数值模拟技术在金属材料固态加工中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学、有限元及有限差分方法的发展,可以建立适当的理论模型,描述材料固态加工及热处理的物理过程。然后,采用有限元及有限差分法对这些物理过程的温度场、应力场、应变场、微观组织场等进行精确的定量数值模拟计算。只要通过少量的实验验证理论模型及数值模拟计算的准确性,就可以利用计算机对大量的实际材料固态加工及热处理过程进行准确的数值模拟。这样就实现了基于计算机数值模拟的虚拟材料固态加工及热处理过程。通过大量的计算机数值模拟计算,可以建立材料固态加工及热处理工艺参数与材料固态加工及热处理后性能的定量关系。这些数值模拟计算结果可以用于优化材料固态加工及热处理工艺参数。论文主要包括以下内容:
     建立了船用钢板激光弯曲成形过程的热弹塑性力学模型。对船用钢板激光弯曲成形过程的温度场、应力场及应变场进行了数值模拟。研究了板材厚度、板材宽度、激光功率和激光扫描速度对激光弯曲成形最终弯曲角度的影响。进行了钢板激光弯曲成形实验,实测了钢板的温度及弯曲角度。钢板的温度和弯曲角度的数值模拟结果与实验测量结果符合较好。
     建立了发动机油底壳冲压成形过程的弹塑性力学模型。对发动机油底壳在冲压成形过程的应力、应变及厚度分布进行了数值模拟。实测了发动机油底壳冲压成形后的厚度分布。厚度分布的数值模拟结果与实验测量结果符合较好。
     建立了GH4169高温合金大环形零件惯性摩擦焊过程的热弹塑性力学模型。对GH4169高温合金大环形零件惯性摩擦焊过程的温度场、应力场及应变场进行了数值模拟。对GH4169高温合金大环形零件惯性摩擦焊过程的温度及轴向缩短量进行了计算机实时测量。温度及轴向缩短量的数值模拟结果与实验测量结果符合较好。
     建立了特殊钢棒线材热连轧过程的热弹塑性力学模型。对304不锈钢棒线材18道次热连轧过程的温度场、应力场及应变场进行了数值模拟。实测了304不锈钢棒线材18道次热连轧过程各道次的表面温度。表面温度的数值模拟结果与实验测量结果符合较好。
     建立了激光相变硬化过程的热弹塑性力学模型。对激光相变硬化过程的温度场、应力场和激光相变硬化区的宽度及深度进行了数值模拟。实测了激光相变硬化区的宽度和深度及残余应力分布。激光相变硬化区的宽度和深度及残余应力分布的数值模拟结果与实验测量结果符合较好。
     建立了35CrMo钢圆柱体大型锻件淬火冷却过程的传热学、相变模型。对35CrMo钢圆柱体大型锻件淬火冷却过程的温度场、组织场进行了数值模拟。实测了35CrMo钢圆柱体大型锻件淬火冷却过程的温度和淬火后的组织场。温度和淬火后组织场的数值模拟结果与实验测量结果符合较好。
     建立了真空热处理过程的传热学模型。对GH4169高温合金零件真空热处理过程的温度场进行了数值模拟。预测了GH4169高温合金零件在真空炉中加热过程的滞后时间。实测了GH4169高温合金零件真空热处理过程温度随时间的变化。温度随时间变化的数值模拟结果与实验测量结果符合较好。
With the development computer science, finite element method and finite difference method, it is possible to set up a model to describe the physical processes of solid state material processing and heat treatment processes. Then, the temperature field, stress field and microstructure field of these physical processes can been calculated accurately using finite element method and finite difference method. If some experimental works were carried out to demonstrate the accuracy of modelling and simulation results, then these solid state material processing and heat treatment processes can been accurately simulated by computer. Then the virtual solid state material processing and heat treatment processes can been realized based on computer simulation. The relationship between the properties of materials and the technical parameters of solid state material processing and heat treatment processes can been set up by a large amount of computer numerical simulation works. These numerical simulation results are useful to optimize the technical parameters of solid state material processing and heat treatment. The main results of this doctoral dissertation are as follow:A thermo-elastic-plastic model was developed to simulate the laser forming process of shipbuilding steel plate. The temperature field, stress field and strain field of shipbuilding steel plate during laser forming process were calculated. The effects of steel plate width, steel plate thickness, laser power, laser scanning velocity on final bending angle were studied. To evaluate the accuracy of the simulation, laser forming experiments were performed. The temperature and bending angle of steel plate