屈曲约束支撑钢框架抗震性能及其结构影响系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢结构轻质高强,抗震性能好。纯钢框架侧向刚度较差,往往需要较大的梁、柱截面才能满足要求,中心支撑钢框架的支撑在强震作用下易发生屈曲失稳,造成其抗震能力急剧下降,偏心支撑钢框架的支撑在一定程度上解决了上述结构体系中存在的问题,但在强震下仍有支撑屈曲、拉压滞回性能不对称等问题。为了改善支撑的受力性能,使其在地震作用时不发生屈曲,屈曲约束支撑钢框架体系应运而生。这种体系在发达国家已被大量采用,国内的应用研究正在不断发展中。
     本文首先应用ANSYS有限元分析软件对屈曲约束支撑钢框架和普通支撑钢框架在静力往复荷载作用下的受力性能进行模拟。结果表明,屈曲约束支撑钢框架滞回曲线较普通支撑钢框架滞回曲线更加饱满,滞回环包含的面积相对较大,说明其能够消耗更多的能量,具有更强的耗能能力。通过对屈曲约束支撑钢框架和普通支撑钢框架进行时程分析,对比了两种体系大、小震的时程响应,得出屈曲约束支撑钢框架具有更好的抗震性能。
     基于增量动力分析,求出多条地震波下的结构基底剪力和顶点位移,并进行多项式拟合,得到结构的IDA能力曲线;以此为基础,研究了层数和跨数对屈曲约束支撑钢框架结构影响系数的影响。结果表明,层数和跨数的影响很小,可以忽略不计,结构影响系数R中结构超强系数所占的比重明显大于结构延性系数。
The steel structure is light-weight and high-strength and have good seismic performance. The beam and column sections of non-braced steel frame are usually amplified to satisfy the lateral displacement because of its flexible lateral stiffness.The center-brace is always buckling under strong earthquake which makes the lateral stiffness and dissipation ability of the frame fall down rapidly.The eccentric-braced flame has resolved the problems appearing on above-mentioned structures to a certain extent but the eccentric-brace is still buckling under massive earthquake and have an asymmetric hysteretic behavior under tension and compression.In order to improve mechanical performance of brace, a new system called buckling restrained braced steel frame is put forward, This system has been adopt in developed nations and domestic application research is in continuous evolution.
     At first,the buckling restrained braced steel frame and ordinary concentrically braced steel frame are simulated adopting ANSYS in this paper. The results show that hysteretic curve of buckling braced steel frame is plumper than conventional concentrically braced steel frame. The area of hysteretic loop is bigger, which indicate that it can dissipate much more energy, and has more strong energy-dissipating capacity.Time history analysis was performed on the buckling restrained braced steel frame and ordinary concentrically braced steel frame, time-history response on the big and small earthquake of the two systems are contrasted. It shows that seismic behavior of buckling restrained braced steel frame is better.
     Based on incremental dynamic analysis, structure base shear and top displacement are calculated and polynomially fitted, and the IDA ability curve is obtained,based on which, the influence of the number of story and span to structural influencing coefficient of buckling restrained braced steel frame is researched. The analysis shows that the influence of the number of story and span is so small that it can be neglected . The proportion of over-strength coefficient of structure in the structural influencing coefficient R is much bigger than that of ductility coefficient.
引文
[1]王社良.抗震结构设计[M].武汉:武汉理工大学出版社,2003
    [2] Mochizukin,Murata Y,Andou N. An experimental study on buckling of unbonded braces under centrally applied loads[C].Annual Meeting of the Architectural Institute of Japan.Japan,1980.
    [3] Wakabayashi M, Nakamura T, Kashibara A. Experimental study of elastop- lastic properties of precast concrete wall panel with built insu- lating braces [C].Summaries of Technical Paper sof Annual Meeting. Japan,1973.
    [4] Fujimoto M,Wada A,Saeki E. study on the unboned braces encased in buckling restraining concrete and steel tube[J].Journal of Struc- tural Engineering,1998,25(2):16-27
    [5] Sridhara B.Sleeved column as a basic compression member [C].4th International Conference on Steel Structures and Space Frames. Singapore,1990.
