1Cr11MoNiW1VNbN不锈钢Al-Si涂层组织结构及抗高温氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足超超临界汽轮机叶片的工况需求,本文采用料浆法在1Cr11MoNiW1VNbN不锈钢表面制备了Al-Si涂层。依据GB/T13303-91《钢的抗氧化性能测定方法》和HB5258-2000《钢及高温合金的抗氧化性能测定试验方法》标准,对制备Al-Si涂层的试样和无涂层试样制定了高温氧化试验:温度为700℃、保温时间为1000h的恒温氧化试验;温度为700℃、冷热循环11次的循环氧化试验。利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等分析检测手段对Al-Si涂层的表面形貌、成分、组织结构及涂层开裂和剥落的成因进行了分析和研究。
     制备的Al-Si涂层分为外层、金属间化合物层和过渡层三层。外层富铝层的厚度约为8μm,主要成分是a-Al和少量的FeAl3相;金属化合物层的厚度约为16μm,主要成分为Fe2A15相;过渡层约为14μm,因接近基体组织以a-Fe和Fe3A1相为主。金属化合物层是抗高温氧化的有效保护层,该层致密、厚度均匀、与基体结合界面平整且结合良好。
     试验结果表明,Al-Si涂层700℃恒温氧化1000h表面形成致密、连续的a-A1203保护性氧化膜。氧化初期生成PBR>1的FeAl2O4和FeO氧化物导致膜内产生的压应力,后期阶段氧化膜由θ-Al2O3向α-Al2O3转变时产生的拉应力,以及涂层内的孔洞均会造成表面氧化膜开裂和剥落。但是涂层由FeAl3相、Fe2A15相向FeAl相的转变,可以为表层提供足够的Al元素来不断形成Al2O3氧化膜,涂层具有良好的自修复能力。涂层中的Si元素可以有效控制脆性相Fe2Al5的生长,改善Al2O3氧化膜塑性,促进β相向γ'相的转变,降低渗铝层的脆塑性转变温度,增强渗层的吸附能力;Si与合金元素生成的第二相能有效阻碍涂层与基体元素的互扩散,提高涂层的抗高温氧化性能。
     依据GB/T13303-91和HB5258-2000标准对Al-Si涂层和无涂层试样进行高温氧化性能评定:无涂层试样为抗氧化等级,Al-Si涂层属于完全抗氧化等级。对比分析恒温氧化动力学曲线和循环氧化动力学曲线,Al-Si涂层的抗高温氧化性能优于无涂层试样。
In this paper, Al-Si coating was prepared on 1Cr11MoNiW1VNbN stainless steel by slurry process to improve application temperature of ultra steam turbine blades. According to the criterion of GB/T13303-91 and HB5258-2000, the isothermal oxidation testing at 700℃in air for 1000h and oxidized circularly at 700℃for 11 times was carried out.The composition, structure, surface morphology and the failure causes of Al-Si coating were analysised and researched by the analysis and detection methods of SEM, EDS, XRD and so on.
     The Al-Si coating prepared by slurry process includes outer layer, intermetallic compound layer and transition layer.The Al-rich outer layer mainly contains the phase ofα-Al and few FeAl3, whose thickness is about 8μm. The metal compound layer is about 16μm. and the main component is the Fe2Al5 phase.The transition layer is about 14μm and its composition approach to the matrix organizations.The Metallic compound layer is the effective protection against high temperature oxidation,which is dense, uniform, smooth and consolidated well.
