激光热变形机理及复杂曲面板材热成形工艺规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航空航天、舰船、汽车及微电子的零部件中,成形件所占比重较大,品种多,批量小,成形工艺过程复杂,尤其是钛镍合金等难成形材料零件。采用常规整体加热后冲压的方法需要制作大量的耐高温模具,成本高且周期长;部分零件由于受到加热炉尺寸的限制,不能使用该方法进行成形加工。激光热成形利用高能激光束对工件局部加热诱发不均匀热应力,使板材产生塑性变形,以获得所需要的目标形状。作为一种基于热态积累的成形方法,激光热成形无需模具与外力,是一种柔性成形技术,特别适合高硬脆性材料的成形与小批量零件的生产。
     本课题针对复杂曲面激光热成形工艺规划研究中存在的问题,采用实验测试、数值仿真和理论分析相结合的方法,通过对不同工艺参数条件下板材变形行为的研究,深入分析了激光热变形过程中板材的成形机理、温度场和变形场规律、成形精度控制方法、路径规划与工艺参数的确定方法,为实现金属板材的快速精确成形提供理论基础。论文的主要研究工作和创新成果如下:
     (1)机理分析和板材弯曲方向控制。论文分析了温度梯度机理、屈曲机理与增厚机理等主要的成形机理,从板材弯曲变形和增厚等角度探讨了不同工艺参数条件下板材的变形行为。针对复杂型面板材成形应变场的要求,根据激光热成形后板材的应变分布规律,论文重新探讨了温度梯度机理与增厚机理,使其分别对应于弯曲应变与平面应变,并提出了一种包含着温度梯度机理和增厚机理条件下板材变形特征的热成形机理——耦合机理。同时发现了在温度梯度机理、屈曲机理与耦合机理条件下,板材既产生绕x轴弯曲也产生绕y轴弯曲变形的现象。此外,为了实现板材弯曲方向的精确控制,论文对屈曲机理条件下板材的温度分布与屈曲条件进行了理论分析,推导出屈曲机理适用范围判断准则,根据Fbuckling值可判断板材的弯曲方向,并探讨了加热起始点以及加热线位置对弯曲方向的影响规律,为激光热成形工艺规划中参数选择提供理论基础。
     (2)激光热成形温度分布与变形行为的扩展性规律。为了减少小批量和大尺寸成形件的研究周期和成本,找出不同尺寸、材质板材激光热成形行为之间内在联系,论文对激光热成形温度分布与变形规律的可扩展性进行研究。首先,通过定义转化温度,对激光能量、扫描速度和光斑直径等单一工艺参数调整时温度场变化的规律进行研究,进而揭示出不同加工工艺参数之间温度场的映射关系。基于工艺参数与温度分布之间映射规律,可以有效地通过已知工艺参数的温度场预测出不同工艺参数条件下板材的温度分布。其次,通过定义无量纲温度和坐标转化,研究了板内任一平行于上表面的
Forming parts account for much bigger proportion in the fields of the aerospace, shipbuilding, automobile and microelectronics. However, due to complex process, various products and low volume production and difficult to form materials like titanium alloy, nickel alloy, etc, the traditional whole heat forming needs a large number of high temperature resistant dies, which leads to a high expense and long times. In addition, some workpieces can not be processed because they are confined by the size of heating furnace. Laser forming is a flexible forming technology which forms sheet metal by means of laser-induced non-uniform thermal stress. As a forming method of hot accumulation, in comparison with conventional metal forming process, it requires no dies and external forces, especially, it is suitable for the hard and brittle materials forming and low volume production.
