高温/高压海底管道横向热屈曲机理及控制措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋油气资源的开发,特别是深水和边际油田的开采,越来越多高温/高压海底管道应用于工程实际,海底管道在温度应力下的整体屈曲变形问题成为管道设计的关键性问题。因此研究海底热荷载作用下管道屈曲的发生机理及控制屈曲策略具有现实的工程意义和较高的理论价值。本文采用理论推导和数值仿真相结合的方法,系统的开展了高温/高压海底管道横向屈曲分析方法和新的高温管道控制措施研究。具体研究内容如下:
     基于能量法给出了理想情况下横向屈曲模式1、2对应的临界屈曲荷载,并与Hobbs的解析解进行了对比验证。基于经典热屈曲理论,推导了平坦海床上存在初始几何缺陷的裸铺管道横向屈曲的临界荷载解析解,给出了无限远处管道轴向力及临界温度的计算公式。并与有限元计算结果进行了对比,验证了本文解析公式的合理性。通过与Hobbs解析解的对比表明,初始几何缺陷将降低管道临界屈曲荷载和临界温差。
     建立了平坦海床上裸铺管道的非线性有限元模型,用于分析管道屈曲的临界荷载及后屈曲变形、弯矩、应变。总结了与工程实际相对应的两种初始几何缺陷的有限元模型引入方法,研究了管道因初始几何缺陷形成的残余应力对管道前屈曲及后屈曲的影响。结果表明残余应力提高了管道临界屈曲温差和后屈曲的最大轴向总应变。开展了初始几何缺陷、横向摩擦系数、轴向摩擦系数、土体屈服位移、径厚比、钢材强度等敏感参数对管道前屈曲及后屈曲的影响因素敏感性分析。探讨了温度呈非线性分布管道的轴向运动及与横向屈曲之间的相互作用,分析表明横向屈曲有利于降低管道的轴向运动。屈曲的间距决定了相邻屈曲能否均得到激发,若屈曲间距过小则将会导致屈曲局部化,基于含初始缺陷管道横向屈曲的理论研究提出了相邻屈曲最小间距的控制准则。
     提出了一种新的蛇形铺管形状-正弦曲线形状,并建立了相应的非线性有限元模型。新的蛇形铺管形状有效降低了管道屈曲的临界荷载,且可以更有效地控制管道后屈曲的弯矩及应变。基于非线性有限元模型,探讨了铺管半径、铺管段长度、铺管角度及铺管距离等敏感参数的影响。研究发现,铺管角度越大管道屈曲的临界荷载越低,后屈曲的弯矩和应变越小;在铺管角度一定的情况下,管道后屈曲的最大弯矩随铺管段长度呈先降低后增加的趋势。根据有限元分析结果,提出了最优铺管角度及铺管段长度范围的判断准则。
     针对蛇形铺管法控制管道横向屈曲中存在的问题,结合蛇铺法及枕木法各自的特点,提出了一种新的蛇形铺管—枕木组合控制法,并建立了相应的海床-枕木-管道的非线性有限元接触模型。基于此模型,分析了枕木高度对管道前屈曲及后屈曲的影响。组合控制法有效降低了管道临界屈曲荷载,管道后屈曲的弯矩亦有明显降低。根据有限元分析结果,提出了枕木高度的控制准则。
     在管道的铺设及运行过程中悬跨不可避免。建立了悬跨管道的非线性有限元接触模型,开展了单个悬跨管道的悬跨深度及悬跨长度对管道横向屈曲的影响分析。针对两个悬跨情况,研究了悬跨间距对管道横向屈曲的影响,并提出了管道的最不利悬跨间距范围的控制准则。通过对存在单个悬跨的蛇形铺设管道的研究提出了避免悬跨出现在蛇铺管道弯曲段的顶点位置的建议。
With the development of the offshore oil and gas resources, especially for the exploitation of deep water and marginal oil fields, more and more high temperature and high pressure (HT/HP) pipelines are used in practice. Global buckling of pipeline under HT/HP is becoming key factor for pipeline design. Thus, it is of significance to study thermal buckling mechanism and controlling methods of submarine pipeline. Combined with theoretical deduction and numerical simulation, the study on global buckling of HT/HP submarine pipeline is carried out in the paper.
