基于强度稳定综合理论的船体结构极限强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
历史上结构的强度理论和稳定理论是彼此分割,毫无联系的。80年代初期罗培林提出的强度稳定综合理论(CTSS)将结构的强度理论和稳定理论有力的综合到一起,并且运用该理论解决了耐压球壳极限强度预测的世界著名难题。目前,该理论正在完善之中,且应用的领域仍局限在耐压球壳方面。有监于此,本文以CTSS为研究对象,主要完成以下几方面的工作内容:
     (1)通过钢材HT32和Q235的具体应用,说明采用PL模型描述材料的应力—应变关系、应力—切影应变关系和切线模量因子曲线的适用性,由PL模型导出的比例极限算式,可以快速准确的求出材料比例极限的数值,为材料比例极限的确定提供了有效方法。
     (2)提出简易PL模型,并且推导出简易PL模型与Jobnson—Ostenfeld的塑性修正公式以及规范公式具有相同的数学表达形式。
     (3)通过对梁柱复杂弯曲综合因子n的具体解算表明,综合因子n的取值可以将结构的强度破坏和稳定破坏有力的综合到一起,综合因子n的解析式不仅证明了罗培林提出的结构“强度稳定综合理论”的正确性,也为CTSS的可行性指明了道路。
     (4)通过结构力学中辅助函数算法印证了结构“强度稳定综合理论”的正确性。
     (5)通过对矩形板结构综合因子n解析式的类比分析,将CTSS拓展到船体结构极限强度计算上,并且与有限元法、经验公式和试验等方法作对比分析。
     (6)改进了加筋板极限强度破坏模式的选取方法,探讨了该选取方法在板架结构极限强度计算领域应用的可行性。
     (7)对弹性基础梁结构的综合因子N进行了修正解算,完善了CTSS在耐压壳结构极限强度计算中的理论公式,并且与试验结果作对比分析。
     本文系统论述了CTSS的计算原理,弥补了CTSS在综合因子n解析式上的不足,并将其拓扩展到船体结构极限强度的计算上,为船体结构极限强度的预测提供了一种新的计算方法,该方法与有限元法、经验公式和试验等方法的比较结果表明,CTSS在船体结构极限强度计算上的推广是成功的。
The stability theory is completely separated from the strength theory in history. In theearly1980s,combined theory of strength and stability(CTSS) which is put forward by LuoPeilin shows that the stability theory is powerfully integrated into the strength theory. And hesolved the world-famous problem of ultimate strength prediction on the pressure sphericalshell by using it.At present, CTSS is still being improved. And its application areas are limitedin terms of pressure spherical shell. This thesis aims at improvement of CTSS, mainlyconsists of the following aspects:
     (1) It is applicable to use the PL model to describe the stress–strain curve, stress–shear strain curve and tangent modulus factor curve of the material such asSteel HT32and Q235.The proportional limit formula which is exported by the PL model,can calculate the value of the material proportional limit quickly and accurately. Itprovides an effective method for the determination of material proportional limit.
     (2) The simple PL model is put forward and it is concluded that the simple PL model isconsistent with the Jobnson—Ostenfeld’s plastic correction formula and rules.
     (3) Value calculations of n-factor show that the stability theory is powerfully integrated intothe strength theory. The analytical formulas of n-factor prove that combined theory ofstrength and stability(CTSS) which is put forward by Luo Peilin is correct. It Also pointsthe way to the feasibility of CTSS
     (4) CTSS is also confirmed by auxiliary function method in the classical structural mechanics.
     (5) Through n-factor’s analogy analysis of plate, CTSS was able to expand on the calculationof the ultimate strength of hull structure. And compares the project calculation results withthe finite element method, empirical formula and test.
     (6) Improves the selection of the ultimate strength failure mode of stiffened plate anddiscusses the feasibility that this selection method is applied to ultimate strengthcalculation of ship grillage structure.
     (7) Through N-factor’s correction calculation of elastic foundation beam structure, the theoretical formula is improved on ultimate strength calculation of the pressure shell. Andcompares the calculation results with test.
