5A01高镁铝合金腐蚀性能、屈服行为与热变形行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文分三部分研究了5A01高镁铝合金的力学性能、腐蚀性能、屈服行为及热变形行为,同时还讨论了p相在高镁铝合金腐蚀中的作用机理。第一部分通过组织观察、力学性能测试以及腐蚀实验,研究了冷轧变形量与稳定化退火温度对5A01铝合金力学性能和腐蚀性能的影响;同时,利用熔铸冶金法制备p模拟相以及复合轧制方法制备高镁模拟合金,通过电化学实验及浸泡实验,讨论了p相在高镁铝合金局部腐蚀中的作用机理。第二部分主要研究了稳定化退火温度及冷轧变形量对5A01铝合金屈服行为的影响,并讨论了其对5A01高镁铝合金屈服行为的影响规律。第三部分利用Gleeble-1500热力模拟机及透射电镜,研究了5A01高镁铝合金的热变形流行为及组织演变。通过实验及讨论,得到以下结论:
     (1)5A01合金经40%冷轧变形后的力学性能σb、σ0.2、δ分别为421MPa、324MPa、7.8%,随冷变形量的增加,合金的强度增大,延伸率减小;对于冷变形量为60%的5A01合金,在250℃稳定化退火2h,合金开始发生再结晶;经冷轧后,5A01合金的耐蚀性能均较低,且随冷变形量的提高,合金的腐蚀敏感性提高;对于冷变形量为60%的5A01合金,随稳定化退火温度(150℃~350℃)的升高,晶间腐蚀、剥落腐蚀及应力腐蚀敏感性均逐渐降低。
     (2)在3.5%NaCl溶液中,β相的自腐蚀电位(-1.085v)比α(Al)相的自腐蚀电位(-0.812v)低,始终作为阳极;与α(Al)基体相比,β相阳极极化曲线上存在一个弱钝化区,并有明显的拐点出现;在3.5%NaCI溶液中β相发生活化溶解过程及点蚀,而α(Al)仅发生活化过程。
     (3)不同冷变形量5A01合金经350℃/2h稳定化退火后,均发生了明显的锯齿屈服效应;且冷变形越大,合金的再结晶晶粒尺寸减小,数目增多,应力应变曲线上的吕德斯带平台越长,锯齿频率提高;而对于同一变形量合金,随应变的增加,应力应变曲线上锯齿的频率降低;对于冷变形量60%的5A01合金,回复态及再结晶态合金锯齿效应中的锯齿强度均小于冷轧态的。
     (4)5A01铝合金流变应力受应变速率的影响很大,在变形温度保持不变时,5A01铝合金真应力随应变速率的提高而增大;其流变应力受应变速率的影响也很大,在应变速率一定时,5A01铝合金的真应力随变形温度的升高而降低。5A01铝合金热压缩变形时的流变应力受应变速率和变形温度的强烈影响,可采用双曲正弦形式Arrhenius的关系来描述其流变应力行为,流变应力σ、应变速率ε和变形温度T之间满足下列关系式:ε=0.06831 ln[sinh(0.0094σ)]2.7089 exp(161.14/RT)
In this paper, the corrosion resistance, yielding behavior and the behavior during hot compression deformation of 5A01 aluminum alloy have been studied by means of the slow strain-rate test, isothermal compression simulation test, electro-chemistry characteristic, metallographic microscope,SEM, TEM. Meanwhile,βphase in bulk form were prepared for the measurement of corrosion potentials by conventional electrochemical equipment. Experiments were also conducted to understand the nature of theβphase-a(Al) matrix galvanic couples in NaCl solution and dissolution phenomena associated with Mg-containing phase particle during the corrosion. The following conclusions can be drawn:
     (1) The optimum application values ofσb、σ0.2 andδare 421MPa、342MPa、7.8% for 5A01 alloy after cold-rolled 40%. tensile strength and yield strength of the prepared alloy increases, while the elongation decreases with increasing the reduction.For the 5A01 alloy after cold-rolled 60%,partial recovery and recrystallization orderly occur with the increase of annealing temperature during stabilizing treatment. The corrosion resistance of alloy under cold-rolled conditions all are worse. With increasing the reduction from 40% to 80%, the corrosion susceptibility of the alloy is increasing. For the 5A01 alloy after cold-rolled 60%, with the increasing of annealing temperature from 150℃to 350℃, the corrosion susceptibility of the alloy is decreasing.
