设置屈曲约束支撑结构基于性能的抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层钢框架结构一般情况下抗侧刚度较小,在水平荷载作用下的水平位移较大。这样,若在这类结构的框架柱之间增设普通钢支撑,不仅能够有效地提高结构的抗侧刚度,而且也能提高结构的抗震承载力。但是,普通钢支撑存在着受压时容易屈曲等问题,直接影响着整体结构的抗震性能。因此,为了克服普通钢支撑存在的容易屈曲等不足,在工程中可采用屈曲约束支撑来替代普通钢支撑。经过合理设计,屈曲约束支撑能够在罕遇地震下率先屈服,以保护主体结构不发生破坏,从而保证整体结构的抗震性能。
     本文首先探讨了屈曲约束支撑的相关理论分析和计算模型,然后采用MIDAs软件,对纯框架结构、普通支撑框架结构、屈曲约束支撑框架结构进行了计算机建模和抗震性能分析,比较了三类框架结构在多遇地震和罕遇地震作用下的主要地震反应特征。结果表明,多遇地震下屈曲约束支撑与普通支撑性能近似,均能够有效地减小结构的水平位移,但在罕遇地震下,屈曲约束支撑表现出很大的优越性,能够耗散大部分地震能量,大大减小结构层间侧移和梁柱构件内力。
     论文还探讨了屈曲约束支撑框架结构基于位移的抗震设计方法,即以多遇地震下纯框架结构的层间侧移为设计依据,根据目标层间位移确定屈曲约束支撑的面积和数量,再以罕遇地震下结构的能量为条件,验算所设置的屈曲约束支撑能否满足要求。Pushover分析结果表明,屈曲约束支撑框架结构能够较好的满足抗震性能和经济性的要求。
     此外,论文还对6种不同布置方式的屈曲约束支撑钢框架结构进行了MIDAS建模和相应的抗震性能分析,比较了罕遇地震下各方案的主要地震反应特征,并根据投资-效益准则对结构进行了费用评估,综合考虑性能和造价等因素,选择了最优布置方案,为工程应用提供了理论依据。
The displacement of high-rise steel frame is large under horizontal action for the flexibility, if braces are fixed, the stiffness and seismic behavior of frame are improved, however, conventional brace tends to buckling under compression, so it's better to replace conventional brace with buckling-restrained brace(BRB) which yields at whole cross section for the effect of constraint element. Rational designed buckling-restrained brace was the first to yield under sereve earthquake and the main structure was protected.
     Basic theory of mechanics of buckling-restrained brace was first introduced. Modeling and analysis of frame, conventional brace frame and buckling-restrained brace frame were realized by finite element software MIDAS, by comparing three types of frame, structure reaction under earthquake was obtained. The behavior of conventional brace and buckling-restrained brace are similar under frequent earthquake, frame with conventional brace or buckling-restrained brace tends to much smaller displacement than simple frame; the seismic behavior of buckling-restrained brace is much better than conventional brace under sereve earthquake, a good seismic reduction effect of buckling-restrained brace frame was gotton.
     Displacement-based seismic design for buckling-restrained brace frame was discussed, based on storey drift of simple frame under frequent earthquake and target displacement, the area and quantity of buckling-restrained brace were determined, then the designed buckling-restrained braces were calculated on account of energy structure absorbed under sereve earthquake. Pushover analysis showed that a good seismic performance and economy were obtained by means of method refered.
     6 types of buckling-restrained brace frame models were analyzed by software MIDAS and seismic response under sereve earthquake were compared; besides, the cost of structure was estimated based on cost-benefit rules, and the optimization type of buckling-restrained brace frame was gotten after overall considersion.
引文
[1]周云,周福霖.耗能减震体系的能量设计方法[J].世界地震工程,1997,13(4):7-13
    [2]Pall A, Pall R T. Performance-Based Design Using Pall Friction Dampers-an Economical Design Solution[C]. Proc.13 World Conference on Earthquake Engineering. Vancouver,2004
    [3]汪家铭,中岛正爱,陆烨(译).屈曲约束支撑体系的应用与研究进展[J].建筑钢结构进展,2005,7(1):1-12
    [4]Watanabe, A., Hitomi, Y., Yaeki, E. ect. Properties of brace encased in bucking-restraining concrete and steel tube[C]. Proceedings 9th World Conference on Earthquake Engineering. Japan,1998
    [5]Chen, C.C., Wang, C.H. Buckling strength of buckling inhibited braces[C]. Proceedings 3rh Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structure. Taiwan,2001
    [6]刘建彬.防屈曲支撑及防屈曲支撑钢框架设计理论研究[D].北京:清华大学,2005
    [7]周云.金属耗能减震结构设设计[M].武汉:武汉理工大学出版社,2006.