     This thesis systematically discusses calculation principles of CTSS. Through n-factoranalogy analysis of plate, CTSS was able to expand on the ultimate strength calculation ofhull structure. This is a new calculation method for the ultimate strength prediction of hullstructure. Comparing the project calculation results from the finite element method, empiricalformula and test, the application and extension of CTSS on hull structure are successful.
引文
[1]黎顺生.加筋板极限强度计算与分析.武汉理工大学硕士论文.2005
    [2] Smith C S. Influence of local compressive failure on ultimate longitudinal strength of aship hull[A].PRADS77(C).1977,:73-79.
    [3]Ueda Yukio, Sherif M.H. Rashed, Jeom Kee Paik. An incremental galerkin method forplates and stiffened plates[J] Computers&Structures, Volume27, Issue1,1987, Pages147-156
    [4]Jeom Kee Paik, Anil K. Thayamballi, Do Hyung Kim.An analytical method for theultimate compressive strength and effective plating of stiffened panels[J]Journal ofConstructional Steel Research, Volume49, Issue1, January1999, Pages43-68
    [5]Jeom Kee Paik, Anil K. Thayamballi, Sang Kon Lee, Sung Jun Kang. A semi-analyticalmethod for the elastic-plastic large deflection analysis of welded steel or aluminumplating under combined in-plane and lateral pressure[J] Thin-Walled Structures, Volume39, Issue2, February2001, Pages125-152
    [6]徐向东,崔维成.加筋板格屈曲及极限强度分析[J]中国造船.1999(2):68-76
    [7]陈铁云,陈伯真.船舶结构力学[M].国防工业出版社,1984.12
    [8]M.A. Crisfield.A combined Rayleigh-Ritz/finite element method for the nonlinear analysisof stiffened plated structures[]Computers&Structures, Volume8, Issue6, June1978,Pages679-689
    [9]Madhujit Mukhopadhyay, Abhijit Mukherjee.Finite element buckling analysis of stiffenedplates[J] Computers&Structures, Volume34, Issue6,1990, Pages795-803
    [10] Jeom Kee Paik, Jung Kwan Seo.Nonlinear finite element method models for ultimatestrength analysis of steel stiffened-plate structures under combined biaxial compressionand lateral pressure actions—Part I: Plate elements[J].Thin-Walled Structures,August-September2009, Volume47, Issues8-9, Pages1008-1017
    [11] Jeom Kee Paik, Jung Kwan Seo. Nonlinear finite element method models for ultimatestrength analysis of steel stiffened-plate structures under combined biaxial compressionand lateral pressure actions—Part II: Stiffened panels[J].Thin-Walled Structures,August-September2009, Volume47, Issues8-9, Pages998-1007
    [12] Shengming Zhang. Imtaz Khan Buckling and ultimate capability of plates and stiffenedpanels in axial compression[J]. Marine Structures,2009(22):791-808
    [13] Yukio Ueda, S.M.H. Rashed, J.K. Paik.Buckling and ultimate strength interaction inplates and stiffened panels under combined inplane biaxial and shearing forces[J]Marine Structures, Volume8, Issue1,1995, Pages1-36
    [14] Ueda Y, Rashed S M H, Paik J K. Plate and stiffened plate units of the idealizedstructural unit method-under in-plane loading[J]. Journal of the Society of NavalArchitects of Japan,1984,156:366-376