     The results indicated that, the dense and continuous oxide films ofα-Al2O3 with a certain thickness formed on the surface of Al-Si coating at 700℃for 1000h were the barriers in the high temperature oxidation.The oxides of FeAl2O4 and FeO generated in the early oxidation produce compressive stress,while the transition fromθ-Al2O3 toα-Al2O3 produces tensile stress in oxide film.Those stresses and the holes in the coating will cause oxide film cracked and spalled.But the enough Al element provided by phase transition from FeAl3 and Fe2Al5 to FeAl can keep the repaired formation of the oxide film itself. Si elements in the coating can effectively control the growth of brittle phase, improve the plastic of Al2O3, promote phase transition fromβtoγ', reduce the brittle-plastic transition temperature and increase the adsorption capacity of coating;The second phase particles formed by Si and alloying elements can effectively hind interdiffusion of the coating and substrate alloying elements, and the performance of high temperature oxidation resistance of the coating is improved.
     Assessing by the standards of GB/T13303-91 and HB5258-2000, Al-Si coating is completely antioxidant, and the oxidation rate was significantly lower than uncoated samples.The Al-Si coating has a better ability than uncoated samples in the high temperature oxidation and cyclic oxidation.
引文
[1]黄瓯,阳虹,彭泽英.我国超超临界汽轮机的发展方向[J].热力透平,2004,33(1): 1.
    [2]周伟,赵宇光.在钛合金表面制备Al-Si涂层的方法及其高温抗氧化性[J].北京科技大学学报,2007,29(2):157.
    [3]马勤,尤少君,贾建刚等.AISI1020钢表面熔融盐法渗铝及其机理[J].兰州理工大学学报,2010,36(3):10-12.
    [4]杨世伟,王俊一.K4104高温合金Al-Si涂层耐腐蚀性能研究[J].哈尔滨工程大学学报,2008,29(10):1125.
    [5]任鑫,王福会,汪信.Al-Si涂层在900℃硫酸盐中的热腐蚀行为[J].腐蚀科学与防护技术,2004,16(4):189.
    [6]Kircher T A, McM ordie B G, Mc CarterA. Performance of a silicon-modified aluminide coating in high temperature hot corrosion test conditions [J]. Surface and Coatings Technology,1994,68-69:32-37.
    [7]顾国成,吴文森.钢铁材料的防蚀涂层[M].北京:科学出版社,1987:8-9.
    [8]主沉浮,魏云鹤,于萍等.Galvalume在不同介质中腐蚀产物的形貌和成分分析对比及其对耐蚀性能的影响[J].材料工程,2003,8:20-22.
    [9]李丹,李斌川,陈建设等.热浸镀生产控制系统的研制[J].材料与冶金学报,2007,6(1):68-71.
    [10]周菊先,石伟民,涂正华等,织物表面金属化研究[J].印染,1993,19(2):5-8.
    [11]石磊,石金生,石勇. 《电镀污染物排放标准》浅析[J].电镀与涂饰,2009,28(5):44-50.
    [12]王宗田,陈良印,马坚等.浅谈电泳涂装工艺原理及管理[J].现代涂料与涂装,2011,14(1):63-65.
    [13]赵安伟,贾树利,周磊等.电泳流痕处理[J].上海涂料,2010,48(12):44-45.
    [14]刘会杰,张九海.高温合金的扩散连接[J].焊接技术,1995,6:36-38.
    [15]黄伟九,李兆峰,刘明.热扩散对镁合金锌铝涂层界面组织和性能的影响[J].材料热处理学报,2007,28(2):106-109.
    [16]马幼平,徐可为,温维新.表面扩渗Al、Zn处理对ZM5镁合金的性能影响[J].稀有金属材料与工程,2005,3:191-194.
    [17]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003:20-24,49-61,178,180,183-187,218,278,287.
    [18]G.W. Goward. Progress in coatings for gas turbine airfoils[J]. Surface and Coatings Technology,1998,108-109:73-79.
    [19]E.Airiskallio, E.Nurmi, M.H.Heinonen. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys:The role of Cr as a chemically active element[J]. Corrosion Science, 2010,52(10):3394-3404.
    [20]V.Shankar Rao. High temperature oxidation behaviour of Fe-Al-C alloys:an overview[J]. Materials Science and Engineering A,2004,364(1-2):232-239.