    [8]蔡克铨,赖俊维.挫屈束制支撑之原理及应用[C].防灾减灾工程研究与进展.北京,2005
    [9]蔡克铨,翁崇兴.双钢管型挫屈束制消能支撑之耐震行为与应用研究[R].台湾:台湾大学地震工程研究中心,2002
    [10]郭彦林,董全利,周明.防屈曲钢板剪力墙弹性性能及混凝土盖板约束刚度研究[J].建筑结构学报,2009,30(1):40-47
    [11]周云.防屈曲耗能支撑结构设计与应用[M].北京:中国建筑工业出版社,2007
    [12]蔡克铨,黄彦智,翁崇兴.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展,2005,7(3):1-8
    [13]Housner G W, Bergman L A, et al. Structural Control Past, Present and Future [J]. Journal of Egineering Mechanics,1997,123(9):51-56
    [14]Yoshino.T, Kano, Y. et al. Experimental Study on Shear Wall With Braces Part 2 Summaries of technical papers of annual meeting[C]. Architectural Institute of Japan.1971
    [15]Wakabayashi, M.Nakamura, T.Kashibara, et al. Experimental Study on the Elasto-Plastic Behavior of Braces Enclosed by Precast Concrete Panels Under Horizontal Cyclic Loading[C]. Parts 1&2 Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan,1973
    [16]Kunura, K,Yoshizaki,Takeda. T Tests on Braces Encased by Mortar In-filled Steel Tubes Summaries of Technical Papers of Annual Meeting.1976
    [17]Fujimoto, M, Wada, A. et al. A study on the Unbonded Braced Encased in Buckling-Rsdtrained Concrete and Steel Tube[J]. Journal of Structure and Construction Engineering. (34B):249-258
    [18]Clark P, Aiken I, Kasai K, Ko E, Kimura I. Design procedures for buildings incorporating hysteretic damping devices[C]. Proceedings 69th Annual Convention. Sacramento,1999
    [19]Nakamura H., Takeuchi T., et al. Fatigue Properties of Practical-Scale Unbonded Braces[R]. Nippon Steel Technical Report,2000
    [20]Koetaka Y, Narihara H, Tsujita O.Experiment Study on Buckling Restrained Brace[C]. Proceedings 6th Pacific Structure Steel Conference, Beijing,2001
    [21]陈正诚.钢侧撑韧性斜撑构材之行为与应用(Ⅰ)[J].建筑钢结构进展,2005,7(3):26-31
    [22]陈正诚.钢侧撑韧性斜撑构材之行为与应用(Ⅱ)[J].建筑钢结构进展,2005,7(6):29-37
    [23]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海:上海科学技术出版社,1998
    [24]李国强,胡宝琳.屈曲约束支撑滞回曲线模型和刚度方程的建立[J].地震工程与工程振动,2007,27(2):26-31
    [25]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.
    [26]罗树青,邓长根,牛化宪.抑制屈曲支撑的稳定研究[J].华东船舶工业学院学报(自然科学版),2005.19(3):28-32
    [27]谢强,严承涌,赵亮.屈曲约束支撑设计的刚度与强度准则[J].沈阳建筑大学学报(自然科学版),2009,25(1):96-99
    [28]Tremblay, R. et al Inelastic Seismic esponse of Steel Bracing Members[J]. Journal of Constructional Steel Research.2002,58(5):665-701
    [29]邹昀,吕西林.基于结构性能的抗震设计理论与方法[J].工业建筑,2006,36(19):1-5
    [30]California Office of Emergency Services, Vision 2000:Performance based seismic engineering of buildings[S] Structural Engineering Association of California,Vision 2000 Committee, California,1995
    [31]汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例[J].世界地震工程,2004,20(1):45-53
    [32]Freeman, S.A., Development and Use of Capacity Spectrum Method[C]. Proceedings 6th U.S. National Conference on Earthquake Engineering. Oalkland, Calif,1998
    [33]FEMA 273 NEHRP Guildlines for the Seismic Rehabilitation of Buildings[S]. Federal Emergency Management Agency,1997
    [34]FEMA 274 NEHRP Commentary of the Guildlines for the Seismic Rehabilitation of Buildings[S]. Federal Emergency Management Agency,1997
    [35]北京金土木软件技术有限公司.SAP2000中文版使用指南[M].北京:人民交通出版社,2006
    [36]程耿东,李刚.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2001
    [37]GB 50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001
    [38]梁兴文,邓明科,李晓文等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究[J].建筑结构,2006,36(7):15-22
    [39]钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具[J].建筑结构,2000,30(6):23-26
    [40]黄怡,王元清,石永久.支撑布置方式对多高层钢结构抗震性能的影响分析[J].钢结构,2005,5(20):41-44
    [41]张宪江,黄昆.约束屈曲支撑在多层钢框架中的应用研究[J].钢结构,2008,10(23):5-9
    [42]上海市金属结构协会.TJ型屈曲约束支撑设计手册[M].上海:同济大学多高层钢结构及钢结构抗火研究室

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700