     In order to solve the associated problems in the process planning of complicated shape workpiece, the forming mechanism, the temperature and deformation rules, the method of forming accuracy control as well as process planning of complex shapes in the laser forming process are studied profoundly in the dissertation by experiment, numerical simulation and theoretical analysis. These investigations can provide theoretical basis for the rapid and precise forming of metal plate on the basis of the research of deformation behavior of plate under the different process parameters. The main research contents and original findings are as follows:
     (1) Research on forming mechanisms and the bending direction of plate. Firstly, the bending deformation and upsetting of plate under the temperature gradient mechanism, buckling mechanism and upsetting mechanism are analyzed. According to the strain field requirement of complicated shape forming, the temperature gradient mechanism and the upsetting mechanism are discussed further based on the strain distribution after laser forming, under which the plate produce the bending strain and plane strain, respectively. At the same time, a new mechanism, named as the coupling mechanism by the author is proposed, which is the combination of the temperature gradient mechanism and the upsetting mechanism. Moreover, it can be observed that the plate bends not only about the x-axis but also about the y-axis under the process conditions of the temperature gradient mechanism, the buckling mechanism and the coupling mechanism. To achieve the precise control of bending direction
引文
[1] 拉达伊 D. 焊接热效应-温度场、残余应力、变形. 熊第京,郑朝云,史耀武译. 北京:机械工业出版社,1997
    [2] Baukal C E and Gebhart B A. A review of flame impingement heat transfer studies part I: experimental conditions. Combustion Science and Technology. 1995, 104(4-6): 339-357
    [3] Baukal C E and Gebhart B A. A review of empirical flame impingement heat transfer correlations. International Journal of Heat and Fluid Flow. 1996, 17(4): 386-396
    [4] 王家金. 激光加工技术. 北京:中国计量出版社,1992
    [5] 李力均. 现代激光加工及其装备. 北京:北京理工大学出版社,1992
    [6] Geiger M. Synergy of laser material processing and metal forming. CIRP Annals, 1994, 43(2): 563-570
    [7] Frackiewicz H. Technology of metal shaping by laser — methods, problems, outlook. Polish Academy of Science, 1994
    [8] Geiger M and Vollertsen F. Rapid prototyping for aluminum parts. In: Leichtbaustrukturen und Leiche Bauteile. German: VDI-Berichte, 1994, 1080: 293-298
    [9] Magee J, Watkins K G and Steen W M. Advances in laser forming. Journal of Laser Applications, 1998, 10(6): 235-246
    [10] 季忠,刘庆斌,吴诗惇. 板料的激光快速成形技术及其应用. 中国机械工程, 1996, 7(6): 54-55
    [11] Gremaud M, Wagniere J D, A. Zryd, et al. Laser metal forming: process fundamentals. Surface Engineering, 1996, 12(3): 251-259
    [12] Frackiewicz H. High-technology metal forming. Industrial Laser Review, 1996, 10: 15-17
    [13] Scully K. Laser line heating. Journal of Ship Production. 1987, 4 (3):237-246
    [14] Thomson G and Pridham M. Material property changes associated with laser forming of mild steel components. Journal of Material Processing Technology, 2001, 118(1): 40-44
    [15] Namba Y. Laser forming in space. Proceeding of the International Conference on lasers’85, editor: Wang C P, Osaka, Japan,1986, pp.403-407