    [21]Fengqun Lang, Zhiming Yu, Shalva Gedevanishvili. Cyclic oxidation behavior of Fe-40Alsheet[J]. Intermetallics,2004,12(4):451-458.
    [22]张黔,陈建华,李友均.两种高铬钢渗铝层的组织和抗氧化性能[J].金属热处理,2000,25(10):7.
    [23]李克,张正义,苏怡兴等.航空高温合金用新型气相渗铝工艺研究[J].热处理,2009,24(5):24-34.
    [24]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001:412-413.
    [25]刘国伟,丁志敏.Q235钢喷涂扩散法渗铝工艺及性能[J].机车车辆工艺,2002,4:13-15.
    [26]李翀.1Cr11Ni2W2MoV马氏体热强钢热浸镀Al-Si-Re抗高温氧化腐蚀性能研究[D].哈尔滨:哈尔滨工程大学,2004:4,11-12,41,51,57-58.
    [27]顾国成,吴文森.钢铁材料的防蚀涂层[M].北京:科学出版社,1987:8-9,166,167.
    [28]楼翰一.几种镍基高温合金铝、铬涂层的抗热腐蚀性能[J].中国腐蚀与防护学报,1985,5(4):291-297.
    [29]王永贵.K4104合金渗铝涂层抗高温氧化性能研究[D].哈尔滨:哈尔滨工程大学,2006:10.
    [30]胡传忻,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社,2000:172.
    [31]朱丹.航空制造工程手册热处理[M].北京:航空工业出版社,1979:452.
    [32]Wang Deqing, Shi Ziyuan, Zou Longjiang. A liquid aluminum corrosion resistance surface on steel substrate[J]. Applied Surface Science,2003,214(1-2):304-311.
    [33]刘邦津.钢材的热浸镀铝[M].北京:冶金工业出版社,1995:15-18.
    [34]武汉材料保护研究所.钢铁化学热处理金相图谱[M].北京:机械工业出版社.1980:70,71-72.
    [35]Bouche K, Barbier F, Coulet A.Intermetallic compound layer growth between solid iron and molten aluminium[J]. Materials Science and Engineering,1998(249):167-175.
    [36]张伟.钢热浸镀铝层的组织结构和稀土镧的行为研究[D].西安:西安理工大学,2006:3.
    [37]牛焱,刘刚,吴维史.铂改性铝化物涂层的高温氧化[J].腐蚀科学与防护技术,2000,12(2):63.
    [38]宋复斌,张琦,武昕.铝硅涂层循环氧化的计算机模拟[J].腐蚀与防护,2002,23(12):523-525.
    [39]杨忠林.硅对抑制涂层“氧化缺口”破坏的作用[J].材料工程,1994,3:34-37.
    [40]杨忠林,莫龙生,蔡玉林等.铝-硅涂层防护性能的研究[J].中国腐蚀与防护学报.1981,4:28-37.
    [41]任公年.Al-Si-Y涂层的抗高温氧化和耐热腐蚀性能研究[D].沈阳:沈阳工业大学,2008:25.
    [42]陈江涛.转炉烟罩冷却水管失效机理及新型防护涂层研究[D].武汉:武汉理工大学,2005:47-48.
    [43]高丽.K438合金渗铝涂层抗高温氧化性能的研究[D].哈尔滨:哈尔滨工程大学,2004:20,30-31.
    [44]任重.锅炉用高铝钢的氧化性能研究[D].哈尔滨:哈尔滨工程大学,2008:3-4.
    [45]刘杰.超音速电弧喷涂FeCrAl涂层组织及性能研究[D].太原:太原理工大学,2009:37-38.
    [46]Khalid F A, Hussain N, Shahid K A. Microst ructure and morphology of high temperature oxidation in superalloy[J]. Mater Sci Eng A,1999,265:87.
