两种Pall型摩擦支撑体系的抗震性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦耗能减震技术可以显著提高结构的抗震性能,Pall摩擦阻尼器制造简单、安装方便、造价低廉,因而具有广泛的应用前景,是结构振动控制的重要研究方向。但Pall摩擦阻尼器的四连杆支撑在罕遇地震作用下容易屈曲引起较大塑性变形,且不可恢复,不易修复。为克服这一缺点,本文提出将两种新型支撑(防屈曲钢支撑和形状记忆合金支撑)替换Pall摩擦阻尼器的普通四连杆支撑,通过有限元软件ANSYS12.0对两种新型Pall摩擦阻尼支撑体系进行了滞回特性分析,并对装有这两种新型摩擦阻尼支撑体系的10层钢框架进行了罕遇地震作用分析,比较了其减震效果。
     本文的主要研究内容有:
     (1)提出一种新型Pall-BRB摩擦阻尼体系,即装有防屈曲钢支撑的Pall型摩擦阻尼体系。采用ANSYS12.0对防屈曲钢支撑构件进行滞回特性分析,分析各种参数对其滞回性能的影响。并对装有此种Pall型摩擦阻尼支撑体系的单层钢框架进行了详细的有限元滞回特性分析,分析结果表明,防屈曲钢支撑在受拉、受压情况下均能屈服,具有良好的耗能能力,克服了普通支撑受压容易屈曲的缺点,使得框架结构受力更合理。
     (2)利用形状记忆合金(Shape Memory Alloy,简称SMA)的超弹性性能以及形状记忆效应,提出一种新型Pall-SMA支撑体系,即装有SMA支撑的Pall型摩擦阻尼体系。利用有限元软件ANSYS12.0分析SMA支撑构件的超弹性性能以及滞回性能,分析各种材料参数对其超弹性的影响。并对装有SMA支撑的Pall型摩擦阻尼器进行有限元滞回性能分析,并分析了SMA支撑长度、刚度等参数对其滞回性能的影响,分析结果表明,装有SMA支撑的Pall摩擦阻尼器的滞回曲线饱满,具有良好的耗能能力。
     (3)以某钢框架办公楼为例,安装本文提出的两种新型Pall型摩擦阻尼支撑体系,进行不同卓越周期地震波作用下的反应及减震效果分析。分析结果表明,安装新型Pall型摩擦阻尼器能有效提高结构的抗震能力,并会克服普通Pall型摩擦阻尼器的四连杆支撑带给框架柱不利影响的缺点。
Frictional energy dissipation technology is a very important research direction in structure vibration control because frictional damper can improve seismic performance of structure with easy fabrication,simple installation,and economical applicability.But the braces of Pall-typed friction damper are easily buckled in a severe earthquake,and its non-recoverable deformation is large.To overcome these shortcomings,this paper proposes two new brace systems,steel buckling-restrained brace and SMA brace, to replace the ordinary braces.and this paper analyzes the hysteretic behaviors of the two new Pall-typed frictional damper using the finite element software ANSYS12.0.In the last,the paper analyzes the seismic performances of the 10-floor steel frame with the two new type Pall dampers and compares their effects with the frame without dampers.
     The main contents of this paper are as follows:
     (1) Pall-BRB system,the Pall-typed frictional damper with steel buckling-restained braces(BRB),is proposed.The paper analyzes the hysteretic behaviord of the BRB brace,and studies the effects of the various parameters on the hysteretic behavior.Then the hysteretic behaviors of the single floor steel frame with the new Pall-typed frictional damper are analyzed in detail.The results show that,the brace can easily yielded under tension and comparession and have good capacity to dissipate energy.The results also reveal that the BRB brace system can overcome the default of the ordinary brace and make the force of the frame structure more reasonable.
     (2) Pall-SMA brace system,the Pall-typed frictional damper with SMA(Shape Memory Alloy) braces,is proposed based on the super-elastic and shape memory properties.The super-elastic and hystereic behaviors of the SMA brace are studied using ANSYS12.0,and the effect of the various material parameters are also analyzed.Then the paper studies the hysteretic behaviors of the single floor steel frame with the new Pall-typed frictional damper in detail,and also analyzes the effects of the length and the stiffness of the SMA brace on it’s hysteretic behavior.The results indicate that the hysteretic loops of the Pall-SMA frictional damper is full and the capability to dissipate energy is better.