     (2)In the solution of 3.5%NaCl,the corrosion potential of (3 phase(-1.085v) is lower than the corrosion potential of a(Al) phase(-0.812v). The (3 phase may be passivated in solution and occor the pitting,while the a(Al) phase could not occor.
     (3) After recrystallization is completed, the smaller the recrystallized grain the longer the Luders elongation.The frequency of serrations also increases with decreasing grain size.The frequency of serrations decreases and the magnitude of serrations first increases and then decrease with increase in strain. The cold-rolled sample which has higher dislocation density has more intense serration than the sample after recovery heat treatment.
     (4) To the 5A01 alloy after homogenization annealing:The stress increase with the strain rate at the same compression temperature, which show 5A01 aluminum alloy is positive strain rate sensitivity material, the stress increase with the compression temperature at the same strain rate. Deforming degree has little effect on the stress at the strain rate and the same compression temperature.The flow stress of 5A01 aluminum alloy during hot deformation can be expressed by Arrhenius function in the hyperbolic sine style. The values of A、α、n and Q in the analytical expression are 0.06831s-1、0.0094MPa、2.7089 and 161.14KJ/mol.
引文
[1](苏)叶尔曼诺夫著;李西铭等译.船舶用Al合金整体壁板及焊接材料的研究.铝合金壁板挤压.北京:国防工业出版社,1988
    [2]黄晓艳,刘波.船体用结构材料及发展[J].船舶.2004,3:21-24
    [3]顾纪清.铝合金船体及上层建筑施工[M].长沙:国防工业出版社,1983:1-191
    [4]M. Bethencourt, F. J. Botana, J. J. Calvino, et al. Lanthanide compounds as environmental-friendly corrosion inhibitors of aluminum alloy [J]. Corrosion Science, 1998,40(11):1485-1488
    [5]彭勇宜,尹志民.Sc与Zr对Al-Mg-Mn合力学性能和剥落腐蚀性能的影响[J].中国稀土学报,2006,24(2):217-222
    [6]陶斌武,王克然,刘建华,李松梅.Sc对A1_6Mg_Zr铝合金模拟海水中耐蚀性能的影响研究.稀有金属材料工程,2005,34(9):1485-1488
    [7]刘政军,赵东宁,郝雪枫,等.稀土元素Ce对热挤压变形Al-Mg合金组织与性能的影响[J].铸造,2008,57(7),693-696.
    [8]徐国富,杨军军,金头男,等.微量稀土Er对Al-5Mg合金组织与性能的影响[J]中国有色金属学报,2006,16(5):768-774.
    [9]Carroll M C,Buchheit R G,Daehn G S,et al.Optimum trace copper levers for resistance in a Zn-modified Al-5083 and the effect of active chlorine in seawater[J]. Electrochemistry,2003,9(1):60-65
    [10]Davenport A L, Yuan Ambat R, Connolly B J, Strangwood M, Afseth A, Scamans G(2006) Mater Sci Froum 519-521:641
    [11]Mumin Sahin, H. Erol Akata, Kaan Ozel. An experimental study on joining of severe plastic deformed aluminium materials with friction welding method. Mater Design (2006), doi:10.1016/j.matdes.2006.11.004
    [12]黄德彬.《有色金属材料手册》[M].北京:化学工业出版社,2005:180-182
    [13]Vecoglu ML,Suryanarayana C,WDix.Identification of precipitate phases in a mechanically alloyed rapidly solidified Al-Fe-Ce alloy.Metallurgical and Materails Transactions A,1996,27A(4):1033-1041
    [14]Hamana D,Bouchear M,Betrouche M,et al.Comparative study of formation and transformation of transition phases in Al-12wt%Mg alloy.Joural of Alloys and Compounds,2001(320):93-102
    [15]Starink M J,Zahra A M.β'and β precipitation in an Al-Mg alloy studied by DSC and TEM.Acta Metallurgica Inc,1998,46(10):3381-3397
    [16]王祝堂.全球单机架热轧机概貌[A].铝加工高新技术文集[C].2001.174-185.
    [17]吕新宇,唐明君,焦兴贵.乳液对热轧铝带卷的影响[J].轻合金加工技 术,2001,29(9):26-27.