     Critical axial compressive forces of lateral buckling mode 1 and mode 2 of flexible pipeline without initial imperfection are derived on the base of energy theory. The comparison of the results from energy method and Hobbs's method is conducted. Based on the theory of thermal buckling, and considering the effect of initially imperfect geometry on lateral buckling of pipeline installed on the flat seabed, analytical solutions to critical axial forces in buckling segment and out of buckling segment as well as critical temperature are proposed. The comparisons between analytical and numerical results validate analytical solutions suggested in the paper. Through the analysis, initial imperfections have great effect on critical buckling force and temperature.
     Nonlinear finite element (FE) model of subsea pipeline laid on even seabed is established to analyze critical buckling of pipeline, post-buckling deformation, bending moment and strain. Two methods are introduced to simulate initial imperfection corresponding to practical engineering. The effects of residual stress due to initial imperfection on pre-buckling and post-buckling are carried out. The results show that residual stress can increase critical temperature and axial strain of post-buckling pipeline. Considering the effects of initial geometry imperfection, lateral and axial frictional coefficient between soil and pipe, yielding soil deformation, ratio of diameter to wall thickness of pipe, steel strength on lateral buckling, sensitivily is completed. Interaction between pipe walking and lateral buckling is studied in this paper, it can be seen that lateral buckling can effectively decrease pipe walking. Buckling distance between two potential buckling positions is the key to initiate lateral buckling at the positons at the same time. Based on analytical studies in imperfect pipeline lateral buckling, control criterion of minimum distance between two adjacent buckles is presented.
     Sine shape as a new shape of snaked-lay pipeline is presented in this paper. FE analysis display the new snaked-lay shape can effectively reduce critical buckling force and control bending moment and strain of post-buckling pipeline. The effects of pipe-lay radius, length, angle and distance are discussed. Based on FE results, the optimum offset angle and pipe-lay length of sine shape are suggested.
     Considering the characteristics of snaked-lay method and sleeper method, a new lateral buckling controlling measurement combined with snaked-lay and sleeper (SS) is proposed. Using ANSYS, nonlinear FE model considering the interaction of seabed, sleeper and pipeline is established. SS method can overcome deficiencies of snaked-lay method and sleep method through FE analysis. Numerical results show that sleeper height has significant effect on pre-buckling and post-buckling of pipeline. The controlling criterion of sleeper height is proposed.
     Due to scour and erosion of wave and current or pipeline laied on uneven seabed, span is inevitable during operation. Nonlinear contact FE model is established to study the effect of spanning depth and length on global buckling of pipeline with single span. For the pipeline with double spans, spanning distance is studied, and the controlling criterion of spanning distance is presented to reduce the interaction risk of the double spans. For snaked-lay pipeline with single spanning, the crest of snaked-lay pipeline should avoid locating at spanning segment.
引文
[1]周延东,刘日柱.我国海底管道的发展状况与前景[J].中国海上油气,1998,10(4):1-5.
    [2]中国海洋学会.21世纪中国海洋科学与技术展望.海洋出版社.1998.
    [3]贾旭,侯静,田英辉.静水压力作用下海底单层保温管道压溃屈曲分析[J].中国海上油气.2006,15(5):342-343.
    [4]周承倜,马良.海底管道屈曲及其传播现象[J].中国海上油气(工程),1994,6(6):1-7.
    [5]马良.海底管道在位稳定性设计中采用压块的几个问题[J].中国海洋平台,1997,12(2):64-67.
    [6]Mousselli A H.海底管道设计分析及方法[M].许正名译.北京:海洋出版社,1987.
    [7]马良.海底油气管道工程[M].北京:海洋出版社,1987.
    [8]杨明华.海洋油气管道工程[M].天津:天津大学出版社,1994.
    [9]宋玉鹏,孙永福,刘伟华.海底管线稳定性影响因素分析[J].海岸工程,2003,22(2):76~84.
    [10]孙正国.海洋管道的屈曲问题[J].油气储运.1984,3(5):1-9.
    [11]李宁.我国海洋石油油气储运回顾与展望[J].油气储运,2003,22(9):30-31.
    [12]Nielsen N J R, Pedersen P T, et al. Design criteria for upheaval creep of buried subsea pipelines[J]. Transactions of the ASME Journal of Offshore Mechanics and Arctic Engineering,1990,290(112): 110-121.
    [13]Hobbs R E. In-service buckling of heated pipeline[J]. J.Transport Eng,1984,110(2):175-189.
    [14]Yun H D, Kyriakides S. Model for Beam-Mode Buckling of Buried Pipelines[J]. Journal of Enginering Mechanics,1985, 111(2):235-253.