     (3) Taking a steel frame building with the two new Pall-typed frictional dampers as a example in this paper, the responses and the seismic performances of this building subjected to the different predominant period of seismic waves loads are analyzed.The results show that,the two new structures can improve the seismic performance of the frame effectively,and they can also overcome the defaults of the structure with the ordinary Pall-typed frictional dampers.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [2]张纪刚.两种摩擦阻尼器抗震性能的数值分析与试验研究[D].哈尔滨工业大学.硕士学位论文,2002
    [3] J.T.P.Yao.Concept of Structural Control[J].Journal of Structure Division,ADSE. 1972,98: 1567-1574
    [4]王光远.高耸结构风振控制.高耸结构学术交流会,1980:28-50
    [5]刘季.结构抗震抗风振动控制[R].第六界结构工程学术会议特邀报告.1997:1-20
    [6]邓雪松.隔震结构的设计与分析方法[J].世界地震工程. 2000,16(4):118-123
    [7]周云,刘季.耗能减震技术研究与应用进展[J].世界地震工程.1995,11(1)
    [8] G. W. Housner,L. A. Bergman, T. K. Caughey, et al.Structure Control:Past,Present,and Future[J], Journal of Engineering Mechanics, September, 1997
    [9]周云,徐彤,俞公骅等.耗能减震技术研究及应用的新进展[J].地震工程与工程振动.1999, 19(2): 122-130
    [10] Constantinou, M. C. and Symans, M.D.,Tsopelas,P. and Taylor,D.P.“Fluid Viscous Dampers in Applications of Seismic Energy Dissipation and Seismic Isolation”. Proceedings of ATC-17-1 on Seismic Isolation, Passive Energy Dissipation and Active control.1993, 2: 581-591
    [11] Kajima Corporation.“The Oil Damper Absorbs Vibrations-High Damping System”
    [12] Njwa,N,Kobori, T.,Takahashi, M.,Hatada, T., Kurino, H.,and Tagami, J..“Passive Seismic Response Controlled High-Rise Building with High Damping Device”. Earthquake Engineering and Structural Dynamics.1995,Vol.24:655-671
    [13] Miyazaki, M and Mitsusaka.‘Design of a Building With 20% or Greater Damping’. Proc.10WCEE, Madrid, Spain. 1992
    [14] Arima.F., Miyazaki.M,Tanaka,H and Yamazaki, Y.“A Study on Buildings With Large Damping Using Vicous Damping Walls”. Proc. 9WCEE,Tokyo/Kyoto,Japan.1988
    [15]欧进萍,吴斌.摩擦型与软钢屈服型耗能器的性能与减振效果的试验比较[J].地震工程与工程振动,1995,15(2): 73-87
    [16]吴斌,欧进萍.软钢屈服耗能器的疲劳性能和设计准则[J].世界地震工程,1996,(4):8-13
    [17] Pall, A.S. and Marsh, C.Response of Friction Damped Braced Frames. Journal of the Structural Division, ASCE.1982, Vol.108, No.ST6: 1313-1323
    [18] Pall, A.S,Pall,R., 1993, Friction-Damper Used for Seismic Control of New and Existing Buildings in Canada, ATC 17-1, Seminar on Seismic Isolation, Passive Energy Dissipation, Vol 2: 675-686
    [19] Hale, T.H., and Pall, R.. Seismic Upgrade of the Freeport Water Reservoir, Sacramento,California. 12WCEE.2000: 0269
    [20] Chandra, R.. Friction-Dampers for Seismic Control of La Gardenia Towers South City, Gurgaon, India.12WCEE.2000: 2008
    [21] Aiken, I.D., Kelly, J.M.Earthquake Simulator Testing and Analytical Studies of Two Energy-Absorbing Systems for Multistory Structures.Report No. UCB/EERC-90/03. University of California, Berkeley, CA.1990
    [22]陈宗明,陈立兴.新型抗震耗能支撑的试验研究[J].工程抗震,1988,(3): 13-16
    [23]瞿伟廉,成克苏等.设置耗能横缝的填充墙对多层框架地震反应的控制[J].建筑结构学报,1991,12(2): 42-50
    [24]周云,邓雪松,刘季.钢屈服-摩擦复合耗能器的性能研究[J].地震工程与工程振动.1999(1): 127-131
    [25]吴斌,欧进萍.Pall摩擦耗能器的设计方法[J].哈尔滨建筑大学学报,1997,30(4):9-14
    [26]吴斌,张纪刚,欧进萍.考虑几何非线性的Pall型摩擦耗能器滞回特性分析[J].工程力学,2003,20(1):2l-26
    [27]吴斌.滞变型耗能减振体系的试验、分析和设计方法[D].哈尔滨建筑大学.博士学位论文,1998:40-53
    [28]赵东、王威强、马汝建等.新型摩擦阻尼器的研究及其在建筑结构振动控制中的应用[J].工业建筑,2006,38(2):1-4,15
    [29]李杰,李国强.地震工程学导论.学导论[M].北京:地震出版社,1992: 280-283
    [30] Wakabayashi,M.Nakamura,T.Kashibara,etal.Experimental stydy of elasto-plastic properties of precast cocrete wall panels with built-insylating braces[A].Summaries of Technical Papers of Annual Meeting,Architectural Institute of Japan,1973
    [31] Clark,P.Aiken,I.,Kasai,K.,etal.Design procedures for buildings incorporating hysteretic damping devices [A].69th Annual convention [C]:SEAOC,Sacramento,CA.