    [16] Frackiewicz H and Mucha Z. Sheets and cups by laser forming. German:Laser-Praxis, 1990: 856-861
    [17] Frackiewicz H and Trampczynski W. Shaping of tubes by laser beam. Proceedings of the 25th International Symposium on Automotive Technology and Automation, ISATA , 1992, pp.373-380
    [18] Geiger M and Vollertsen F. Flexible straightening of car body shells by laser forming. SAE paper no.930279, 1993, pp.354-361
    [19] Hennige T and Holzer S. On the working accuracy of laser bending. Journal of Material Processing Technology, 1997, 71(3): 422-432
    [20] 李纬民, Geiger M, Vollertsen F. 金属板材激光弯曲成形规律的研究. 中国激光, 25(9):859~864
    [21] 季忠,吴诗惇. 板料激光弯曲变形的几何与能量效应研究. 航空精密制造技术,1996,32(4): 21-23
    [22] 王秀凤. 薄板激光弯曲机理的研究. 锻压技术,2001,26(4):29-33
    [23] 刘顺洪等. 金属板材的三维激光弯曲成形的研究. 应用激光,2001,21(1):18-20
    [24] Geiger M and Vollertsen F. The mechanisms of laser forming. CIRP Annals, 1993, 42(1): 301~304
    [25] Vollertsen F. An analytical model for laser bending. Laser in Engineering, 1994, 2: 261-276
    [26] Arnet H and Vollertsen F. Extending laser bending for the generation of convex shapes. Journal of Engineering Manufacture, 1995, 209(1): 433-442
    [27] Vollertsen F. Mechanism and models for laser forming. Laser Assisted Net Shape Engineering, Proceedings of the LANE’94, Meisenbach, Bamberg, 1994: 345-360
    [28] 管延锦,孙胜. 板料激光弯曲的屈曲机理的研究. 激光技术,2001,25(1): 11-14
    [29] Namba Y. Laser forming of metals and alloys, in: Proceedings of Laser Advanced Materials Processing, LAMP’87, Osaka, Japan, 1987, pp.601-606
    [30] Vollertsen F and Rodle M. Model for the temperature gradient mechanism of laser bending, in: Laser Assisted Net shape Engineering, Proceedings of the LANE’94, 1994, 1: 371-378
    [31] Holzer S, Arnet H and Geiger M. Physical and numerical modeling of the buckling mechanism, in: Laser Assisted Net shape Engineering, Proceedings of the LANE’94, 1994, 1: 379-386
    [32] Kraus J. Basic processes in laser bending of extrusions using the upsetting mechanism, in: Laser Assisted Net shape Engineering 2, Proceedings of the LANE’97, Meisenbach, Bamberg 1997, 2: 431-438
    [33] Vollertsen F, Komel I and Kals R. The laser bending of steel foils for microparts by the buckling mechanism-a model. Modelling and Simulation in Materials Science and Engineering. 1995, 3(1): 107-119
    [34] Hu Z, Kovacevic R and Labudovic M. Experimental and numerical modeling of buckling instability of laser sheet forming. International Journal of Machine Tools & Manufacture, 2002, 42(13): 1427-1439
    [35] Li W C and Yao Y L. Numerical and experimental investingation of convex laser forming processs. Journal of Manufacturing Process, 2001, 3(2): 73-81
    [36] Watanaba M and Satoh K. Effect of welding condictions on the shrinkage distortion in welded structures. The Welding Journal (Welding Research Supplement), 1961, 40(8): 377-384
    [37] Koloman V and Karol P. Formen durch locale erwarmung. Proc.5th Int.Conf. on Metal Forming, Gyor, 1991: 69-75
    [38] Iwasaki Y, Hirabe R, Taura A, et al. Study on the forming of hull plate by line heating. Nitusbihsi Juko Giho. 1975, 12(3): 51-59
    [39] 蓝鸿波. 水火弯板的数学模型. 中国造船,1988, (3): 68-78
    [40] 董守福,张振德. 水火弯板计算机模拟方法. 软件开发与应用. 1991,(6):15-19
    [41] Moshaiov A and Shin J G. Modified strip model for analyzing the line heating method-Part 2:Thermo-Elastic-Plastic Plates. Journal of Ship Research. 1991, 35(3): 266-275