    [6]蔡克铨,赖俊维.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展,2005,10(5):32-38
    [7]李妍,吴斌,王倩颖.防屈曲钢支撑阻尼器的试验研究[J].土木工程学报, 2006,36(3):21-28
    [8]谢强,赵亮.屈曲约束支撑的研究进展及其在结构抗震加固中的应用[J].地震工程与工程振动,2006,21(4):23-28
    [9]刘建彬.屈曲约束支撑及屈曲约束支撑框架设计理论研究[D].北京:清华大学,2005.
    [10]李国强,胡大柱,孙飞飞.屈曲约束支撑铰接钢框架体系抗震性能[J].华中科技大学学报,2008,36(12):2-6
    [11] Yamaguchi M,Mat sumoto Y.Full-scale shaking table test of damage tolerant structure with a buckling trained brace [J].Journal of Structural and Construction Engineering, 2002,558(4):189-196.
    [12]陈煜.一字形截面屈曲约束支撑的抗震性能研究[D].长沙:湖南大学土木工程学院,2006.
    [13]王华琪,丁浩民,姚兴华.防屈曲支撑理论分析与有限元模拟[J].沈阳建筑大学学报(自然科学版),2008,24(2):192-196
    [14]刘天,吴乃森.钢框架支撑体系框架剪力分担率验算[J].河北工业科技,2008,25(6):12-17
    [15]沈国庆,陈宏,王元清,石永久.支撑形式对钢框架结构抗震性能影响[J].低温建筑技术,2005,12(6):14-19
    [16] JGJ99-98高层民用建筑钢结构技术规程[S].北京:中国标准出版社,1998
    [17]郭彦林,刘建彬,蔡益燕.结构的耗能减震和屈曲约束支撑.建筑结构,2005,36(8):26-31
    [18] Shuhaibar C, Lopez WA,Sabelli R.Buckling Restrained Braced Frame [J].Seminar on Response Modification Technologies for Performance Based Seismic Design1.ATC and MCEER,2002,26(8):321-328
    [19]龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M].北京:机械工业出版社, 2004
    [20] Chen C C,Chen S Y,Liaw J J.Application of low yield strength steel on controlled plastification ductile concentrically braced frames [J].Canadian Journal of Civil Engineering,2001,28(5):823-836
    [21]蔡玉军,限制屈曲支撑(BRB)力学性能分析及其钢框架抗震性能分析[D].西安:长安大学,2007
    [22]王社良.抗震结构设计[M].武汉:武汉理工大学出版社,2003.
    [23]美R.克拉夫,J.彭津.结构动力学[M].北京:高等教育出版社,2006
    [24]赵瑛,郭彦林.屈曲约束支撑框架设计方法研究[J].建筑结构,2010,40(1):41-45
    [25] Kim J,Choi H.Behavior and design of structure with buckling - restrained braces[J].Engineering Structures,2004,27(6):639-706
    [26] Whittier.International Conference of Building officials.Uniform Building Code (1997edition),vol.2:structural engineering design Provisions[S].Califomia.1997
    [27] Kazuo Inoue.Hysteresis-type vibration dampers design of steel frames incorporating hysteretic vibration dampers [J]. Steel Construction Today&Tomorrow,2004(7):4-6
    [28] GB50011—2001.建筑抗震设计规范[S].北京:中国标准出版社,2002
    [29]杨博,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):35
    [30] European Committee for Standardization.Eurocode8:Design of Structures for Earthquake Resistance[S].Brussels:CEN,2003.
    [31] Mitchell D,Paultre P,Satcioglu M.Seismic force modification factors for the proposed 2005 edition of the national building code of canada[J].Canadian Journal of Civil Engineering,2003.
    [32] Chia-Ming Uang.Establishing R(orRw)and Cd factors for building seismic Provisions[J].Journal of Structural Engineering,1991,29(5): 22-29
    [33] VamvatsikosD.Seismic Performance capacity and reliability of structures as seen through Incremental dynamics analysis [J].PhD Dissertation,Department of Civil and Environment Eng,Stanford University,2002,16(9):46-59
    [34]叶卫平,方安平,于本方.origin7.0科技绘图及数据分析[M].北京:机械工业出版社,2003.
    [35]李成.多层抗弯钢框架的结构影响系数和位移放大系数[D].西安:西安建筑科技大学,2008.
    [36]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [37]徐绩青.延性系数确定方法的探讨[J].水运工程,2004,365(9):14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700