. Lopez-Herrera JM, Barrero A, Lopez A,et al.Coaxial jets generated from electried Taylor cones:Scaling laws[J]. Aerosol Science,2003,34:535-552
    124. Wang C, Yan KW, LinYD, et al. Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release [J]. Macromolecules 2010, 43:6389-6397
    125. Gan-a'n-Calvo A. M. Cone-jet analytical extension of taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying [J].Phys. Rev. Lett.,1997,79(2):217-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700