    [18]魏云华.铝热轧乳液的性能控制[J].轻合金加工技术,2002,30(10):14-15.
    [19]梁延彬,张新明,张克伟.5A05铝合金热塑性变形的高温金相观察[J].轻合金加工技术,2000,28(6):44-46.
    [20]赵鸿金,张迎晖,马宏声.热轧状态Al-0.328%Sc合金的动态再结晶[J].轻合金加工技术,2001,29(2):13-15.
    [21]陈策,宋德周.国外现代铝带冷轧机和国产先进冷轧机[A].铝加工高新技术文集,2001,186-195.
    [22]尹丽丽,范瑞尤.铝合金挤压的最新技术和装备[A].铝加工高新技术文集[C].2001.291-299.
    [23]王雪玲,谢延翠,赵永军.5754-H34铝合金板材生产工艺研究[J].轻合金加工技术,2002,30(5):23-25.
    [24]张华,梁延彬,李世伟.5754铝合金板材H2n状态工艺研究[J].轻合金加工技术,2002,30(5):26-27.
    [25]林乐耘,刘增才,徐杰,等.实海暴露防锈铝合金局部腐蚀敏感性研究[J].腐蚀科学与防护技术
    [26]Langenbeck SK, Griffth WM, Hildeman GJ, et al.Development of dispersion-strength Ened aluminum alloys.American Society for Testing and Materials Philadelphia,1986:410-422
    [27]Shigeniri Y.Development of elevated temperature P/M aluminium alloy by rapid solidification proessing住友轻金属日报(日),1988,29(4):16~22
    [28]Kazuhisa S.Change of metallurgical structure of rapidly solidified Al-8%Fe-2%V alloy by heating住友轻金属日报(日),1989,30(4):12~17
    [29]Kaxuhisa Shioue.Rapidly solidified Al-Fe alloy flakes by atomization-rolling process住友轻金属日报(日),1987,28(4):25~30
    [30]Hideo S.Mechanical Properties of the radically solidified Al-Fe binary alloys by atomization-rolling. Properties of the radically solidified Al-Fe binary alloys by atomization-rolling proc住友轻金属日报(日),1987,28(4):31~36
    [31]Gerard M,Georges C.Physical metallurgy of P/M aluminum alloys.Invited paper rpresented at 1CAA2,Oct,1990,Beijing,P.RChina
    [32]R.GoSwami, G.Spanos, P.S.Pao, R.L.Holtz. Precipitation behavior of the β phase in Al-5083[J].Materials Science and Engineering A,2010,527:1089-1095
    [33]S.Scudino, S.Sperling, M.sakaliyska, et al. Phase transformations in mechanically milled and annealed single-phase β-Al2Mg3[J].Acta Materialia,2008,56:1136-1143
    [34]邵敏华,林昌健.铝合金点腐蚀及研究方法[J].腐蚀科学与防护技术.2002,14(3):147-15
    [35]孙秋霞.《材料腐蚀与防护》[M].北京:冶金工业出版社,2001:89
    [36]王洪仁,吴建华,王均涛,等.5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究[J].电化学,2003,9(1),60-65
    [37]Hosni Ezuber,A.EI-Houd,F.EI-Shawesh.A study on the corrosion behavior of aluminum alloys in seawater [J].Materials and Design.,2008,29:801-803
    [38]王曰义.铝合金在流动海水中的腐蚀行为[J].装备环境工程,2005,2(6),72-76
    [39]林乐耘,赵月红.我国海域海水对防锈铝合金的腐蚀性及材料因素影响的规律[J].中国有色金属学报,2003,13(5),1246-1251
    [40]Groover, R.E. Peterson, M.H. Lennox Jr. T.J.,Effect of corrosion productts from aluminum anodes containing mercury tin on the corrosion of aluminum alloys in sea water[J]. Materials Performance.,1974,13(8):19-24
    [41]罗兵辉,单毅敏,柏振海.退火温度对淬火后冷轧5083铝合金组织及腐蚀性能的影响[J].中南大学学报(自然科学版),2007,38(5):802-808
    [42]Brown R H, Fink W L, Hunter M S. Measurement of irreversible potentials as a metallurgical research tool [J]. Trans. AIME,1941,143:115
    [43]Galvele J R,De Micheli S M. Mechanism of intergranular corrosion of Al-Cu alloys[J]. Corros. Sci.,1970,10:795
    [44]Maitra S,English G C. Mechanism of localized corrosion of 7075 alloy plate[J]. Met.Trans.,1981,12A:535