were measured. The simulation results of temperature and bending angle of steel plate are in good agreement with experimental results.An elastic-plastic model was set up to simulate oil pan forming process. The stress field, strain field and thickness distribution of the oil pans during forming process were calculated. The thickness distributions of the oil pans after forming process were measured. The calculated thickness distributions of the oil pans agree well with those of the measurements.A thermo-elastic-plastic model was developed to simulate the inertia friction welding process of GH4169 superalloy large size ring form workpiece. The transient temperature field, stress field, and strain field of GH4169 superalloy large size ring form workpiece during inertia friction welding process were calculated. The temperature and the axial shortering of GH4169 superalloy large size ring form workpiece during inertia friction welding process were measured. The calculated temperature and axial shortening are in good agreement with the experimental results.A thermo-elastic-plastic model of hot continuous rolling process of special steel wire and rod was set up. The temperature field, stress field and strain field of 304 stainless steel wire and rod during 18 passes hot continuous rolling process were calculated. The surface temperatures of 304 stainless steel wire and rod during 18 passes hot continuous rolling process was measured. The calculated surface temperature agree well with the measured result.
    
    A thermo-elastic-plastic model of laser transformation hardening process has been developed. The temperature field, stress field during laser transformation hardening process and the width and depth of laser transformation hardening zone were calculated. The width and depth of laser transformation hardening zone and residual stress distribution were measured experimentally. The calculated width and depth of laser transformation hardening zone and the residual stress distribution are in good agreement with the experimental results.A heat transfer and microstructure evolution model of quenching process of 35CrMo steel cylindrical large forging was proposed. The transient temperature field and microstructure field of 35CrMo cylindrical large forging in quenching process were calculated. The temperature of 35CrMo cylindrical large forging in quenching process and the microstructu
引文
[1] Y.Namba, Laser forming in space, in: C.P.Wang(Ed.), Proceedings of the International Conference on Lasers '85, Osaka, Japan, 1986:p403
    [2] K.Scully, Laser line heating, Journal of Ship Production, 1987, 3(4): p237
    [3] M.Geiger, F.Vollertsen. The Mechanisms of Laser Forming. Annals of the CIRP, 1993, 42(1): p301
    [4] T. Hennige, S. Holzer, F. Vollertsen, M. Geiger. On the working accuracy of laser bending. Journal of Materials Processing Technology, 1997, 71:p422
    [5] F. Vollertsen. An analytical model for laser bending, Lasers in Engineering, 1994, 2:p261