    [15]Taylor N, Gan A B. Submarine Pipeline Buckling-Imperfection Studies[J]. Thin-Walled Structures, 1986,4(4):295-323.
    [16]Terndrup P P. Equilibrium of Offshore Cables and Pipelines During Laying[J]. Int. Shipbuilding Progress,1975,22(256):399-408.
    [17]Yun H D. Kyriakides S. Localized Plastic Buckling of a Heavy Beam on a Contacting Surface[J]. Journal of Pressure Bessel Technology,1986,208(5):146-150.
    [18]张好民,刘学杰,张宏.海底高温管道的设计方法与应用[J].油气储运,2005,24卷增刊:80-82.
    [19]Costa A M. Soil-Structure Interaction of Heated Pipeline Buried in Soft Clay[C]. IPC 2002-27193, Calgary, Alberta, Canada,457-466.
    [20]Craig I G, Nash N W, Oldficld G A. Upheaval buckling:a practical solution using hot water flushing technique[C]. Proceedings of the 22nd Offshore Technology Conference, Houston,1990,4:581-592.
    [21]Taylor N, Tran V. Experimental and theoretical studies in subsea pipeline buckling[J]. Marine Structures,1996,9(2):211-257.
    [22]James G A C. A simplified model of upheaval thermal buckling of subsea pipelines[J]. Thin-Walled Structures,1997,29:59-78.
    [23]Hobbs R E, Ling F. Thermal buckling of pipelines close to restraints[C]. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium,1989,5(8):121-127.
    [24]Ballet J P, Hobbs R E. Asymmetric effects of prop imperfections on the upheaval buckling of pipelines[J]. Thin-Walled Structures,1992,13(5):355-373.
    [25]Ju G T, Kyriakides S. Thermal buckling of offshore pipelines[J]. ASME Journal of Offshore Mechanics and Arctic Engineering,1988,110(4):355-364.
    [26]Terndrup P P, Juncher J J. Buckling behaviour of imperfect spherical shells subjected to different load conditions[J]. Thin-walled sturctures,1995,23(14):41-55.
    [27]Yen B C, Tsao C H, Hinkle R D. Soil-pipe interaction of heated oil pipelines[J]. Journal of the Pipeline Division, ASCE,1981,107(1):1-14.
    [28]Cassell A C, Hobbs R E. Numerical stability of dynamic relaxation analysis of nonlinear structures[J]. International JOURnal of Numerical Methodes in Engineering,1976,10(6):1407-1410.
    [29]Maltby T C, Calladine C R. An Investigation into Upheaval Buckling of Buried Pipelines-Ⅰ. Experimental Apparatus and Some Observations[J]. International Journal of Mechanical Sciences, 1995,37(9):943-963.
    [30]Maltby T C, Calladine C R. An Investigation into Upheaval Buckling of Buried Pipelines-Ⅱ. Experimental Apparatus and Some Observations[J]. International Journal of Mechanical Sciences, 1995,37(9):965-983.
    [31]Miles D J, Calladine C R. Lateral thermal buckling of pipelines on the sea bed [J]. Journal of Applied Mechanics,1999,66(4):891-897.
    [32]Nader Yoosef-Ghodsi. Analysis of buried pipelines with thermal applications [D]. Canada,University of Alberta,2002.
    [33]Tore S, Stig O K, Gunnar P. Pipeline expansion on uneven seabed [C]. Proceedings of the 5th International Offshore and Polar Engineering Conference, Seoul, Korea,2005:38-40.
    [34]刘润,闫澍旺等.温度应力下海底管线屈曲分析方法的改进[J].天津大学学报,2005,28(2):125-126.
    [35]Junes A V, JoseF. R, Cora M, Buried Pipe Modeling with Initial Imperfections[J]. Journal of Pressure Vessel Technology,2004,126(2):250-257.
    [36]Enrico T, Luigino V, Erik L. Snaking of submarine pipelines resting on flat sea bottom using finite element method[C]. Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, France,1999,2:34-44.
    [37]Nystrφm P R, Tomes K, Karlsen J S, et al. Design of the Asgard Transport Trunkline for Thermal Buckling[C]. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway,2001:7-17.
    [38]Lars C. Displacement Control in Lateral Buckling of "Short" Pipelines[C]. Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, Korea,2005:84-92.