    [42] Moshaiov A and Latorre R. Temperature distribution during plate bending by torch flame heating.Journal of Ship Reseach,1985,29(1): 1-11
    [43] 金泉林. 矩形截面梁热应力弯曲的弹塑性分析解. 塑性工程学报, 1996, 3(3): 30-40
    [44] 汪建华,戚新海,徐磊. 水火弯板的简化计算-水火弯板研究(一). 造船技术. 1996, (10): 22-24
    [45] Yau C L, Chan K C and Lee W B. A new analytical model for laser bending. Laser Assisted Net Shape Engineering, Proceedings of LANE’97, Meisenbach, Bamberg, 1997, 2: 357-366
    [46] Yau C L, Chan K C and Lee W B. Laser bending of leadframe materials. Journal of Material Processing Technology, 1998, 82(1-3): 117-121
    [47] Kraus J. Basic processes in laser bending of extrusions using the upsetting mechanism. Laser Assisted Net Shape Engineering, Proceedings of the LANE’97, Meisenbach, Bamberg, 1997, 2: 431-438
    [48] Kyrsanidi A K, Kermanidis T B and Pantelakis S G. An analytical model for the prediction of distortions caused by the laser forming processs. Journal of Material Processing Technology, 2000, 104(1): 94-102
    [49] Cheng P J and Lin S C. An analytical model to estimate angle formed by laser. Journal of Material Processing Technology, 2001, 108(3): 314-319
    [50] Cheng P J and Lin S C. An Analytical Model for Temperature Field When Laser Forming Sheet Metal, Journal of Materials Processing Technology. 2000, 101(1): 260-267
    [51] Cheng P J and Lin S C. Using neutral networks to predict bending angle of sheet metal formed by laser. International journal of machine tools and manufacture, 2000, 40(8): 1185-1197
    [52] 管延锦,孙 胜,栾贻国,赵国群. 板料激光弯曲成形角度的解析研究. 光电子?激光,2004,15(4): 483-486
    [53] Hu Z, Labudovic M, Wang H, et al. Computer simulation and experimental investingation of sheet meatl bending using laser beam scaning. International Journal of Machine Tools & Manufacture, 2001,41(4): 589-607
    [54] Wu S C and Zheng J S. An experimental study of laser bengding for sheet metals. Journal of Material Process Technology, 2001, 110(2): 160-163
    [55] Marya M and Edwards G R. A study on the laser forming of near-alpha and metastable beta titanium alloy sheets. Journal of Material Processing Technology, 2001, 108(3): 376-383
    [56] Magee J, Sidhu J and Cooke R L. A prototype laser forming system. Optics and Lasers in Engineering, 2000, 34(4-6): 339-353
    [57] Lawrence J, Schmidt M J and Li L. The forming of mild steel plates with a 2.5KW high power diode laser. International Journal of Machine Tools & Manufacture, 2001, 41(7): 967-977
    [58] Chen D J, Wu S C and Li M Q. Studies on laser forming of Ti-6Al-4V alloy sheet. Journal of Material Processing Technology, 2004, 152(1): 62-65
    [59] Chan K C and Liang J. Laser bending of Ti3Al-based intermetallic alloy. Materials Letters, 2001, 49(1): 51-55
    [60] 季忠,吴诗惇. 板料激光弯曲成形的技术参数研究. 模具技术,1998,(1):3-7
    [61] 陈敦军,向毅斌,吴诗惇等. 钛合金板料激光曲线弯曲及热辐射对其组织性能的影响. 金属学报,2001,37(6): 643-646
    [62] Li W C and Yao Y L. Numerical and experimental study of strain rate effects in laser forming. Journal of Manufacturing Science and Engineering, 2000,122(3): 445-451
    [63] Bao J C and Yao Y L. Analysis and prediction of edge effects in laser bending. Journal of Manufacturing Science and Engineering, 2001, 123(1): 53-61
    [64] Cheng J and Yao Y L. Cooling effects in multiscan laser forming. Journal of Manufacturing Process. 2001, 3(1): 60-72