    [6] Thomas Hennige. Development of irradiation strategies for 3D-laser forming. Journal of Materials Processing Technology, 2000, 103:p102
    [7] An.K.Kyrsanidi, Th.B.Kermanidis, Sp.G.Pantelakis: Numerical and experimental investigation of the laser forming process. Journal of Materials Processing Technology, 1999, 87:p281
    [8] Z.Hu, M.Labudovic, H.Wang, R.Kovacevic. Computer simulation and experimental investigation of sheet metal bendingusing laser beam scanning. International Journal of Machine Tools and Manufacture, 2001, 41:p589
    [9] Z. Hu, R. Kovacevic, M. Labudovic, Experimental and numerical modeling of bucking instability of laser sheet forming, International journal of machine tools & manufacture, 2002 42:p1427
    [10] Zhong Ji, Shichun Wu, FEM simulation of the temperature field during the laser forming of sheet metal. Journal of Materials Processing Technology, 1998, 74:p89
    [11] D.J.Chen, S.C.Wu, Y.B.Xiang and M.Q.Li, Simulation of three-dimensional transient temperature field during laser bending of sheet metal, Materials Science and Technology, 2002,18:p215
    [12] 季忠,吴诗悖,板料激光成形时的形变场研究,塑性工程学报,1998,5(2):p33
    [13] 季忠,吴诗悻,板料激光弯曲成形数值模拟,中国激光,2001,28(10):p953
    [14] 陈敦军,吴诗悖,向毅斌,钛合金板材激光弯曲成形的研究,航空学报,2001,22(2):p187
    [15] 季忠,焦学健,吴诗悖,板料激光弯曲成形动力显示有限元模拟,应用基础与工程科学学报,2001,9(3):p208
    [16] 李纬民,M.Geiger,F.Vollertsen,金属板材激光弯曲成形规律的研究,中国激光,1998,25(9):p859
    [17] 王秀凤,Janos Takacs,Gyorgy Krallics,薄板激光弯曲机理的研究,锻压技术,2001,4:p29
    [18] 刘顺洪,周龙早,王令红,金属板材三维激光弯曲成形的研究,航空制造技术,2001,4:p42
    [19] 管延锦,孙胜,板料激光弯曲的屈曲机理的研究,激光技术,2001,25(1):p11
    [20] S. Kobayashi, J. H. Kim, Deformation analysis of axisymmetric sheet metal forming processes by the rigid-plastic finite element method, Mechanics of sheet metal forming, Plenum Press. New York, 1978
    [2
    
    [21] N. W. Wang, B. Budiansky, Analysis of sheet metal stamping by a finite element method, Journal of App. Mech, 1978, 45:p86
    [22] N. M. Wang, Rigid-plastic rate sensitive finite element method for modeling sheet metal forming processes, Computer Modeling of Sheet Metal Forming Processes, AIME, 1985
    [23] You-Min Huang, Daw-Kwei Leu. An elasto-plastic finite element analysis of sheet metal U-bending process, Journal of Materials Processing Technology, 1995, 48:p151
    [24] D. Zhou, R,H. Wagoner, Development and application of sheet forming simulation, Journal of Materials Processing Technology, 1995, 50: p1
    [25] You-Min Huang, Ching-Lun Li, An elasto-plastic finite element analysis of the metal sheet redrawing process. Journal of Materials Processing Technology, 1999, 90:p331
    [26] Z. Zimniak, Problems of multi-step forming sheet metal process design. Journal of Materials Processing Technology, 2000, 106:p152
    [27] M. Samuel, Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals. Journal of Materials Processing Technology, 2000, 105:p382
    [28] D.S. Kirby, P.M Wild. Deep drawing of pressure vessel end closures: finite element simulation and validation, Journal of material processing technology, 2000, 103:p247