    [45]Buchheit R G,Morgan J P,Stoner G E. Electrochemical behavior of the T1 (Al2CuLi) intermetallic compound and its role in localized corrosion of Al-2%Li-3 %Cu alloys[J]. Corrosion,1994,50:120
    [46]Buchheit R G,Wall F D, Stoner G E. Anodic dissolution-based mechanism for the rapid cracking,preexposure phenomenon demonstrated by aluminum-lithium-copper alloys[J]. Corrosion,1995,51:417
    [47]吕新宇.5083铝合金热轧板研究[J].轻合金加工技术,2002,30(3):15-20
    [48]唐伟.5083铝合金H321厚板生产工艺研究[J].轻合金加工技术.2004,32(8):30-33
    [49]张雅玲.稳定化处理对5083合金冷轧板组织和性能的影响[J].轻合金加工技术.2008,36(3):22-24
    [50]I.N.A. Oguocha,O.J.Adigun,S.Yannacopoulos. Effect of sensitization heat treatment on properties of Al-Mg alloy AA5083-H116[J].J.Mater.Sci., 2008,43:4208-4214
    [51]Chang, J.C. Chuang, T.H. Degradation of corrosion resistance for Al 5083 alloy after thermal and superplastic forming processes [J].Journal of Materials Engineering and Performance.2000,9(3):253-260
    [52]Unocic, K.A. Kobe, P. Mills, M.J. Daehn, G.S. Grain boundary precipitate modification for improved intergranular corrosion resistance [J] Materials Science Forum.,2006,519-521:327-332
    [53]赵永军,师雪飞,张景学,等.5A06-H34厚板生产工艺研究[J].轻合金加工技术.2005,33(3),29-33
    [54]蒋太富.LF6合金的电导率及耐剥蚀性能[J].铝加工,1997,20(6):46-49
    [55]高淑明,李广宇,冯正海.5A06铝合金板材腐蚀性能的研究[J].轻合金加工技术,2001,29(6):45-4
    [56]Standard test method for Determing the Susceptibility to Intergranular Corrosion of 5××× Series Aluminium Alloy by Mass Loss after Exposure to Nitric Acid (NAMLT Test) [S].G66-69
    [57]左尚志,李狄.国内外铝合金剥蚀研究的现状[J].材料保护,1994,27(12):23-26
    [58]李劲风,曹发和,张昭,等.铝合金剥蚀敏感性及其定量研究方法[J].中国腐蚀与防护学报.2004,24(1):55-58
    [59]王祝堂.铝合金在船舶中的应用暨5083合金的剥落腐蚀与工艺因素的关系[J].轻合金加工技术,1993,21(10):6-11
    [60]柏振海,罗兵辉,邰凯平,等.退火工艺对Al-6Mg-Sc合金力学性能与剥落腐蚀性能的影响[J].2004,32(5),48-52
    [61]李久青,屠益东,肖衍,等.船用铝合金剥落腐蚀机理的研究[J].材料保护,1994,27(4):1-4
    [62]Standard test method for visual assessment of exfoliation corrosion susceptibility of 5 ××× series aluminium alloys (ASSET test) [S]. ASTM G67-86.
    [63]Burleigh T D. The postulated mechanisms of stress corrosion cracking of aluminum alloys, a review of the literature 1980-1989[J].Corrosion,1991,47 (2):89-98
    [64]Pickens J R,Gordon J R, Green J A S. The effect of loading mode on the stress corrosion cracking of aluminum alloy 5083[J].Metaltrans,1983,14A(5):925-930.
    [65]Skoulikidis Th, Colios J A. An electrochemo mechanical approach to stress corrosion cracking in aluminium alloys[J]. Aluminium,1987,63(6):619-623
    [66]Elboujdaini M, Shehata M T, Ghali E. Stress corrosion cracking and corrosion fatigue of 5083 and 6061 aluminum Alloy [J].Microstructural Science,1998,25:41
    [67]Skoulikidis T, Spathis P K. Influence of stress and notch orientation on SCC in an aluminum alloy. Corrosion,1989,45(4):303-307
    [68]杜爱华,龙晋明,裴和中.高强铝合金应力腐蚀研究进展[J].中国腐蚀与防护学报.2008,28(4):251-256
    [69]Cottrell AH.A note on the Portevin-Le Chatelier [J].Phil.Mag.1953,44:829
    [70]McCormick P G..A model for the Portevin-Le Chatelier effect in substitutional alloys [J].Acta Metall.1972,20:351-354.