    [15] Ueda Y, Rashed SMH. Advances in the application of ISUM to marine structures[C].Proc. Intl. Conf. On Advances in Marine Structure-s, Dunfirmline, U.K.,1991:628-649
    [16] Bai Y, Bendiksen E, et al. Collapse analysis of ship hulls[J] Marine Structures, Volume6,Issues5–6,1993, Pages485-507
    [17]王伟,吴梵.加筋板整体屈曲临界应力计算与分析[J]中国舰船研究,2011.06:第6卷(第3期):22~27
    [18]郑际嘉.矩形加筋板的有限元分析及程序[J]华中工学院学报,1980.12:30~44
    [19]张晓丹,杨平.加筋板在轴向压力下的极限强度研究[J]武汉理工大学学报(交通科学与工程版),2011.04:第35卷(第2期):305~2312
    [20] Tanaka Y,, Endo, H. Ultimate strength of sti!ened plates with their sti!eners locallybuckled in compression [J]Journal of the Society of Naval Architects of Japan Volume:1641988456–67
    [21]MR Horne, R Narayanan.ULTIMATE CAPACITY OF LONGITUDINALLYSTIFFENED PLATES USED IN BOX GIRDERS[A]ICE Proceedings, Volume61, Issue2,01June1976, pages253–280
    [22] D Faulkner. Compression tests on welded eccentrically stiffened plate panels [J]SteelPlated Structures,1977
    [23]Paik J K, Thayamballi A K, Kim B J. Advanced ultimate strength formulations for shipplating under combined biaxial compression/tension, edge shear, and lateral pressureloads. Marine Technology,2001,38(1):9-25
    [24] Jeom Kee Paik.Empirical formulations for predicting the ultimate compressive strengthof welded aluminum stiffened panels[J]Thin-Walled Structures, February2007, Volume45, Issue2, Pages171-184
    [25] Paik Jeom Kee, Andrieu Celine, Cojeen H. Paul.Mechanical Collapse Testing onAluminum Stiffened Plate Structures for Marine Applications[J]. Marine Technology,October2008, Volume45, Number4, pp.228-240(13)
    [26] Murotsu Y, Okada H, Hibi S. A system for collapse and reliability analysis of shipstructures using a spatial element model [A]. Marine Structures,1995:133-149
    [27] Hansen A M. Strength of midship section[J]. Marine Structures,1996,9:471-494
    [28] Paul H. Wirschinga, James Ferensicb, Anil Thayamballic.Reliability with respect toultimate strength of a corroding ship hull[J]Marine structures, Volume10, August1997,Issue7, Pages501-518
    [29]Eirik Byklum, J rgen Amdahl.A simplified method for elastic large deflection analysis ofplates and stiffened panels due to local buckling[J]Thin-Walled Structures, November2002,Volume40, Issue11, Pages925-953
    [30] Caldwell J B. Ultimate longitudinal strength[J].Trans. RINA.1965,107,107:417-430.
    [31] Faulkner D. A review of effective plating for use in the analysis of stiffened plating inbending and compression. J. ship Research,1975,19:1-17
    [32] Nishihara S. Analysis of ultimate strength of stiffened rectangular plate(4th report)-on theultimate bending moment of ship hull girders[J].Journal of the Society of NavalArchitects of Japan.1983,154,154:367-375.
    [33] Jeom K. Paik and Alaa E. Mansour.A simple formulation for predicting the ultimatestrength of ships[J]Journal of Marine Science and Technology,1995