    [47]吴广君.实验室模拟锅炉水冷壁高温腐蚀的热分析动力学研究[D].浙江:浙江大学,2005:16.
    [48]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,1988:86-88,95,192.
    [49]刘道新.材料腐蚀与防护[M].西北:西北工业大学出版社,2005:45-50.
    [50]孙杰.不同工艺制备Al-Si涂层的抗高温氧化性能研究[D].哈尔滨:哈尔滨工程大学,2007:21-25.
    [51]娄谨.不同成分Al-Si涂层的抗氧化性能研究[D].哈尔滨:哈尔滨工程大学,2005:18-21.
    [52]宋妮.MA法制备Fe-Cr-W-Ti-Y2O3粉末工艺及烧结体性能研究[D].武汉:华中科技大学,2008:19,40-42.
    [53]姚振华. Ti(C, N)基金属陶瓷高温抗氧化行为研究[D].武汉:华中科技大学,2007:28-31.
    [54]刘琦云.纺织器材机件的新型修复技术[J].纺织器材,1998,25(1):50.
    [55]任盛金.镍基涡轮叶片的料浆渗铝涂层试验[J].航空航天,1983,4:61-68.
    [56]苏炎斌,胡存羑.化学热处理与光良热处理工艺[M].北京:国防工业出版社,1984:60-62,63.
    [57]黄守伦.实用化学热处理与表面强化新技术[M].北京:机械工业出版社,2002:206.
    [58]J.H.Selverian, A.T.Marder. The effects of silicon on the reaction between solid iron and liquid 55wt%Al-Zn baths[J]. Metallurgical Transaction A,1989,20A(3): 543.
    [59][苏]Π.T科洛梅采夫著.马志春译.耐热扩散涂层[M].北京:国防工业出版社,1988:218.
    [60]刘长松.火焰喷涂合成TiC-Fe涂层的热力学分析[J].金属学报,2000,36(1):62-66.
    [61]范雄.X射线金属学[M].北京:机械工业出版社,1981:109.
    [62]Heumann T, Dittrich N A. Structure character of the Fe2Al5 intermetallics compound in hot dip aluminizing process[J]. Z Metallk,1959,50:17-625.
    [63]L.N.Larikov et al. The Investigation on microstruction and properties of inter metallic in Fe-Al system prot[J]. Coatings on Metals,1971,3:66.
    [64]顾国成,刘邦津.热浸镀[M].北京:化学工业出版社,1988:74-75,86-87.
    [65]钢铁研究院.合金钢手册上册第二分册[M].北京:冶金工业出版社,1974:176.
    [66]邸柏林.论钢铁热浸镀铝技术在我国发展[J].材料保护,1994,9:22.
    [67]刘邦津.钢材的热浸镀铝[M].北京:冶金工业出版社,1995:82.
    [68]吴元康.钢铁件热浸铝工艺的改进与发展[J].材料保护,1994,1:7.
    [69]A.G.Evans, Stress redistribution in ceramic/metal multilayers containing ctacks[J]. Acta Metallurgica et Materialia,1995,43(6):2137-2142.
    [70]郑毅然,李国喜,谢鹏飞.1Cr18Ni9Ti热浸镀铝扩散层的抗氧化[J].中国腐蚀与防护学报,2001,21(4):210-214.
    [71]Vanvalzah J R, Eaton H E. Cooling rate effects on the tetragonal to monoclinic phase transformation in aged plasma-sprayed yttria partially stabilized zirconia[J]. Surface and Coatings Technology,1991,46:289.
    [72]杨世伟,刘海涛,朱玲斌等.K4104合金渗A1-Si涂层抗高温氧化性能研究[J].中国腐蚀与防护学报,2006,26(6):371-375.
    [73]李永祚.K-3合金Al-Si涂层中Si的存在形式及分布[J].金属学报,1984,20(2):371-375.