    [39]David B, Malcolm C, Michael C, et al. The safe design of hot on-bottom pipelines with lateral buckling using the design guideline developed by the SAFEBUCK joint industry project[C]. Deep Offshore Technology Conference, Vitoria, Brazil,2005:1-26.
    [40]Kien L K, Ming L S, Maschner E. Design of High Temperature/High Pressure (HT/HP) Pipeline against Lateral Buckling[C].27th-28th September Asian Pipeline Conference & Exhibition, Kuala Lumpur,2005:2-14.
    [41]Harrison G E, Brunner M S, Bruton D A S. King flowlines-thermal expansion design and implementation[C]. Offshore Technology Conference, Houston, Texas, OTC2003-15310.
    [42]Guan J, Nystrφm P R, Hansen H F. optimized solutions to control lateral buckling of pipelines with snaked-lay: theoretical and numerical studies[C]. Proceedings of the 26th International Conference, San Diego, California,2007,3:219-223.
    [43]Rundsag J 0, Stavanger A D. Rathbone, et al. optimized snaked lay geometry [C]. Proceedings of the 8th International Offshore and Polar Engineering Conference, Vancouver, BC, Canada 2008:27-33.
    [44]Vermeulen H R. Theory and practice of installing pipelines by the pre-snaking method[C]. Proc. of the 5th International Offshore and Polar Engineering Conference, Hague, Netherland 1995:47-52.
    [45]Frederiksen P S, Andersen J B, Jensson P H. Controlled lateral buckling of submarine pipelines in snaked configuration[C].The 17th International Conference on Offshore Mechanics and Arctic Engineering, Lisbon, Portugal,1998:1-10.
    [46]Svein S, Erik L. High temperature snaking behaviour of pipelines[C]. Proceedings of the 5th International Offshore and Polar Engineering Conference, Hague, Netherland,1995,2:63-71.
    [47]Rathbone A D, Tφrnes K, Cumming G, et al. Effect of lateral pipelay imperfections on global buckling design[C]. Proceedings of the 8th International Offshore and Polar Engineering Conference, Vancouver, BC, Canada,2008:224-232.
    [48]DNV-RP-F110. Global buckling of submarine pipelines structural design due to high temperature/high pressures[S]. Det Norske Veritas, Norway,2007.
    [49]Matheson I, Carr M, Peek R, et al. Penguins flowline lateral buckle formation analysis and verification[C]. Proceedings of the 23rd International Offshore Mech. and Arctic Engineering Conference, Vancouver, BC, Canada,2004,3:67-76.
    [50]Wagstaff M. Detailed design and operational performance assessment of pipeline buckle initiators to mitigate lateral buckling[C]. Petromin Pipeline Conference, Singapore,2003.
    [51]孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社.
    [52]Bai Y, Igland R, Moan T. Ultimate limit states for pipe under combined tension and bending.[J]. International Journal of Offshore and Polar Engineering,1994,4(4):312-319.
    [53]Taylor N, Gan A B. Regarding the buckling of pipelines subjected to axial loading[J]. J. Constructional Steel Research,1986,4:45-50.
    [54]Song X J. Numerical solutions for pipeline wrinkling[D].Canada, University of Alberta,2003.
    [55]李有兴.杆件纵横弯曲时热屈曲临界长度的确定[J].西南石油学院学报,1993,15(1):90-91.
    [56]ANSYS Inc.. ANSYS User's guide. version10.0.
    [57]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [58]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:机械工业出版社,1997.
    [59]谢贻权.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1994.
    [60]王伟强.冠状动脉支架力学行为有限元分析及其结构优化[D].大连:大连理工大学,2005.
    [61]杜平安,甘娥忠,于亚婷.有限元法:原理、建模及应用[M].北京:国防工业出版社,2006.
    [62]冷纪桐,赵军,张娅.有限元技术基础[M].北京:化工工业出版社,2007.
    [63]王生楠.有限元素法中的变分原理基础[M].西安:西北工业大学出版社,2005.
    [64]卓家寿.弹塑性力学中的广义变分原理[M].北京:中国水利出版社,2002.
    [65]徐秉业.弹塑性力学及其应用[M].北京:机械工业出版社,1984.
    [66]薛守义.弹塑性力学[M].北京:中国建材工业出版社,2005.
    [67]Ramberg W, Osgood W R. Description of Stress-Strain Curves by Three Parameters[C]. NACA Technical Note,1943.