    [34] JM Gordo, C.Guedes Soares,D.Faulkner.Approximate assessment of the ultimatelongitudinal strength of the hull girder[J].Journal of ship research, March1996,Vol.40,No.1,pp.60-69
    [35]杨平.船体结构极限强度及破损剩余强度的研究[D].武汉理工大学博士学位论文,2005(6)
    [36]白宝强.船体梁极限强度的非线性有限元分析[D].哈尔滨工程大学硕士论文,2009
    [37]黄震球,陈齐树,骆子夜.船体梁的极限纵强度[J]华中理工大学学报,1996.7:第24卷(第7期):1-5
    [38]黄震球,陈齐树,骆子夜.循环弯曲载荷下船体梁的极限纵强度[J]中国造船,1996.8:第3期:87-95
    [39] Kell C O. investigation of structural characteristics of destroyers Preston and Bruce, partⅠ-description Trans. SNAME,1931,39:35-64
    [40] Kell C O. investigation of structural characteristics of destroyers Preston and Bruce, partⅡ-Analysis of data and results Trans. SNAME,1940,48:125-172
    [41] Hoffmann G H. Analysis of Sir John Bile’s experiment on HMS wolf, in the light ofPiazker’s theory, Trans. Inst. Naval Arch,1925,67:41-65
    [42] Lang DW, Warren W G Structural strength investigation of destroyer Albuera Trans. Inst.Naval Arch.1952,94:243-286
    [43] Sugimura T, Nozaki M, Suzuki T. Destructive experiment of ship hull model longitudinalbending. J. Soc. Naval Arch. Of Japan,1966,119:209-220
    [44] Dow R S. Testing and analysis of l/3-scale welded steel frigate model. Proc. of Intl. Conf.on Advances in Marine Structures, Dunfermline, U.K,1991:749~773
    [45] Endo H, Tanaka Y, Aoki G, et al Longitudinal strength of the fore body of ships sufferingfrom slamming. J. Soc. Naval Arch. of Japan,1988,163:322-333(in Japanese)
    [46] Yao T, Fujikudo M, Yanagihara D, et al. Buckling collapse strength of ship carrier underlongitudinal bending (1st report)-Collapse test on l/10-scale hull girder model under purebending. J. Soc. Naval Arch. Of Japan,2002,191:191-220(in Japanese)
    [47] Dowling P J, Moolani F M. The effect of shear lag on the ultimate strength of box girder.Proc Intl. Conf. on steel structures, London,1976:108-147
    [48]Reckling K A. Behaviour of box girders under bending and shear. Proc. of ISSC79, Paris,112.46~2.49
    [49] Ostapenko A. Strength of ship hull girders under moment, shear and torque. Proc. ofSymp. Extreme Loads Response, Arlington,Virginia, U. S. A.,1981:149~166
    [50]徐向东,崔维成等.箱型梁极限承载能力试验与理论研究[J].船舶力学,2000.10,第四卷(第五期):36~43
    [51]许明财.逐步破坏法计算船体梁总纵极限强度[D].武汉理工大学硕士论文.2003.05
    [52]何福志,万正权.船体结构总纵极限强度的简化逐步破坏分析[J].船舶力学,2001.05,第五卷(第五期):21~34
    [53]谢天.基于全寿命周期的船体极限强度计算方法研究[D].上海交通大学硕士论文2010.2
    [54]肖锋,吴剑国.基于CSR的散货船极限强度分析[J].船舶,2010(2):30~34
    [55] Asamchak J C. A Rapid Technigue for Predicting the General Instability of ShipGrillages with Elastically Constrained Edges[R]. NSRDC, No.4604, February,1975.
    [56] Mansour A E. Gross Panel Strength under Combined Loading[R]. Ship StructureCommittee, SSC-270,1977.
    [57]张圣坤.船舶板格与板架的弹塑性屈曲[J].中国造船,1979,(2):63~81.
    [58]吴荣宝.平面板架弹塑性稳定性解析[J].舰船科学技术,1982,(12):45~58.
    [59]周国华,束长庚等甲板板架稳定性计算方法[J]舰船科学技术1979.11:1~33.
    [60]舒恒煜用加筋板条元法分析甲板板架稳定性[J]武汉造船.1984.12:6~16
    [61]吴广明用ANSYS进行甲板板架稳定性计算[J]中国舰船研究2007.04:5~8.
    [62]谭林森等用样条有限元法分析船体甲板板架的稳定性[J]华中工学院学报.1984.4:137~144.
    [63]谭林森甲板板架稳定样条有限元分析[J]武汉造船.1983.05:3~13.