    [71]Van den Beukel A.Theory of the effect of dynamic strain aging on mechanical properties[J].Phys Stat Sol (a),1975,30:197-206.
    [72]Hahner P,Ziegenbein A, Rizzi E, Neuhauser H.Spatiotemporal analysis of Portevin-Le Chatelier deformation bands:Theory, simulation, and experiment
    [68].Phys Rev B.,2002,6.5:13410921-20.
    [73]Zhang Q C,J iang Z Y, Jiang H F,Chen Z J,Wu X P. On the propagation and pulsation of Portevin-Le Chatelier.deformation bands:An experimental study with digital speckle pattern met rology[J]. Int.J.Plasticity,2005,21(11):2150-2173.
    [74]Jiang Z Y, Zhang Q C,Jiang H F,Chen Z J,Wu X P. Spatial characteristics of the Portevin-Le Chatelier deformation bands in Al-24 at %Cu polycrystals [J].Mater. Sci. Eng. A,2005,403(122):154-164.
    [75]Pink E,Kumar S,Tian B. Serrated flow of aluminium alloys influenced by precipitates [J].Mater. Sci. Eng. A,2000,280:17-24.
    [76]Mertens F,Franklin S V, Marder M. Dynamics of plastic deformation fronts in an aluminum alloy [J]. PhyRevLett,1997,78:4502-4505.
    [77]张辉.铝合金多道次热轧显微组织演变的模拟研究:[博士学位论文].长沙:中南工业大学,2000
    [78]韩冬峰.2195铝锂合金高温热变形行为研究:[硕士学位论文].长沙:中南大学,2005
    [79]Garofalo F. An empirirical relation refining the stress dependence of minimum creep rate in metals.Trans Metall Soc. AIME,1963,227(2):351-355
    [80]Poirier J.P.关德林,译.晶体的高温塑性变形.大连:大连理工大学出版社,1989
    [81]何宜柱,陈大宏,雷廷权,等.形变Z因子与动态再结晶晶粒尺寸间的理论模型.钢铁研究学报,2000,12(1):26~30
    [82]Puchi E S, Staia M H.High-temperature deformation of commercial-purity aluminum. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1998,29A(9):2345-2359
    [83]Garofalo F. Fundamentals of creep and creep rupture in metals. Macmillan, New York,1965
    [84]McQueen H J, Yue S, Ryan N D, et al. Hot Working characteristics of steels in austenitic state. Mater Process Technol,1995,53:293-310
    [85]Castro-Fernandez F R, Selllars C M, Whiteman J A. Change of stress and microstructure during hot deformation of Al-Mg-1Mn. Materials Science and Technology,1990,6(5):453-460
    [86]Shi H, Mclaren J, Sellers C M, Shahani R, Bolingbroke R. Constitutive equations for high temperature flow stress of aluminum alloys. Materials Science and Technology,1997,13(3):210-216
    [87]Sellars C M, Tegart W J M. La relation entre la Rresistance et la structure dans le deformation a chaud. Mem Sci Rev Metall,1966(63):731-746
    [88]Kreuss G. Deformation processing and structure.Ohio, American Society for Metal,1984:109-230
    [89]Davenpot S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modeling of hot rolling. Materials Science and Technology,2000,16(5):539-546
    [90]Rao K P, Hawbolt E B. Development of constitutive relationship using compressing testing of a medium carbon steel. Journal of Engineering Materials and Technology,1992,114(1):116-123
    [91]Jonas J J, Sellars C M T. Strength and structure under hot working conditions. Int. Metallurgical Reviews,1969(14):1-24
    [92]Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel. Journal of Applied Physics,1944,15(1):22-32
    [93]Clifton R J, Hartley K A, Shawki T C. On critical conditions for shear band formation at high strain rates.Sci. Metall,1984,18(5):443-448
    [94]Hodgson P D. Microstructure modeling for property prediction and control. Journal of Materials Processing Technology,1996,60(1-4):27-33
    [95]Sellars C M, Irisarri A M, Puchi E S. Recrystallization characteristics of aluminum-1% magnesium under hot working conditions.Recovery and Recrystallization,Warrendal P A,TMS,1985:179-196
    [96]Sheppard T, Zaidi M A, Hollinshead P A, et al. Micro structural control in aluminum alloys:deformation, recovery and recrystallisation. PA,TMS,New York,1985:19-44
    [97]Hirsch J. Modeling of micro structures and properties for industrial sheet production.Lecture held at Department of Materials and Engineering. CSUT,1999
    [98]张岩,于洪伟,谢廷翠,等.5A01-O铝合金板材退火工艺研究[J].轻合金加工技术,2007,35(9):25-26
    [99]Popovic M, Romhanji E. Stress corrosion cracking susceptibilityof Al-Mg alloy sheet with high Mg content[J]. Journal of Materials Processing Technology,2002, 76(125/126):275-280.