    [74]杨忠林,余霞飞.硅的分布对铝-硅涂层抗热腐蚀性能的研究[J].航空材料学报,1994,14(2):94-103.
    [75]郑学进,曹铁梁,石声泰.熔盐电解共渗铝硅及渗层的抗高温腐蚀性能[J].中国腐蚀与防护学报,1986,6(4):249-254.
    [76]李莉.热浸镀稀土铝合金不锈钢的抗高温氧化性能[D].哈尔滨:哈尔滨工程大学,1999:55-56.
    [77]朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995:343-344,347.
    [78]Muller J, Schierling M, Zimmermann E et al. Chemical vapor deposition of smooth-Al2O3 films on nickel base superalloys as diffusion barriers[J]. Surface and Coatings Technology,1999,120-121:16-21.
    [79]Yashiharu Waku. Mechanical properties and thermal stability of oxide eutectic composites at high temperatures [J].Mater.Manuf.Proc.,1998,13(6):841-858.
    [80]杨世伟,吴锦维,崔李苹.奥氏体钢热浸镀铝抗高温氧化腐蚀性能的研究[J].哈尔滨工程大学学报,2003,24(2):198-200.
    [81]翟金坤.金属高温腐蚀[M].北京:北京航空航天大学出版社,1994:101.
    [82]Seal S, Kuiry S C, Leyda A. Studies on the surface chemist ry of oxide films formed on IN-738 LC superalloy at elevated temperatures in dry air[J].Oxidation of Metals,2001,56(5-6):583.
    [83]刘秀晨,安成强等.金属腐蚀学[M].北京:国防工业出版社,2002:259-262,267-269,293.
    [84]中国腐蚀与防护学会.金属腐蚀手册[M].上海:上海科学技术出版社,1987:11.
    [85]Moon C O, Lee S B. Analysis on failures of protective-oxide layers and cyclic oxidation[J]. Oxidation of Metals,1993,39:1-13.
    [86]Sun J H, Chang E, Chao C H, Cheng M J. The spalling modes and degradation mechanism of ZrO2-8wtY2O3/CVD-Al2O3/Ni-22Cr-10Al-Ly thermal-barrier coatings[J]. Oxidation of Metals,1993,40:465-473.
    [87]谢东柏,王福会.热障涂层研究的历史与现状[J].材料导报,2002,14:7-10.
    [88]B.A.Movchan, I.S.Malashenko, K.Yu.Yakovchuk. Two-and three-layer coatings produced by deposition in vaccum for gas turbine blade protection[J]. Surface and Coatings Technology,1994,67:55-63.
    [89]Schmitt-Thomas Kh G, Haindl H. Fu D. Modifications of thermal barrier coatings (TBCs) [J]. Surface and Coatings Technology,1997,94-95:149-154.
    [90]B.A.Pint, I.G.Wright, W.Y.Lee. Substrate and bond coat composition:factors affecting alumina scale adhension[J].Materials Science and Engineering A,1998, 245(2):201-211.
    [91]Brindley W J. Miller R A. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys[J]. Surface and Coatings Technology, 1990,43-44:446-457.
    [92]杨松岚,王福会.NiAl金属间化合物高温氧化的研究进展[J].腐蚀科学与防护技术,2002,14(2):109-112.
    [93]J.A Nesbitt, EJVinarcik C.A Barrett。Diffusional transport and predicting oxidative failure during cyclic oxidation of β-NiAl alloys[J]。Materials Science and Engineering,153A(1-2):561-566.
    [94]李俊刚,吕迎,金云学等.加热温度对纯钛氧化增重及表面形貌的影响[J].热处理技术与装备,2007,28(5):31-32,37.
    [95]国家技术监督局.钢的抗氧化性能测定方法[S].中国标准出版社,1991:520-524.
    [96]国防科学技术工业委员会.钢及高温合金的抗氧化性测定试验方法[S].中国航空集团公司301所,2000:1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700