    [29] Li-Ping Lei, Sang-Moon Hwang, Beom-Soo Kang, Finite element analysis and design in stainless steel sheet forming and its experimental comparison, Journal of Materials Processing Technology, 2001, 110:p70
    [30] 夏欣,卫原平,李发致,板料冲压成形工艺参数的计算机优化,上海交通大学学报,1999,33(2):p178
    [31] 汪晨,张质良,二维板料U形弯曲回弹的数值模拟研究,金属成形工艺,1999,17(4): p133
    [32] 印雄飞,阮雪榆,板料成形过程的数值模拟技术,塑性工程学报,1999,6(1):p20
    [33] 张海明,董湘怀,李尚健,李志刚,汽车前照灯矩形反光镜拉深成形过程有限元模拟,锻压技术,2000,3:p15
    [34] 杜生亚,陈纬,应力应变分析在覆盖件成形工艺设计中的实际应用,锻压技术,2000,6:p10
    [35] 沈启或,卫原平,王玉国,阮雪榆,数值模拟在汽车覆盖件开发中的应用研究,模具技术,2000,3:p3
    [36] 徐伟力,林忠钦,刘罡,车身覆盖件冲压仿真的现状和发展趋势,机械工程学报,2000,36(7):p1
    [37] 陈中奎,施法中,板料冲压成形过程中起皱的数值模拟,机械工程学报,2001,37(1):p24
    [38] 徐丙坤,施法中,陈中奎,板料冲压成形数值模拟中的几个关键问题,塑性工程学报,2001,8(2):p32
    [39] 李建国,刘实,李殿中,汽车纵梁冲压成形及回弹过程的计算机模拟,塑性工程学报,2001,8(2):p4
    
    [40] C.J.CHENG, Transient Temperature Distribution During Friction Welding of Two Similar Materials in Tubular Form, Welding Journal, 1962,s:p542
    [41] C.J.CHENG, Transient Temperature Distribution During Friction Welding of Two Dissimilar Materials in Tubular Form, Welding Journal, 1963, s:p233
    [42] K.K.WANG, P.NAGAPPAN Transient Temperature Distribution in Inertia Welding of Steels. Welding Journal, 1970, s:p419
    [43] K.K.WANG, WEN LIN, Flywheel Friction Welding Research, Welding Journal, 1974, s:p233
    [44] A.FRANCIS, R.E.CRAINE, On a Model for Frictioning Stage in friction Welding of Thin tubes, Int. J.Heat Mass Transfer, 1985, 28(9): p1747
    [45] Andrzej Sluzalec, Thermal Effects in Friction Welding, Int.J.Mech.Sci, 1990, V32, N6, p467
    [46] G.J.BENDZSAK, T.H.-NORTH, Z.LI, Numerical Model for Steady-State Flow in Friction Welding, ActaMaterialia, 1997, 45 (4): p1735
    [47] A.Moal, E.Massoni, Finite Element Simulation of The Inertia Welding of Two Similar Parts, Engineering Computations, i995, 12:p497
    [48] L.D'Alvise, E.Massoni, S.J.Walloe, Finite element modeling of the inertia friction welding process between dissimilar materials, Journal of Materials Processing Technology, 2002, 125:p387
    [49] 段立宇,李晓泉,刘合金等,摩擦焊接温度场的差分数值模拟,西北工业大学学报,1993,11(s):p29
    [50] 傅莉,段立宇,杜随更,摩擦焊温度场的有限元热力耦合分析,西北工业大学学报,1993,11(s):p36
    [51] 段立宇,傅莉,杜随更,时渭清,摩擦焊接应力应变的有限元热力耦合分析,西北工业大学学报,1993,11(s):p42
    [52] L. FU, L. DUAN, The Coupled Deformation and Heat Flow Analysis by Finite Element Method During Friction Welding, Welding Journal, 1998, s: p202
    [53] 李晓泉,于治水,周方明,段立宇,摩擦焊接头温度场二维轴对称瞬态数值模拟,焊接学报,1999,20(2):p139
    [54] 傅莉,刘小文,鄢君辉,段立宇,惯性摩擦焊接钢管焊合区热塑性变形参量场的数值模拟,机械科学与技术,2000,19(3):p439
    [55] Zhang Liwen,Liu Chengdong, QI Shaoan,Numerical simulation of inertia friction welding, 2rd International conference Thermal Process Modelling and Computer Simulation, 2003, March 31-Aprl 2, Nancy, France
    [56] 李付国,聂蕾,李庆华,段立宇,GH4169合金惯性摩擦焊接过程组织计算与预测,焊接学报,2002,23(1):p30
    [57] Kazutake Komori, Rigid-plastic finite-element method for analysis of three-dimensional rolling that requires small memory capacity, International Journal of Mechanical Science, 1998, 40(5):p479
    