    [65] 季忠,吴诗惇. 板料激光弯曲成形及其数值模拟. 金属成形工艺, 1998, 16(1): 24-30
    [66] 管延锦,孙 胜,栾贻国,赵国群. 扫描次数对板料激光弯曲成形影响的实验研究. 光电子?激光,,2002,13(11): 1163-1166
    [67] 管延锦,孙 胜,赵国群,栾贻国. 激光能量密度对激光弯曲成形的影响. 应用激光,2003,23(3): 135-138
    [68] 李纬民,卢秀春,刘助柏. 激光弯曲工艺中板材厚度的影响规律. 中国有色金属学报,1999,9(1): 39-44
    [69] 王秀凤. 激光加工工艺参数对板料弯曲角度的影响. 航空工程与维修,1999,(4): 41-42
    [70] 王扬,路华,谭建国. 板材激光加热弯曲成形的研究. 激光技术,2003,27(3): 175-177
    [71] 季忠,刘韧,王忠雷等. 基于遗传算法的板料激光弯曲成形工艺优化设计. 锻压设备与制造技术,2003, 38(5): 79~82
    [72] W M 罗森诺等. 传热学基础手册. 齐欣译. 北京:科学出版社. 1992
    [73] 董大栓. 水火弯板成形规律及加工参数的确定研究. [学位论文]. 上海:上海交通大学, 2001
    [74] 科利尔 J G. 对流沸腾和凝结. 魏先英等译. 北京:科学出版社, 1982
    [75] 钟国柱,黎明. 火焰成形的动态过程研究. 焊接,1985,(3):4-7
    [76] 钟国柱,黎明. 火焰成形各工艺参量对成形效果的影响. 焊接,(4):5-10
    [77] 钟国柱,黎明. 预弯曲率对成形效果的影响. 焊接,1985,(7):1-7
    [78] Ramos J A. Microsructure and microhardness study of laser bent Al-2024-T3. Journal of Laser Application, 2001, 13(1): 32-40
    [79] 刘顺洪,胡乾午,周龙早等. 激光弯曲成形 Ti7Al-2Zr-2Mo-2V 的组织性能的研究. 中国激光, 2002, A29(11): 1049-1053
    [80] Cheng J and Yao Y L. Microstructure integrated modeling of multiscan laser forming. Journal of Manufacturing Science and Engineering, 2002, 124(2): 379-387
    [81] Fan Y, Cheng P and Yao Y L. Effect of phase transformations on laser forming of Ti-6Al-4V alloy. Journal of applied Physics, 2005, 98(1): 013518
    [82] Cheng J and Yao Y L. Cooling effects in multiscan laser forming. Journal of Manufacturing Processes, 2001, 3(1): 60-72
    [83] Merklein M, Hennige T, Geiger M. Laser forming of aluminum and aluminum alloys microstructural investigation. Journal of Materials Processing Technology, 2001, 115(1): 159-165
    [84] Cheng J G, Zhang J, Chu C C, et al. Experimental study and computer simulation of fracture toughness of sheet metal after laser forming. International Journal of Advanced Manufacture Technology,2005,26(11-12): 1222-1230
    [85] 王新平,孟祥军,余巍. 水火弯板加热参数对钛合金板材组织和性能的影响. 材料开发与应用,2001,16(3): 10-12
    [86] 管延锦,张红梅,张守云. 激光弯曲成形对板料组织与性能的影响. 汽车工艺与材料,2002,(1): 5~7
    [87] Hennige T. Development of irradiation strategies for 3D laser forming. Journal of Material Processing Technology, 2000,103(1): 102-108
    [88] Magee J. Laser forming of aerospace alloys. PHD Thesis, University of Livepool, 1999
    [89] Otsu M,Fujii M,Osakada K. Three-dimensional laser bending of sheet metal. Proceedings of the 6th ICTP, Nuremberg, 1999, 2: 1025-1030
    [90] Kim J, Na S J. Development of irradiation strategies for free curve laser forming. Optics & Laser Technology, 2003, 35(8): 606-611
    [91] Edwardson S P, Watkins K G, Dearden G, et al. Generation of 3D shapes using a laser forming technique. Proceedings of ICALEO’2001:Section D, 2001: 603-609
    [92] Ueda Y, Murakawa H, Rashwan A M, et al. Development of Computer Aided Process Planning System for Plate Bending by Line-Heating (Report 1)——Relation between the Final Form of Plate and the Inherent Strain. Journal of Ship Production, 1994, 10(1): 59-67
    [93] Ueda Y, Murakawa H, Rashwan A M, et al. Development of Computer Aided Process Planning System for Plate Bending by Line-Heating (Report 2)——Practice for Plate Bending in Shipyard Viewed from Aspect of Inherent Strain. Journal of Ship Production 1994, 10(4): 239-247
    [94] Ueda Y, Murakawa H, Rashwan A M, et al. Development of Computer Aided Process Planning System for Plate Bending by Line-Heating (Report 3)——Relation Between Heating Condition and Deformation . Journal of Ship Production 1994, 10(4): 248-257