    [69]Sφren H, Bai Y, et al. Use of finite element analysis for local buckling design of pipelines[C]. Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Lisbon, Portugal,1998:1-9.
    [68]ALA (American Lifelines Alliance). Guidelines for the design of buried steel pipe. G. A. Antaki and J.D.Hart,Co-Chairmen, July, www.americanlifelinesalliance.org,2001.
    [70]Chiou Y J, Chi S Y. Boundary element analysis of Bio's consolidation in layered elastic soils[J]. International Journal for Numerical and Analytical Methods in Geomechancs,1994,18(6):377-396.
    [71]Chiou Y J, Chi S Y, et al. A stability analysis of shallowly buried pipelines in a layered medium[J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering,1993,5(3):259-267.
    [72]Pedersen P T, Michelsen J. Large deflection upheaval buckling of marine pipelines[C].Proceedings Behaviour of Offshore Structures, Trondheim, Norway,1988,3:965-980.
    [73]Trautmann C H, O'Rourke T D, et al. Uplift force-displacement response of buried pipe[J]. Journal of Geotechnical Engineering,1985, 111(9):1061-1076.
    [74]Trautmann C H, O'Rourke T D. Lateral force-displacement response of buried pipe[J]. Journal of Geotechnical Engineering,1985, 111(9):1077-1092.
    [75]Yun H D, Kyriakides S. On the beam and shell modes of buckling of buried pipelines [J]. Soil Dynamics and Earthquake Engineering,1990,9(4):179-193.
    [76]Maltby T C. The upheaval buckling of buried pipelines[D].University of Cambridge,1992.
    [77]Kerr A D. On the stability of the railroad track in the vertical plane[J].Rail International,1974,2:131-142.
    [78]Allan T. One-way buckling of a compressed strip under lateral loading[J]. J. Mech. Engng Sci,1968, 10:175.
    [79]Palmer A C, Ellinas C P, et al. Design of submarine pipelines against upheaval buckling[C].Procedings of the 22nd annual offshore technology conference, Houston,1990:1-7.
    [80]Kerr A D. Lateral buckling of railroad tracks due to constrained thermal expansion[J].Railroad track Mechanics and Technology,1978.
    [81]Carr M, Bruton D, Leslie D. Lateral Buckling and Pipeline Walking, a Challenge for Hot Pipelines[C], Offshore Pipeline Technology Conference, Amsterdam,2003:2-35.
    [82]DNV-OS-F101.Submarine pipe systems[S].Det Norske Veritas, Norway,2000.
    [83]Tornes K, Jury J, Axial creeping of high temperature flowlines caused by soil ratcheting[C]. Proceedings 19th International Conference on Offshore Mechanics and Arctic Engineering, New Orleans, Louisiana,2000.
    [84]Nielsen N-J R, Lyngberg B, Pedersen P T. Upheaval buckling failures of unsulated buried pipelines:a case story[C]. Offshore Ttechnology Conference, Houston,1990:7-10.
    [85]Quimby T B, Fitzpatrick M R. Upheaval buckling of a pipeline in an arctic environment[C]. Proceedings of the 8th International Conference on Cold Regions Engineering, New York, 1996:215-225.
    [86]Shaw P K, Bomba J G. Finite-element analysis of pipeline upheaval buckling[C]. Proceedings of the. 13th International Conference, Houston, TX,1994:291-296.
    [87]Bruschi R, Spinazze M, Vitali L. Lateral snaking of hot pressurized pipelines mitigation for troll oil pipeline[C]. Proceedings of the 15th Offshore Mechanics and Arctic Engineering Conference, Florence, Italy 1996,5:267-278.
    [88]Cappelletto A, Tagliaferri R, et al. Field full-scale tests on longitudinal pipe-soil interaction[C]. Proceedings of International Pipeline Conference, Calgary,Alberta,1998,2:771-778.
    [89]Raoof M, Maschner E. Vertical buckling of heated offshore pipelines[C]. Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaka, Jpn,1994,2:118-127.
    [90]Klever F J, Van H L C, Sluyterman, A C. A dedicated finite element model for analyzing upheaval buckling response of submarine pipelines[C]. Proceedings of the 22nd Annual Offshore Technology Conference, Houston, Texas,1990,2:529-538.
    [91]Bai Y, Bai Q.Subsea Pipelines and Risers[M].Elsevier Science Ltd,2005.
