船用中厚钢板激光弯曲成形过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板材激光弯曲成形技术是利用激光束扫描金属板材时产生的热应力使板材成形的新工艺,在汽车、造船和航空等领域具有广阔的应用前景。激光束扫描板材时,在照射区域和邻近区域产生强烈的温度梯度,使材料产生非均匀的热应力分布,当热应力超过材料的屈服点时,材料发生塑性变形。
     本文使用有限元软件MSC.Marc对板材激光弯曲成形过程进行数值模拟。综合考虑材料的热物性和力学性能随温度的变化等因素,建立了三维热力耦合模型分析船用中厚钢板激光弯曲成形过程,计算成形过程的温度和应力应变,并预测钢板最后的弯曲角度。
     为了验证数值模拟结果,对船用中厚钢板激光弯曲成形过程进行了实验研究。分别选用不同厚度、不同扫描速度和不同激光功率对金属板材激光弯曲成形进行参数研究,对温度和弯曲角度的变化进行实时测量。弯曲角度受材料力学性能、热物性以及工艺参数等因素的影响,随激光束扫描次数的增加而增大,是激光功率和扫描速度的函数。模拟结果与实验结果符合较好,从而验证了模型的适用性。
Laser forming is a promising technology in manufacturing, such as in the automobile, shipbuilding, and aerospace industries. The process utilizes the thermal stress induced by laser irradiation to form sheet metal into different shapes. The local nature of laser irradiation yields high temperature gradients between the irradiated surface and the neighboring material. The temperature distribution makes the material to expand non-uniformly, thus leading to non-uniform thermal stresses. When the thermal stresses exceed the yield point of the material, the material deforms plastically.
    The laser forming process has been simulated numerically. For the analysis, the finite element code 'MSC.Marc' is used. A 3-D FEM simulation has been carried out, which includes a coupled thermal-structural analysis accounting for the temperature dependency of the thermal and mechanical properties of the materials. The proposed model is capable of calculating the time-dependent temperatures, stresses and strains during the laser forming process. It can also predict the final bending angle of shipbuilding plates.
    An experiment was carried out to valid the numerical simulation. The sheet metal of different thickness had been performed for different scanning speeds and laser powers. The measurement of real-time temperature and bending angle was carried out. The bending angle is affected by the mechanical and thermal properties of the sheet metal material, the processing parameters, and the output of laser energy. The bending angle is increased with the number of laser beam scanning passes and is the function of the laser power and the laser beam scanning speed. The simulation results are in agreement with the experimental results.
引文
[1] Y. Namba. Laser forming in space, in: C.P. Wang(Ed.), Proceedings of the International Conference on Lasers '85, Osaka, Japan, 1986, 403-407
    [2] K. Scully. Laser line heating. Journal of Ship Production 3(4) (1987) 237-246
    [3] M. Geiger, F. Vollertsen, G. Deinzer. Flexible straightening of car body shells by laser forming. SAE Paper, 1993
    [4] M. Geiger. Synergy of laser material processing and metal forming, Annals of the CIRP 1994, 43(2) 563-570
    [5] F. Vollertsen, S. Holzer. Laser beam forming fundamentals and possible applications (in German). VDI-Z 136, 1/2 (1994) 35-38
    [6] C.L. Yau, K.C. Chan, W.B. Lee. Laser bending of leadframe materials. Journal of Materials Processing Technology 82 (1998) 117-121
    [7] M. Geiger, F. Vollertsen. The Mechanisms of Laser Forming. Annals of the CIRP, 1993 42(1) 301-304
    [8] F. Vollertsen, M. Rodle. Model for the temperature gradient mechanism of laser bending. Proceedings of the LANE'94. eds, M. Geiger, F. Vollertsen, Meisenback Bamberg 1994, 371-378.