    [95] Ueda Y, Murakawa H, Rashwan A M, et al. Development of Computer Aided Process Planning System for Plate Bending by Line-Heating (Report 4)——Decision Making on Heating Condition, Location, and Direction. Transaction of The Society of Naval Architects of Japan 1994, 174: 683-695
    [96] Shin J G, Ryu C H, Sohn S J, et al. Simulation-based productivity analysis for a multi-layered design of an integrated antomated line heating system. 1st Computer Applications and Information Technology in Shipbuilding. Potsdam, Germany:CAITS. 2000: 426-437
    [97] Shin J G and Sohn S J. Simulation-based evaluation of productivity for the design of an automated fabrication workshop in shipbuilding. Journal of Ship Production. 2000, 16(1): 46-59
    [98] Shin J G, Lee J H and Park S K. A numerical thermoplastic analysis of line heating processes for saddle-type shells with the application of an artificial neutral network. Journal of production, 1999,15(1): 10-20
    [99] Jang C D and Moon S C. Algorithm to determine heating lines for plate forming by line heating method. Journal of ship production, 1998, 14(4): 238-245
    [100] Jang C D, Moon S C and Dae E K. Acquisition of line heating information for automatic plate forming. South Korea: Seoul National University. 2000
    [101] Cheng J and Yao Y L. Processs design of laser forming for three-dimensional thin plates. Journal of Manufacturing Science and Engineering, 2004, 126(2): 217-225
    [102] Liu C, Yao Y L. Optimal process planning for laser forming of doubly curved shapes. Journal of Manufacturing Science and Engineering, 2004, 126(1): 1-9
    [103] 刘玉君,董守富,林哲. 水火弯板焰道布置优化设计. 造船技术,1993,(9):6-10
    [104] 刘玉君,纪卓尚,邓燕萍. 船体帆型外板水火成形工艺参数预报系统. 中国造船. 2000,41(3):80~83
    [105] 刘玉君,纪卓尚,董守富. 水火弯板局部收缩和整体变形的理论分析. 中国造船,1995,(2):90-100
    [106] Liu Y J, Zhu X L and Ji Z S. Ship hull plate processing surface fairing with constraints based on B-spline. Journal of Marine Science and Application, 2005, 4(3): 13-17
    [107] Zhang X B, Ji Z S and Liu Y J. Design of convex hull plate forming by pure line heating. Journal of Marine Science and Application, 2004, 3(2): 17-23
    [108] Reutzel E W, Martukanitzl R P, Michaleris P, et al. Development of a system for the laser assisted forming of plate. Proceeding of ICALEO’2001.
    [109] Dearden G and Edwardson S P. Laser assisted forming for ship building. SAIL 2003 Williamsburg VA, June 2-4
    [110] 管延锦,孙胜,赵国群等. 激光弯曲成形设备及其闭环成形过程. 应用激光,2001,21(5):302-305
    [111] 王健,赵雁南,王家钦等. 船体外板水火成型智能机器人控制器的研究. 船舶工程,2002,(3): 12-17
    [112] Iwasaki Y, Shiota H. Study on the forming of hull plate by line heating method. Technical Review, Mitsubishi Heavy Industries, Ltd. 1975, 12(3): 161-170
    [113] Kitamura N, Sakai Y and Murayama H. 3-diemnsional line heating system for curved shell plate for shipbuilding. 9th International Conference Computer Application in Shipbuilding. Tokyo, Japan: Society of Naval Architects of Japan,1997: 351-366
    [114] Ishiyama M, Kamichika R, Ogawa J, etc. Automation of plate bending process by line heating. Ishikawajima-Harima Engineering Review. 1994, 34(2): 120-125
    [115] Shin J G, Ryu C H, Choe S W, etc. An objected-oriented control system for an automated line heating process. 1999 ICCAS Conference, Boston, USA:ICCAS, 1999