    [32]陈正诚.钢侧撑韧性斜撑构材之行为与应用(Ⅰ)[J].建筑钢结构进展,2005,7(5):26-32
    [33]蔡克栓,黄彦智,翁崇兴.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展,2005,7(3):1-8
    [34]周云.防屈曲耗能支撑结构设计与应用[M].北京:中国建筑工业出版社,2007:5-15
    [35]李妍,吴斌,王倩颖等.防屈曲钢支撑阻尼器的试验研究[J].土木工程学报,2006,39(7):9-14
    [36]贾明明,张素梅.抑制屈曲支撑滞回性能分析[J].天津大学学报,2008,41(6):736-744
    [37]罗开海,王亚勇,荣维生.屈曲约束耗能支撑试验研究及有限元模拟分析[J].结构工程师(增刊),2005: 317-324
    [38]牛坤.装有新型SMA耗能支撑的结构在地震作用下的数值模拟[D].北京工业大学.硕士学位论文,2006
    [39]欧进萍,王永富.设置TMD、TLD控制系统的高层建筑风振分析与设计方法[J].地震工程与工程振动.1994(2):61-75
    [40]瞿伟廉,宋波,陈妍桂,翟新民.TLD对珠还海金山大厦主楼风振控制的设计[J].建筑结构学报.1996,5(3):21-28
    [41]李宏男,霍林生,刘洋.采用神经网络半主动TLCD对海洋固定式平台的振动控制.防灾减灾工程学报,2003,23(2): 22-27
    [42]贾明明,张素梅.采用抑制屈曲支撑的钢框架结构性能分析[J].东南大学学报(自然科学版),2007,37(6):1041-1047
    [43] B. Wu, J. Zhang, M. Williams and J. Ou. Hysteretic behavior of improved Pall-typed frictional dampers[J]. Engineering Structures,2005, 27(8): 1258-1267
    [44]吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证[J].地震工程与工程震动,2001,21(4):60-65
    [45]吴斌,张纪刚,欧进萍.Pall型摩擦阻尼器的试验研究与数值分析[J].建筑结构学报,2003,24(2):7-13
    [46] Xie Qiang.State of the art of buckling-restrained braces in Asia[J].Journal of Constructional Steel Research, 2005, 61(6): 727-748
    [47] Black C J, Makris N, Aiken I D.Component testing,seismic evaluation and characterization of buckling-restrained braces[J].Journal of Structural Engineering, ASEC, 2004, 130(6): 800-894
    [48] Black C J, Makris N, Aiken I D.Component testing,stability analysis and characterization of buckling-restrained unbonded braces[R].Berkeley: Pacific Earthquake Engineering Research Center,,College of Engineering University of California, 2002
    [49]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [50]陈煜.一字形截面防屈曲支撑的抗震性能研究[D].湖南大学.硕士论文,2006
    [51]建筑抗震设计规范[S]
    [52]章从俊,李爱群,赵福令.软钢支撑耗能器的研制和有限元分析[J].工程抗震与加固改造,2008,30(3):10-14
    [53]章从俊,李爱群,赵明.软钢阻尼器耗能减震结构的研究与应用综述[J].工业建筑,2006,36(9):17-21
    [54]张纪刚,单礼会,付瑛琪. Pall型摩擦阻尼器框架几何非线性分析[J].青岛理工大学学报,2007,28(5):1-4
    [55] Kim S E, Lee D H, Cuong N H.Shaking table tests of a two-story unbraced steel frame[J].Journal of Constructional Steel Research,2007, 63(3):412-421
    [56] Mamoru I, Masatoshi M.Buckling-restrained brace using steel nortar planks; performance evaluation as a hysteretic damper[J].Earthquake & Structural Dynamics, 2006, 35(14): 1807-1826
    [57]王春波.摩擦耗能支撑框架结构减震性能研究[D].西安建筑科技大学.硕士论文,2006
    [58]刘立卫.一种新式SMA阻尼器在高层风振控制中的应用研究[D].青岛理工大学.硕士论文,2008
    [59]卞晓芳. SMA-MR复合型阻尼器及在大跨度挑篷结构中的减振控制研究[D].北京工业大学.硕士论文,2004