    [9] F. Vollertsen. Mechanisms and models for laser forming. Proceedings of the LANE'94. eds, M. Geiger, F. Vollertsen, Meisenback Bamberg 1994, 345-360
    [10] S. Holzer, H. Arnet, M. Geiger. Physical and numerical modeling of the bucking mechanism. Proceedings of the LANE'94. eds, M. Geiger, F. Vollertsen, Meisenback Bamberg 1994, 379-386
    [11] J. Kraus. Basic processes in laser bending of extrusions using the upsetting mechanism. Proceedings of the LANE'97. eds, M. Geiger, F. Vollertsen, Meisenback Bamberg 1997, 431-438
    [12] Y. Namba. Laser forming of metals and alloys. Proceedings of LAMP, 1987, 601-606
    [13] H. Frackiewicz. Technology of metal shaping by laser. Institute of fundamental technological research, Polish academy of science, 1994
    [14] H. Frackiewicz, W. Kalita, Z. Mucha, W. Trampczynski. Laser forming of sheets (in German). VDI-Berichte, 1990, 317-328
    [15] T. Hennige, S. Holzer, F. Vollertsen, M. Geiger. On the working accuracy of laser bending. Journal of Materials Processing Technology 71 (1997) 422-432
    [16] H. Arnet, F. Vollertsen. Extending laser bending for the generation of convex shapes. Proc. Instn. Mech. Eng, 1995
    [17] F. Vollertsen. An analytical model for laser bending. Lasers in Engineering 2 (1994) 261-276
    [18] F. Vollertsen, M. Geiger, Li,W.M.: FDM- and FEM-simulation of laser forming: a comparative study. Advanced Technology of Plasticity 1993, Vol. Ⅲ, ed.: Z.R.Wang,
    
    Y. He (1993) 1793-1798
    [19] S. Amada, N. Shirai. Bending deformation of thin plate heated locally by laser. A Hen/Transactions of the Japan Society of Mechanical Engineers, 1996, 62, 2764-2769
    [20] J. Magee, K.G. Watkins, W.M. Steen. Laser forming of aerospace alloys. Proceedings of the 1997 Laser Materials Processing Conference, ICALEO'97, 1997
    [21] An.K.Kyrsanidi, Th.B.Kermanidis, Sp.G.Pantelakis. Numerical and experimental investigation of the laser forming process. Journal of Materials Processing Technology, 87(1999) 281-290
    [22] An.K.Kyrsanidi, Th.B.Kermanidis,Sp.G.Pantelakis. An analytical model for the prediction of distortions caused by the laser forming process. Journal Materials Processing Technology, 104 (2000) 94-102
    [23] P.J. Cheng, S.C. Lin. An analytical model for the temperature field in the laser forming of sheet metal. Journal of Materials Processing Technology, 101(2000) 260-267
    [24] Bao, Jiangcheng, Yao, Y. Lawrence. Study of edge effects in laser bending. American Society of Mechanical Engineers, 1999, 941-948
    [25] Thomas Hennige. Development of irradiation strategies for 3D-laser forming. Journal of Materials Processing Technology, 103 (2000) 102-108
    [26] Z. Hu, M. Labudovic, H. Wang, R. Kovacevic. Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. International Journal of Machine Tools and Manufacture, 41 (2001) 589-607
    [27] P.J. Cheng, S.C. Lin. Using neural networks to predict bending angle of sheet metal formed by laser. International Journal of Machine Tools and Manufacture, 2000, 40(8)1185-1197
    [28] 李纬民,李春科,刘助柏.板料成形新工艺——激光弯曲.锻压技术,1993(6)29-31
    [29] 季忠,刘庆斌,吴诗惇.金属薄板的激光弯曲成形技术.激光与光电子学进展,1995(11)24-25
    [30] 李纬民,M.Geiger,F.Vollertsen.金属板材激光弯曲成形规律的研究.中国激光,1998,25(9)859-864
    [31] 李纬民,卢秀春,刘助柏.激光弯曲工艺中板材厚度的影响规律.中国有色金属学报,1999,9(1)39-44
    [32] 季忠,吴诗惇.板料激光成形时的形变场研究.塑性工程学报,1998,5(2)33-38
    [33] Zhong Ji, Shichun Wu. FEM simulation of the temperature field during the laser forming of sheet metal. Journal of Materials Processing Technology, 74(1998) 89-95
    [34] 季忠,吴诗惇.板料激光弯曲成形的技术参数研究.模具技术,1998(1)3-7
    [35] 王秀凤,王秀彦,林道盛.板料激光弯曲的试验研究.锻压机械,1999,34(3)8-10
    [36] 王秀凤,Janos Takacs,Gyorgy Kralics.薄板激光弯曲机理的研究.锻压技术,2001(4)29-30
    [37] 管延锦,孙胜.板料激光弯曲的屈曲机理的研究.激光技术,20-01,25(1)11-14
    [38] 管延锦,季忠,郝滨海,孙胜.材料性能参数对板料激光弯曲成形的影响.光电子·激光,2001,12(1)87-90
    
    
    [39] 武传松.焊接热过程数值分析.哈尔滨工业大学出版社,1990
    [40] 刘庄,吴肇基等.热处理过程的数值模拟.科学出版社,1996
    [41] 陈海清,李华基等.铸件凝固过程数值模拟.重庆大学出版社,1991
    [42] 许肇均.传热学.机械工业出版社,1998
    [43] 陈楚.数值分析在焊接中的应用.上海交通大学出版社,1985
    [44] 孔祥谦.有限单元法在传热计算中的应用(第二版).科学出版社,1986
    [45] 孔祥谦.热应力有限单元法分析.上海交通大学出版社,1999
    [46] 李大潜等.有限元法续讲.科学出版社,1979
    [47] MSC.Marc Volume A, Theory and User Information. MSC Inc., USA, 2000
    [48] 工程材料实用手册.工程材料实用手册编辑委员会.中国标准出版社,1980
    [49] 王伟,朱六妹,尚小刚.焊接温度场测试技术的探讨.物理测试,1998,6
    [50] 吕蓉云.热电偶的接线问题.电工技术,2000,10
    [51] 热电阻、热电偶使用说明书.沈阳合金股份有限公司
    [52] 王家桢,王俊杰.传感器与变送器.清华出版社,1996
    [53] 森村正直,山崎弘郎.传感器工程学.大连工学院出版社,1988
    [54] L-GAGE~(IM)激光测量传感器.图尔克(天津)传感器有限公司,2000
    [55] 雷丽文,朱晓华.微机原理与接口技术.电子工业出版社,1997
    [56] 高钦,张国梁.微型计算机在铸造测试与控制中的应用.机械工业出版社,1986
    [57] 周洁敏.Windows环境下数据采集与实时控制的实现.计算机辅助工程,1994,2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700