    [116] Shin J G, Ryu C H and Nam J H. A comprehensive line-heating algorithm for automatic formation of curved shell plates. Journal of Ship Production, 2004, 20(2): 69-78
    [117] http://www.nsrp.org/projects/sps_presentations/line_heating.pdf
    [118] 马骏,董守福. 计算机辅助水火弯板系统. 大连理工大学学报. 1994, 31(3): 362-364
    [119] 戴寅生. 船体外板火焰成型加工专家系统,船舶工程,1991,(2):41-47
    [120] 刘玉君,纪卓尚,董守福等. 水火弯板数据库系统设计. 船舶工程,1996,(1):31-35
    [121] 董大栓,柳存根,谭家华. 水火弯板的研究. 广船科技,2002,(1):29-33
    [122] 王勖成,邵敏. 有限单元法基本原理和数值方法. 北京:清华大学出版社,1997
    [123] 陈如欣,胡忠民. 塑性有限元法及其在金属成形中的应用. 重庆:重庆大学出版社,1989
    [124] 彭颖红. 金属塑性成形仿真技术. 上海:上海交通大学出版社,1999
    [125] 刘玉君,纪卓尚,孙焕纯. 水火弯板温度场的数学模型. 中国造船. 1996,(4): 87-95
    [126] 范慕辉,李松年. 热弹塑性应力分析的有限元法. 河北工学院学报. 1995:24(4): 51-58
    [127] Kyrsanidi A K, Kermanidis T B and Pantelakis S G. Numerical and experimental investingation of the laser forming processs. Journal of Material Processing Technology, 1999, 87(1-3): 281-290
    [128] 陆建,倪晓武,贺安之. 激光与材料相互作用物理学. 北京:机械工业出版社,1996
    [129] 季忠,吴诗惇. 板料激光加热三维温度场的数值模拟. 西北工业大学学报,1997,15(2): 204-207
    [130] Chen G F and Xu X F. Experimental and 3D finite element studies of CW laser forming of thin stainless steel sheets. Journal of Manufacturing Science and Engineering, 2001, 123(1): 66-73
    [131] 陈楚,张月娥. 焊接热模拟技术. 北京,机械工业出版社,1985
    [132] 王文先,霍立兴,张玉凤,王东坡. 相变温度对焊接残余应力的影响规律及机理分析. 中国机械工程,2003,14(3): 246-249
    [133] 严宗达,王洪礼. 热应力. 北京: 高等教育出版社, 1993
    [134] Zhang L, Reutzel E W and Michaleris P. Finite element modeling discretization requirements for the laser forming processs. International Journal of Mechanical Sciences, 2004, 46(4): 623-637
    [135] 雷卡林. 焊接热过程计算. 徐碧宇、庄鸿寿(译). 北京:机械工业出版社,1958
    [136] 竹内洋一郎. 热应力. 郭延玮译. 北京:科学出版社,1977
    [137] 李俊昌. 激光的衍射及热作用计算. 北京:科学出版社,2002
    [138] Eagar T W, Tsai N S. Temperature fields produced by traveling distributed heat sources. Welding Journal, 62(12): 346-355
    [139] 董大栓,柳存根,谭家华. 水火弯板温度场中相似性规律研究. 中国造船,2002,43(1): 88-94
    [140] 李之光. 相似与模化. 北京:国防工业出版社,1982
    [141] 鹿守理. 相似理论在金属塑性加工中的应用. 北京:冶金工业出版社, 1995
    [142] 陈发良,余同希. 结构热力响应及失效的尺度率. 固体力学学报,1997,18(1): 25-37
    [143] 杨锐玲,朱永华. 相似理论在有缺陷混凝土热传导模型实验中的应用. 红外,2005,(3): 1-5
    [144] Yong D F. Basic principle and concepts of model analysis. Educational Lecture, 1971, 7: 325~336
    [145] 陈桂东,周彦煌. 末制导炮弹膛内滞留热安全模型及相似分析. 弹道学报,2004,16(2): 11-14
    [146] 蔡志鹏,鹿安理,史清宇等. 相似理论在焊接温度场和应力场及应变场中的应用. 焊接学报,2000,21(3): 79-82
    [147] 蔡志鹏,赵海燕,吴甦等. 利用相似理论预测焊接变形的研究. 机械工程学报,2002,38(5): 141-144
    [148] 谢多夫. 力学中的相似方法与量纲理论. 北京: 科学出版社, 1982
    [149] 徐挺. 相似方法及其应用. 北京:机械工业出版社,1995
    [150] 王丰. 相似理论及其在传热学中的应用. 北京: 高等教育出版社, 1990
    [151] Magee J, Watkins KG., Steen W M, et al. Edge effects in laser forming. Laser Assisted Net Shape Engineering 2, Proceedings of the LANE’97, Meisenbach, Bamberg, pp. 399-408
    [152] Yu G X, Patrikalakis N M and Maekawa T. Optimal development of doubly curved surfaces. Computer Aided Geometric Design. 2000, 17(6): 545-577
    [153] Lee J S. Development of automatic marking generation system for plate forming by line heating. Journal of Ship Production. 1996, 12(4): 247-253
    [154] Szilard R. 板的理论和分析. 陈太平,戈鹤翔,周孝贤译. 北京:中国铁道出版社,1994
    [155] Ventsel E and Krauthammer. Thin plates and shells: theory, analysis and application, New Yaork: Marcel Dekker, Inc,2001
    [156] 薛大为. 板壳理论. 北京:北京工业学院出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700