    [64]俞铭华船舶板架稳定性研究进展[J]华东船舶工业学院学报2000.8:20~25
    [65]马俊园.甲板板架破损后的稳定性研究[D].哈尔滨工程大学硕士论文,2006.12
    [66]丁庆云.关于纵向构架舰船上甲板板架的稳定性设计[J]舰船科学技术,1992(12):25~30:1~6
    [67]张寿富.汽车轮渡载车甲板板架计算[J]江苏船舶,1982(11):1~6
    [68]周国华.钢材的材料性能与柱子曲线.舰船性能研究.1979.12
    [69] Gerard G.&Becker H. Handbook of Structure Stability Part Ⅰ-Buckling of Flat Plates.NACA-TN7381.New York University N.Y.1957
    [70]罗培林.承压杆件、园环、园简壳和球壳承载能力的分析与计算[J].船工科技,1976,(02):3~70
    [71]罗培林.厚球壳的极限载荷(均匀压力)计算与模拟实验方法的改进[J].船工科技,1976(02):73~85
    [72]罗培林.用极限分析方法分析梁柱和球壳的稳定性[J].哈尔滨船舶工程学院学报,1981(第二期):21~50
    [73]罗培林.应力应变六参数方程及其在结构稳定性的计算和实验中的应用[J].中国造船,1981(3):66~74
    [74]罗培林.材料应力应变图的相似性及其表达形式和应用[J].哈尔滨船舶工程学院学报,1984(第一期):9~22
    [75]罗培林,佟福山,张春.切线模量定律和比例极限定律的关系和应用[J].机械强度,1986:6~60
    [76]罗培林.结构强度稳定综合理论的梗概和意义.机械强度,1986:56-60
    [77] Luo Peilin(1987).A Combined Theory of Strength and Stability and Its Signification,Proc. of the Sixth Int. Offshore Mech. and Arctic Eng.Symp.,Vol2,475-492P,EIM8707-047714
    [78] Luo Peilin,Luo Hongwu,Tong Fushan. The influence of prebuckling deformations andstresses on the buckling of spherical shell.IJOPE.1991,14,1(4):12.E193-140796
    [79] Luo Peilin, and Others(1992). Proportional Limit Law of Material and StrengthUtilization Ratio Function, Pro. of the Second Int. Offshore and Polar Eng. Conference,San Francisco, USA, June,500-507P,EI92-146850
    [80] Luo Peilin(1994). Axisymmetric and Non-Axisymmetric Buckling of CircularCylindrical Shells, The Proc. of the Special Offshore Symp China, Beijing,April:16~18
    [81]罗培林.材料比例极限定律和结构平衡状态图的显示.中国造船编辑部论文集,1992,山海关
    [82]罗洪武,罗培林.比例极限对数模型和球壳稳定系数[J]固体力学学报,1997,(02):153~157
    [83]罗洪武,罗培林.材料的对数型比例极限定律和球壳稳定系数.中国钢协与海洋钢结构协会论文集,1996
    [84] Luo PeiLin. Relationship Between Critical Stress Coefficients of Buckling and Fractureand Its Signification. Proceedings of the Sixth Pacific Structural Steel Conference,Beijing China(2001):251~259
    [85] Luo PeiLin,Liu KangLin,Luo HongWu. Application of Combined Theory of Strengthand Stability to Fracture Mechanics. Proceedings of the Sixth International Offshore andPolar Engineering Conference, Los Angeles USA(1996):356~361
    [86]罗培林.Hooke′s Law(胡克定律)的革新与“强度稳定综合理论”的创建和发展[J].哈尔滨工程大学学报,2008(07):641~650
    [87]罗培林.“胡克(Hooke)定律”的革新与理论和实验数据的格式化整理和应用[J].钢结构工程研究⑦《钢结构》2008增刊:543~548
    [88]石德新,罗培林.加肋圆柱壳强度稳定综合问题的计算原理和方法.中国造船工程学会船舶力学委员会第五届结构应力学术讨论会,1988
    [89]石德新结构承压能力的模型实验原理和方法[D].哈尔滨工程大学博士论文,1990.7
    [90]石德新.梁柱问题和压杆第二类稳定问题的共性[J].哈尔滨工程大学学报,1991.3,第12卷(第一期):21~30
    [91]石德新,王晓天.潜艇强度[M]哈尔滨工程大学出版社,1997.3:21
    [92]石德新.强度利用率函数与多条σ-ε曲线的一致性.中国造船学会船舶结构应力分析学组1984年专题讨论会论文
    [93]罗培林,石德新.建议在钢结构设计规范中应用强度利用率函数.钢结构,1993:68~71
    [94]石德新,罗培林,张淑茳,江世媛.结构承压能力的模型实验原理[J].哈尔滨工程大学学报,1996(01):1~7
    [95]佟福山.球形薄壳承压能力的研究与应用[D].哈尔滨工程大学博士论文.1995.12
    [96]石德新,江世媛,张淑拄.潜艇加肋圆柱壳壳板轴对称破坏模式的极限状态分析[J].哈尔滨工程大学学报,1995.12,第16卷(第四期):14~20
    [97]罗培林,佟福山.贯流式机组泡体承压能力的理论分析.哈船院科技报告,1993
    [98]罗培林,佟福山,韩芸.屈曲临界应力与疲劳寿命的关系.中国钢结构协会海洋钢结构分会2002年学术会议论文集,2002.5
    [99]罗培林,佟福山,韩芸.切线模量理论的新论证和新应用.钢结构工程研究④.钢结构增刊,2002
    [100]罗培林,张志平,佟福山.材料衍生比例定律的内涵及用途.钢结构工程研究⑤.钢结构增刊,2004.8
    [101]罗培林,佟福山.大深度新型水下耐压结构的研究——球壳承受静水压力的能力.船舶工业科技报告.1991.