    [92]Tφrnes K, Nystrφm P R. The behavior of high pressure, high temperature flowlines on very uneven seabed[C]. Procedings of the 7th International Offshore and Polar Engineering Conference, Honolulu, HI, United states,1997,3:243-248.
    [93]Hooper J, Maschner E, Farrant T, et al. HT/HP Pipe-in-Pipe Snaked Lay Technology -Industry Challenges[C].OTC, Houston, Texas, OTC2004-16379.
    [94]Kim J M, Leif C, Erik L. Hotpipe project: design guideline for high temperature/high pressure pipelines[C].Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, France,1999:1-8.
    [95]Kaye D, LeMarchand D, Blondin P, et al. Lateral buckling design of the Dunbar-North Alwyn double wall insulated pipeline [C].Offshore Pipeline Technology, Houston, Texas,1995.
    [96]Guijt J. Upheaval buckling of offshore pipelines:overview and introduction[C]. Proceedings of the 22nd Offshore Technology Conference, Houston, Texas,1990, OTC1990-6487.
    [97]Pedersen P T, Jensen J J. Upheaval creep of buried heated pipeline with initial imperfections [J]. Marine Structures,1998, 1(1):11-22.
    [98]Boer S. Buckling considerations in the design of the gravel cover for a high temperature oil line[C]. Proceedings of the 18th Offshore Technology Conference, Houston, Texas, OTC1986-5294.
    [99]Taylor N, Richardson D, Gan A B. On submarine pipeline frictional characteristics in the presence of buckling[C].Proceedings 4th International Symposium on Offshore Mechanics and Arctic Engineering, Dallas, TX,1985,1:508-515.
    [100]Taylor N, Tran V C, Richardson D. Interface modeling for upheaval subsea pipeline buckling[C]. Proceedings 4th International International Conference on Computational Methods and Experimental Measurements,1989.
    [101]Schaminee P E L, Zrn N F, Schotman, et al. Soil response for pipeline upheaval buckling analyses:full-scale laboratory tests and modelling[C]. Proceedings of the 22nd Offshore Technology Conference, Houston, TX, OTC1990-6486.
    [102]Nielsen N J R, Lyngberg B, Pedersen P T. Upheaval buckling failures of insulated burial pipelines-a case story[C].Procedings of the 22nd Offshore Technology Conference, Houston,TX, OTC1990-6488.
    [103]Palmer A C, Baldry J A S. Lateral buckling of axially constrained pipelines[J]. J.Petroleum Technology,1974,26:1283-1284.
    [104]Tran V C. Imperfect upheaval subsea pipeline buckling[D]. Sheffield:Sheffield Hallam University, 1994.
    [105]Vaz M A, Patel M H. Lateral buckling of bundled pipe systems[J]. Marine Structure,1999,12:21-40.
    [106]Harrison G E, Kershenbaum N Y, Choi H S. Expansion analysis of subsea pipe-in-pipe flowline[C]. Proceedings of the 7th International Offshore and Polar Engineering Conference, Honolulu,1997:293-295.
    [107]Fyrileiv O, Vena°s A. Finite element analysis of pipeline boundless on uneven seabed[C].Proceedings of the 8th International Offshore and Polay Engineering Conference, Montreal,Canada,1998:46-52.
    [108]Ellinas C P, Supple W J, Vastenholt H. Prevention of upheaval buckling of hot submarine pipelines by means of intermittent rock dumping[C]. Proceedings of the 22nd Offshore Technology Conference, Houston, Texas,1990:519-528.
    [109]Kershenbaum N Y, Harrison G E, Choi H S. Subsea pipeline lateral deviation due to high temperature product[C].Proceedings of the 6th International Offshore and Polar Engineering Conference, Golden, CO,1996:74-79.
    [110]Kerr A D. Analysis of thermal track buckling in the lateral plane[J]. Avta Mech.,1978,30:17-50.
    [111]Peek R., Yun H. Scaling of solutions for the lateral buckling of elastic-plastic pipelines[C]. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, B C, Canada,2004:1-9.
    [112]Preston R, Drenman F, Cameron C, Controlled lateral buckling of large diameter pipeline by snaked lay[C]. Proceedings,9th international offshore and polar engineering conference, Brest, France 1999, 2:58-63.
    [113]Taylor N, Gann A B. Refined modeling for the lateral buckling of submarine pipelines[J]. J. constr. Steel Res.,1986,6:143-162.