    [60]赵连成.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002
    [61]孙晋,陈松.形状记忆合金及其在建筑工程中的应用[J].科技创业月刊,2006,19(5):1925-193
    [62]彭红美.基于形状记忆合金(SMA)的被动结构控制研究[D].辽宁工程技术大学.硕士论文,2001
    [63]任文杰.超弹性形状记忆合金丝对结构减震控制的研究[D].大连理工大学.博士论文,2008
    [64]侯俊峰.形状记忆合金阻尼器在某古塔抗震加固中的研究与应用[D].西安建筑科技大学.硕士论文,2006
    [65]肖尔田.一种新型形状记忆合金超弹性阻尼器的理论与实验研究[D].东南大学.硕士论文,2004
    [66]刘建军.建筑结构半主动控制系统理论研究[D].天津大学.硕士论文,2003
    [67]白中伟.形状记忆合金超弹性在结构被动控制中的应用[D].兰州理工大学.硕士论文,2006
    [68]张纪刚.海洋平台结构振动的被动与半主动混合阻尼控制[D].哈尔滨工业大学.博士论文,2005
    [69]沈聚敏,周福霖,高小旺等.抗震工程学[M].北京:中国建筑工业出版社,2000
    [70] Reginald Desroches, M.ASCE, Jason Mccormick, Michael Delemont.Cyclic Properties of Suuperelastic Shape Memory Alloy Wires and Bars[J].Journal of Structural Engineering,2004,1:38-46
    [71]龙耀坚,冼巧玲.一种新型SMA阻尼器的试验研究[J].华南地震,2008,28(2):19-25
    [72]李宏男,钱辉,宋钢兵等.一种新型SMA阻尼器的试验和数值模拟研究[J].振动工程学报,2008,21(2):179-184
    [73]薛素铎,王利,庄鹏.一种SMA复合摩擦阻尼器的设计与性能研究[J].世界地震工程,2006,22(2):1-6
    [74]刘伟,王社良,谭小蓉等.形状记忆合金在结构振动控制中的应用[J].四川建筑科学研究,2008,34(3):149-152
    [75]侯俊锋,宁怀明.形状记忆合金在结构被动控制中的研究现状与存在问题[J].华北水利水电学院学报,2008,29(3):44-47
    [76]刘爱荣,潘亦苏,周本宽.形状记忆合金的本构模型及其有限元实施[J].力学季刊,2001,22(2):174-180
    [77]倪立峰,李秋胜,李爱群等.新型形状记忆合金阻尼器的试验研究[J].地震工程与工程振动,2002,22(3):145-148
    [78]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究[J].世界地震工程与工程振动,2003,23(1):132-138
    [79]李冀龙,欧进萍.X形和三角形SMA板式阻尼器的阻尼力模型[J].世界地震工程与工程振动,2002,22(6):109-114
    [80]朱春福.软钢阻尼器在钢框架结构中的减震效果分析[D].东北林业大学.硕士论文,2005
    [81]唐友刚.高等结构动力学[M].天津:天津大学出版社,2002
    [82]单礼会. Pall型摩擦阻尼器在框架和海洋平台中的研究与应用[D].青岛理工大学.硕士论文,2008
    [83]黄怡,王元清,石永久.支撑布置方式对多高层钢结构抗震性能的影响分析[J].钢结构,2005,20(5):41-44
    [84]程光煜,叶列平,崔鸿超.防屈曲耗能钢支撑设计方法的研究[J].建筑结构学报,2008,29(1):40-48
    [85]李国强.从汶川地震灾害看结构在地震区的应用[J].建筑钢结构进展,2008,10(3):1-8
    [86]孙建华,罗开海,王亚勇等.含屈曲约束耗能支撑的高层建筑地震作用效应分析[J].工程抗震与加固改造,2007,29(4):1-9
    [87]王社良,赵祥,朱军强等.形状记忆合金材料相变伪弹性有限元分析[J].工程力学,2007,24(10):180-185
    [88]王社良,苏三庆.形状记忆合金的超弹性恢复力模型及其结构抗震控制[J].工业建筑,1999,29(3):49-52
    [89]肖尔田,韩玉林,李爱群等.基于形状记忆合金超弹性阻尼器的结构振动控制和地震时程分析[J].东南大学学报(自然科学版),2003,33(5):605-609
    [80]钱辉,李宏男,宋刚兵.形状记忆合金阻尼器消能减震体系的控制研究[J].振动与冲击,2008,27(8):42-47
    [90]左晓宝,李爱群,倪立峰等.设置超弹性SMA阻尼器的框架结构地震反应分析[J].工业建筑,2004,34(10):13-47
    [91]张纪刚,吴斌,欧进萍等.锥形形状记忆合金阻尼器性能分析与试验研究[J].地震工程与工程振动,2004,24(6):126-130
    [92]毛晨曦,李惠,欧进萍等.形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析[J].建筑结构学报,2005,26(3):38-44
    [93]左晓宝,李爱群,黄镇等.超弹性SMA复合阻尼器计算模型及参数分析[J].振动工程学报,2005,18(2):161-165
    [94]邓宗才,牛坤.SMA超弹性及阻尼器减震效果的数值模拟[J].工程抗震与加固改造,2007,29(2):8-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700