    [102]罗培林.《强度稳定综合理论》讲授预案(2)材料“比例定律”的内涵与应用[A]钢结构工程研究⑧——中国钢协结构稳定与疲劳分会第12届(ASSF-2010)学术交流会暨教学研讨会论文集[C],2010
    [103]罗培林.《强度稳定综合理论》的机理与算式[A]钢结构工程研究⑧——中国钢协结构稳定与疲劳分会第12届(ASSF-2010)学术交流会暨教学研讨会论文集[C],2010
    [104]刘康林.结构失效分析的强度稳定综合理论法研究[D].哈尔滨工程大学博士论文,1996.6
    [105]刘康林,罗培林.截顶圆锥壳屈曲载荷的灰色预测[J]系统工程,1997,(04):33~36
    [106]戴光,刘康林,齐文浩.结构断裂强度研究的切线模量因子法[J]大庆石油学院学报,1999,(02):53~56
    [107]张志平.裂纹扩展的简明机理和断裂力学中的切线模量理论[D].哈尔滨工程大学硕士论文.2003.1
    [108]韩芸.疲劳寿命在强度稳定综合理论中的运算[D].哈尔滨工程大学硕士论文,2003.1
    [109]韩芸,罗培林,佟福山.切线模量理论的内涵和用途的扩展[J]中国造船,2008,(03):99~103
    [110]张志平.广义切线模量理论[D].哈尔滨工程大学博士论文.2005(3)
    [111]熊志鑫,佟福山.钛合金深潜器耐压球壳极限强度的切线模量因子算法[J].哈尔滨工程大学学报,2010.2:178~181
    [112]熊志鑫,张志平,佟福山.材料衍生比例定律的建立及其在结构屈曲断裂非线性失效中的应用[J].船舶力学,2011,(04):377~382
    [113]熊志鑫,佟福山.应变疲劳寿命的强度稳定综合理论法研究[J].哈尔滨工程大学学报,2010,(11):1456~1464
    [114]熊志鑫,佟福山,罗培林.金属材料力学性能的相似性及应用[A]钢结构工程研究⑧——中国钢协结构稳定与疲劳分会第12届(ASSF-2010)学术交流会暨教学研讨会论文集[C],2010
    [115]熊志鑫,佟福山,冯亮.材料衍生比例定律在应变疲劳寿命预测中的应用[A]数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C],2010
    [116]熊志新.基于强度稳定综合理论的薄板研究[D].哈尔滨工程大学硕士论文,2008
    [117]宋晓龙.强度稳定综合理论在加筋板结构中的应用[D].哈尔滨工程大学硕士论文,2008
    [118]冯亮.强度稳定综合理论在加筋板结构承载能力中的应用[D].哈尔滨工程大学硕士论文,2009
    [119]冯亮,佟福山.基于强度稳定综合理论的加筋板极限强度分析[J].哈尔滨工程大学学报,2011.12: Vo1.32No.12:1539~1543
    [120]冯亮,佟福山.梁柱复杂稳定性的非线性研究及其扩展[J].华中科技大学学报.已录用
    [121]冯亮,佟福山.基于强度稳定综合理论的深海潜器耐压圆柱壳极限强度解算[J].哈尔滨工程大学学报,2012.2: Vo1.33No.2:150~154
    [122]冯亮,佟福山.基于简易切线模量法的中厚简支板与球壳极限强度研究[J].武汉理工大学学报.已录用
    [123]周海仲船体结构极限强度的非线性有限元分析[D].哈尔滨工程大学硕士学位论文,2010(1)