    [100]CARMONA R, ZHU Q, SELLARS C M, Bet al. Controlling mechanisms of deformation of AA5052 aluminium alloy at small strains under hot working conditions[J]. Mater Sci Eng A,2005,A 393:157-163.
    [101]吴文祥,孙德勤,曹春艳,等.5083铝合金热压缩变形流变应力[J].中国有色金属学报,2007,17(10):1667-1671.
    [102]McQueen H J, Belling J. Alloy 5005:hot workability in relationto other Al-Mg alloys[J].Materials Science Forum,2000,331:539-544.
    [103]Romhanji E, Dudukovska M, Glisic D. The effect of temperature on strain-rate sensitivity in high strength Al-Mg alloy sheet.Journal of Materials processing Technology,2002, (125-126):193-198
    [104]Wei Wen, Yumin Zhao, J.GMorris. The effect of Mg precipitation on the mechanical properties of 5XXX aluminum alloys. [J]. MATERIALS SCIENCE & ENGINEERING A.392 (2005) 136-144
    [105]Wei Wen,J.G. Morris. The effect of cold rolling and annealing on the serated yielding phenomenon of AA5182 aluminum alloy.[J]. Materials Science and Engineering A 373(2004)204-216.
    [106]Chang J C, Chuang T H. Stress-corrosion cracking susceptibility of the superplastically Formed 5083 Aluminum Alloy in 3.5 Pet NaCl Solution. Metallurgical and Materials Transaction A:Physical Metallurgy and Materials Science,1999,30(12):3191-3199
    [107]Kiryl A. Yasakau, Mikhai L.Zhenludkevich. Role of intermetallic phases in localized corrosion of AA5083[J]. ELECTROCHIMICA Acta.52(2007)7651-7659.
    [108]Jones R H, Vetrano J S, Windisch Jr. Stress corrosion cracking of Al-Mg and Mg-Al alloys[J]. Corrosion,2004,60(12):1144-1154.
    [109]李荻,左尚志,郭宝兰.LY12合金的剥落腐蚀研究[J].中国腐蚀与防护学报,1995,15(3):203.
    [110]左尚志,李荻.国内外铝合金剥蚀研究的现状[J].材料保护,1994,27(12):23.
    [111]King J E, You C P, Knott J F. Serrated yielding and the localized shear failure mode in aluminum alloys[J].ActaMetall,1981,29(9):1553-1566.
    [112]Kang J, Wilkinson D S, Jain M, Embury J D, Beaudoin A J, Kim S,et al. On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754[J].Acta Mater,2006,54(1):209-218.
    [113]Darowicki K, Orlikowski J, Impedance analysis of Portevin-Le Chatelier effect on aluminium alloy [J]. Electrochimica Acta.2007,52:4043-4052
    [114]Cottrell A H.A note on the Portevin-Le Chatelier effect[J]. Phil. Mag,1953,44: 829-832.
    [115]McCormick P G. Theory of flow localization due to dynamic strain aging [J]. Acta Metallurgica.1988,36(12):3061-3067
    [116]Wei Wen, Yu Min-zhao, Morris J G. The effect of Mg precipitation on the mechanical properties of 5XXX aluminum alloys. [J]. Materials Science & Engineering A.2005,392:136-144
    [117]Wei Wen, Morris J G. An investigation of serrated yielding in 5000 series aluminum alloys. [J]. Materials Science & Engineering A.2003,354:279-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700