    [58] Z.Y.Jiang, A.K,Tieu, A simulation of three-dimensional metal rolling processes by rigid-plastie finite element method, Journal of Materials Processing TechnOlogy, 2001, 112: p144
    [59] Yanagimoto, Strategic FEM simulator for innovation of rolling mill and process, Journal of Materials Processing Technology, 2002, 122:p130
    [60] Kazutake komori, Katsahiko koumucra, Simulation of deformation and temperature in multi-pass H-shape roiling, Journal of Materials Processing Technology, 2000, 105:p24
    [61] K.Komori, Simulation of deformation and temperature in caliber rolling, effect of finite-element mesh in cross-section, Journal of Materials Processing Technology, 2003, 143:p367
    [62] A.K.Tieu; Z.Y.Jiang, C.Lu, A 3D finite element analysis of the hot rolling of strip with lubrication, Journal of Materials Processing Technology, 2002, 125:p638
    [63] Z.Y.Jiang, A.K.Tieu, C.Lu, A FEM modeling of the elastic deformation zones in flat rolling, Journal of Materials Processing Technology, 2004, 146:p167
    [64] S.X.Zhou, An integrated model for hot rolling of steel strips, Journal of Materials Processing Technology, 2003, 134:p338
    [65] Zone-Ching Lin, Chi-Chih Shen, A coupled finite element for a three dimensional analysis of the flat rolling of aluminum with different reductions, Journal of Materials Processing Technology, 2001, 110:p10
    [66] L.M.Galuntucci, L.Tricarico, Thermo-mechanical simulation of a rolling process with an FEM approach, Journal of Materials Processing Technology, 1999, 92:p494
    [67] A.Hacquin, P.Montmitonnet, J.P.Guillerault, A steady state thermo-elastoriscoplastic finite element model of rolling with coupled thermo-elastic roll deformation, Journal of Materials Processing Technology, 1996, 60:p109
    [68] H.Dyja, L.Lesik, P.Szota, Simulation of the deformation of strip between stands during the process of rolling with a loop, Journal of Materials Processing Technology, 2002, 125:p706
    [69] R.Iankov, Finite element simulation of profile rolling of wire, Journal of Materials Processing Technology, 2003, 142:p355
    [70] 李长生,刘相华,王国栋,姜正义,棒线材连轧过程轧件温度场的有限元解析,塑性工程学报, 1998,5(2):p80
    [71] 李建超,吴迪,赵宪明,箱型孔轧制方抷的显式动力学有限元的模拟,特殊钢,2002,23(2):p23
    [72] 李建超,崔建忠,吴迪,赵宪明,椭圆孔轧制方拯的显式动力学模拟,塑性工程学报,2003,10(1):p57
    [73] 王艳文,康永林,任学平,余智勇,袁大焕,棒材四道次连轧过程中轧件变形的三维有限元模拟,材料科学与工艺,1999,7:p228
    [74] 洪慧平,康永林,冯长桃,韩畴,箱型孔型合金钢稳态轧制的温度场有限元模拟,特殊钢, 2002,23(2):p11
    [75] 洪慧平,康永林,冯长桃,陈溪强,韩畴,椭—圆孔型连轧大圆钢三维热力耦合弹塑性有限元分析,特殊钢,2002,23(5):p5
    
    [76] 洪慧平,康永林,三维有限元分析张力对连轧大规格芯棒钢变形及温度的影响,特殊钢,2003,24(2):p10
    [77] K.Agarwal, J.K.Brimacombe, Mathematical Model of Heat Flow and Austenite-Pearlite Transformation in Eutectoid Carbon Steel Rods for Wire, Metallurgical Transactions B, 1981, 12B:p121
    [78] E.B.Hawbolt, B.Chau, J.K.Brimacombe, Kinetics of Austenite-Pearlite Transformation in Eutectoid Carbon Steel, Metallurgical Transactions B, 1983, 14B:p1803