    [114]刘志刚,孙国民.海底管道侧向屈曲分析[J].中国造船,2008,49(增刊2):519-520.
    [115]赵天奉.高温海底管道温度应力计算与屈曲模拟研究[D].博士学位论文.大连:大连理工大学,2008.
    [116]张兴其.桩土相互作用的接触分析研究与应用[D].硕士学位论文.南京:河海大学,2007.
    [117]覃小雄.有限元接触分析及其在飞机投放挂架中的应用[D].硕士学位论文.西安:西安电子科技大学,2007.
    [118]孔祥安,江晓禹,金学松.固体接触力学[M].北京:中国铁道出版社,1999.
    [119]Juncher J J, Terndrup P P, Buckling of Submarine Pipelines[C], Adv in Offshore Oil & Gas Pipeline Technol,1985:41-60.
    [120]S(?)vik S, Giertsen E, et al. Advances in design and installation analysis of pipelines in congested areas with rough seabed topography[C]. Proceedings of the.23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, B. C., Canada,2004:141-147.
    [121]Mathisen K M. Large Displacement Analysis of Flexible and Rigid Systems Considering Displacement-Dependent Loads and Non-Linear Constraints[D]. Ph.D. thesis, Norway:Norwegian Institute of Technology.1990.
    [122]Wagner D A, Murff J D, Brennodden H, et al. Pipe-Soil Interaction model[C]. Proceedings of the 19th Offshore Technology Conference, Houston, TX, OTC1987-5504.
    [123]Lund K M. Effect of Increase in Pipeline Soil Penetration from Installation[C]. Proceedings of Offshore Mechanics and Arctic Engeering, New Orleans, OMAE2000/PIPE-5048.
    [124]Nes H, S(?)evik S, Levold E, et al. Expansion Control Design of Large Diameter Pipelines[C]. Proceedings 15th Int.Conference on Offshore Mechanics and Arctic Engineering, Florence, Italy,1996, 5:279-285.
    [125]Nystrφm P R, Tφrnes K, BaiY, et al.3D Dynamic Buckling and Cyclic Behaviour of HP/HT Flowlines[C]. Proceedings 7th International Offshore and Polar Eng. Conf., Honolulu, HI,1997,2:299-307.
    [126]Vitali L, Bruschi R, Mφrk KJ, et al. Hotpipe Project: Capacity of Pipes Subject to Internal Pressure, Axial Force and Bending Moment[C]. Proceedings 9th International Offshore and Polar Engineering Conference, Brest, France,1999,2:22-33.
    [127]Nystrφm P R, Tomes K, Bai Y, et al. Pipeline Structural Response to Fishing Gear Pull Over Loads by 3DTransient FEM Analysis[C].Proc. of the 8th International Offshore and Polar Engineering Conference, Montreal, Can,1998,2:134-142.
    [128]Reid A, Grytten T I, Nystrom P R. Case Studies in Pipeline Free Span Fatigue[C]. Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, WA,2000,2:275-284.
    [129]Tomes K, Nystrφm P R, Kristiansen Nφ. Lateral Buckling and Axial Creep of HP/HT Subsea Pipelines: Review of Design Strategies[C]. PetroMin Pipeline Conference, Kuala Lumpur 2004.
    [130]Slettebo H, Seek D, Jorgensen G M, et al. Asgard Production Start-up Confirms Dynamic Flowline Design Approach[C].Offshore Pipeline Technology, Amsterdam,2001.
    [131]Roberto B, Erik L, Leif C, et al. Design of HP/HT pipeline-the findings of the Hotpipe project[C]. Proceedings of OPT, Amsterdam, Netherland,2006.
    [132]Nystrφm P R. Tomes K, Jan S K, et al. Design of Thermal Buckling for Asgard Transport Gas Trunkline[C]. International Journal of Offshore and Polar Engineering, Stavanger, Norway,2002, 12(4):271-279.
    [133]Bruschi R, Curti G, Dumitrescu A, et al. Strength Criteria for Hot Pipelines Susceptible to Euler-Bar Buckling[C]. Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaka, 1994:135-148.
    [134]Spinazze M, Vitali L, Verley R. Hotpipe Project-Use of Analytical Models/Formulas in Prediction of Lateral Buckling and Interacting Buckles[C]. Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest,1999:9-19.
    [135]Choi H S. Free spanninganalysis of offshore pipelines[J]. Journal of Ocean Engineering Elsevier, 2000,28(10):1325-1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700