    [124]郭昌捷,任刚.FPSO船体梁极限强度分析与有效生命期预报[J].大连理工大学学报,2004.12:839~843
    [125]雒高龙,张淑茳,任慧龙.船用钢应力—应变关系的数学表达及其在计算加筋板屈曲应力中的应用[J].造船技术,2006(第三期):13~18
    [126]中国船级社.钢质海船入籍规范[M].人民交通出版社,2009
    [127]周承倜.弹性稳定理论[M].四川人民出版社,1981:107,147
    [128]俞铭华等.中厚度钛合金板受压稳定性试验及有限元分析[J].华东船舶工业学院学报(自然科学版),2005.8:第19卷(第4期):28~31
    [129]束长庚,周国华.船舶结构的屈曲强度[M].国防工业出版社,2003:84~85
    [130]崔虎威.组合载荷下加筋板非线性极限强度计算分析与性能研究[D].武汉理工大学硕士论文2011.5
    [131]李卫华.板架结构稳定性综合分析及其计算程序系统的研制[D].武汉:武汉理工大学,2002:81.
    [132]刘彦峰.密加筋板结构强度和稳定性的力学性能分析与结构设计[D].武汉理工大学硕士论文2006.4
    [133]许辑平.潜艇强度[M].国防工业出版社,1980.12:
    [134]谢金新基于参数化有限元的潜水器结构优化设计[D]哈尔滨:哈尔滨工程大学,2010:11~44
    [135]王晓天等.大型潜艇总稳定性计算中出现异常特性的研究[J].中国造船,1990(3):36~46
    [136]王晓天等.环肋圆柱壳稳定特性与破坏模式的探讨[J].哈尔滨工程大学学报,1997.7,第18卷(第三期):13~21
    [137]王晓天等.不同纵横均匀外压作用下环肋圆柱壳稳定性分析[J].哈尔滨工程大学学报,2007.10,第28卷(第10期):1079~1083
    [138]李辉等.热处理对Ti_6Al_4VELI合金厚板组织与性能的影响[J].稀有金属,2005.12:第29卷(第6期):841~844
    [139]李良碧等.深海载人潜水器耐压球壳的非线性有限元分析[J].中国造船,2005.12:第46卷(第4期):11~17
    [140]刘涛.深海载人潜水器耐压球壳设计特性分析[J].船舶力学,2007.04:第11卷(第2期):214~220
    [141]孙丽萍.船舶结构有限元分析[M].哈尔滨工程大学出版社,2004.8
    [142]聂武,孙丽萍.船舶计算结构力学[M].哈尔滨工程大学出版社,1999
    [143]余友谊.受损加筋板极限强度及可靠性分析[D].武汉理工大学硕士论文2004.5
    [144]王芳.具有裂纹损伤的船舶结构剩余极限强度分析[D].上海交通大学硕士论文.2007
    [145]王燕舞.考虑腐蚀影响船舶结构极限强度研究[D].上海交通大学硕士论文.2008
    [146]熊建武,郭日修,船舶结构剩余强度的研究进展[J].海军工程学院学报,1999:第二期:9~13
    [147]贺双元,吴卫国.液化天然气船船体极限强度分析[J].中国舰船研究,2008(6):30~33
    [148]李陈峰,任慧龙.外载荷作用下的船体梁极限弯矩[J].哈尔滨工程大学学报,2010(1):26~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700