    [79] W.Mitter, F.G.Rammerstorfer, O.Grudler, G.Wiedner, Discrepancies between calculated and mearsured residual stresses in quenched pure iron sylinder, Materials Science and Technology, 1985, 1:p793
    [80] S.Kamanoto, T.Nishimori, S.Kinoshita, Analysis of residual stress and distortion resulting from quenching in large low-alloy steel shafts, Materials Science and Technology, 1985, 1: p798
    [81] F.Abbasi, A.J.Fletcher, Effects of viscous flow on generation of thermal stress and strain during quenching of steel plates, Materials Science and Technology, 1985, 1:p770
    [82] A.J.Fletcher, C.Lewis, Effect of free edge on thermal stresses in quenched steel plates, Materials Science and Technology, 1985, 1:p780
    [83] R.Schroder, Influences on development of thermal and residual stresses in quenched steel cylinders of different dimensions, Materials Science and Technology, 1985, 1:p754
    [84] J.B.Leblond, G.Mottet, J.Devaux, Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour, Materials Science and Technology, 1985, 1:p815
    [85] P.Jeanmart, J.Bouvaist, Finite element calculation and measurement of thermal stresses in quenched plates of high-strength 7075 aluminium alloy, Materials Science and Technology, 1985, 1:p765
    [86] Yuan Fa-rong, Wu Shang-li, Transient temperature and residual-stress fields in axisymmetric metal components after hardening, Materials Science and Technology, 1985, 1:p851
    [87] T.Inoue, Zhigang, Coupling between stress, temperature, and metallic structures during processes involving phase transformations, Materials Science and Technology, 1985, 1: p845
    [88] D.Y.Ju et al, Simulation of quenching-tempering process based on metallo-thermo-mechanics, J.Soc.Mater.Sci. Jpn. 1996, 45(6): p643
    [89] M.B.Kuban, R.Jayaraman, E.B.Hawbolt, J.K.Brimacombe, An Assessment of the additivity principle in predicting continuous-cooling austenit?-to-pearlite transformation kinetics using isothermal transformation data, Metallurgical Transactions A, 1986, 17A: p1493
    [90] S.Sjostrom, Interactions and constitutive models for calculating quench stress in steel, Mater.Sci. Tech. 1985,1:p823
    [91] S.Denis, S.Sjostrom, A.Simon, Coupled temperature, stress, phase transformation calculation model numerical illustration of the internal stresses evolution during cooling of a eutectoid carbon steel sylinder, Metallurgical Transactions A, 1987, 18A: p1203
    
    [92] Y.Nagasaka, J.K.Brimacombe, E.B.Hawbolt, I.V.Samarasekera, Mathematical model of phase transformations and elasto-plastic stress in the water spray quenching of steel bars, Metallurgical Transactions A, 1993, 24A:p795
    [93] T.Reti, Z.Fried, I.Felde, Computer simulation of steel quenching process using a multi-phase transformation model, Computational Materals Science, 2001, 22:p261
    [94] 袁文庆,潘健生等,工件加热三维非稳态温度场的计算机模拟,金属热处理学报,1991,11(6):p35
    [95] 胡明娟,潘健生等,界面条件剧变的淬火过程三维温度场的计算机模拟,金属热处理学报,1996,17(s):p90
    [96] 潘健生,田东等,45钢淬火三维瞬态温度场与相变的计算机模拟,热加工工艺,1998,1:p9
    [97] 田东,胡明娟,潘健生等,T8钢淬火过程三维温度场计算及实验,上海交通大学学报,1998,32(2):p109
    [98] 田东,胡明娟,潘健生等,淬冷过程中三维传热的数值模拟,兵器材料科学与工程,1998,21(4):p28
    [99] 顾剑锋,潘健生,胡明娟等,冷轧辊淬火冷过程数值模拟的研究,金属热处理学报,1999,20(2):p1
    [100] 顾剑锋,潘健生,胡明娟等,淬火过程的计算机模拟及其应用,金属热处理,2000,5:P35
    [101] 叶健松,李勇军,潘健生等,大型支承辊热处理过程的数值模拟,机械工程材料,2002,26(6):p12
    [102] 邹壮辉,高守义,张立文等,淬冷热应力场研究和应用进展,金属热处理学报,1993,14(3):p1
    [103] 张立文,赵志国,范权利等,35CrMo钢大锻件淬火过程组织分布的计算机预测,金属热处理学报,1994,15(4):p15
    [104] 张立文,赵志国,范权利等,用有限元法计算35CrMo钢大锻件淬火过程的瞬态温度场,金属热处理,1994,12:p24
    [105] 许学军,陈国学,吴景之等,钢的回火过程中应力演化的数值模拟,金属热处理,1997,3:p12
    [106] 林家骝,杨振枢,于震宗,回火过程应力场计算机模拟,金属热处理学报,1996,17(2):p59
    [107] 陈君若,王洪纲等,厚壁管类工件水淬传热问题的计算机模拟,金属热处理学报,1997,18(1):p38
    [108] S.Kou, D.K.Sun and Y.P.Le, A fundamental study of laser transformation hardening, Metall. Trans, 1983, 14A: p643
    [109] S.Kou, D.K.Sun, Heat flow during the laser transformation hardening of cylindrical bodies, Metall. Trans, 1983, 14A: p1859
    [110] C.Hu and T.N.Baker, Prediction of laser transformation hardening depth using a line source model, Acta metall.mater, 1995, 43:p3563
    [111] 姚善长,园柱体工件激光相变硬化过程的理论研究,中国激光,1987,14(6):p321
    
    [112] 郭元强,朱祖昌,俞少罗,激光相变强化非稳态温度场的研究,金属热处理学报,1994, 15(1):p17
    [113] 朱祖昌,方伟,梅或,钢激光扫描加热准稳定温度场的数值计算,上海工程技术大学学报,1994,18(4):p26
    [114] 朱祖昌,李培耀,俞少罗,相变硬化激光热处理的数值解及组织性能的预测,金属学报,1996,13(1):p35
    [115] 朱祖昌,李培耀,俞少罗,钢的激光热处理的数值模拟和表面温度场测定,金属热处理学报,1996,17(s):p32
    [116] 马天驰,陈概,金属材料激光相变硬化的三维数值模拟,中国激光,1996,23(12):p1127
    [117] 陈概,马天池,GCr15钢激光相变硬化的三维数值分析,应用激光,1997,17(5):p197
    [118] 管一弘,樊钢,陈铁力,激光淬火热致残余应力的数值分析,激光技术,1998,22(5):p313
    [119] 管一弘,陈铁力,陈铁力,王洪纲,激光相变硬化过程中温度场及马氏体相变的数值分析,金属热处理学报,1998,19(4):p19
    [120] 管一弘,陈铁力,激光淬火温度场及材料性能的数值模拟,中国激光,1999,26(3):p263
    [121] 赵志国,张立文等,MoCu球铁激光淬火过程温度场的数值计算,大连理工大学学报,1995,35(2):p164
    [122] Liwen Zhang, J.Th.M.De. Hosson, Yuanliang Xia, Calculation of Transient Stress Field During Laser Transformation Hardening Process, Journal of Shanghai Jiaotong University, 2000, E-5 (1):p82
    [123] Liwen Zhang, Lixia Wei, Guoliang Zhang, J.Th.M.De.Hosson, Calculation of Temperature Field During Laser Transformation Hardening of Cylindrical Bodies, Journal of Shanghai Jiaotong University, 2000, E-5 (1): p72
    [124] Zhang Liwen, J.Th.M.De.Hosson, Xia Yuanliang, Calculation of Residual Stress Field in Laser Transformation Hardened MoCu Nodular Iron, Acta Metallurgica Sinica (English Letters), 2000, 13(2): p776
    [125] Zhang Liwen, Wang Rongshan J.Th.M.De.Hosson, Calculation of 3-D Transient Temperature Field During Laser Transformation Hardening Process, Acta Metallurgica Sinica (English Letters), 2000, 13(2):p806
    [126] 张立文,王晓辉,王富岗,园柱体激光相变硬化三维温度场数值计算,材料科学与工艺,2002,10(1):p62
    [127] 张立文,裴继斌,陈騑騢,激光相变硬化过程数值分析与工艺优化系统,兵器材料科学与工程,2001,24(3):p42
    [128] A.mochida, K.kudo, Y.nizutani,etc. Transient heat transfer analysis in vacuum furnace heated by radianttube burners, Energy Convers.Mgmt, 1997, V38:p1169
    [129] 张善庆.真空热处理加热滞后时间的研究,金属热处理,2000,N1:p38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700