用户名: 密码: 验证码:
镁基非晶复合材料微观结构与力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通镁合金作为最轻的结构材料,已经在汽车、电子、航空等领域得到应用,然而,镁合金强度低,耐蚀性差,应用范围受到了限制。镁基非晶合金虽然强度和耐蚀性得到了改善,但脆性大。相比之下,镁基非晶复合材料则具有更好的综合力学性能,是这一领域的研究热点。
     本文以具有大非晶形成能力的Mg-Cu-Y合金为基础,通过添加Be、Ti、Zr等合金元素,研究了非晶复合材料的微观结构与力学性能的关系,合金元素添加与相分离的关系以及双相非晶的形成机制。此外,以具有长周期结构的Mg-Ni-Zn-Y非晶复合材料为基础,对其相组成、空间结构和断裂机制进行了系统研究。获得了以下结果:
     采用铜模铸造法制备出直径为3mm的(Mg0.585Cu0.305Y0.11)100-xBex(x=3,5,7,10)系列合金。该系列合金由于Be的加入而产生了Cu-Y-Be第二相,其尺寸和数量随着Be元素加入量的增加而增加。合金的压缩断裂强度分别为866、954、1086和953MPa,呈现出先增加后降低的趋势。通过对(Mg0.585Cu0.305Y0.11)95Be5合金进行TEM和选区衍射分析可知合金产生了相分离,合金中的第二相由Cu-Y-Be非晶相和CuY晶态相组成。直径为1、2和3mm的(Mg0.585Cu0.305Y0.11)95Be5合金试样的压缩断裂强度分别为959、955和954MPa,表明该合金的压缩断裂强度具有尺寸相对独立性。
     研究了(Mg0.585Cu0.305Y0.11)90Ti10和(Mg0.585Cu0.305Y0.11)90(Ti0.7Be0.3)10合金。在两种合金中都分布着大量的白色CuTi晶态点状相。后者中第二相的尺寸更大,数量更多,且其中包含一定的非晶相。直径为3mm的两种合金的压缩断裂强度分别为798和1008MPa,比Mg58.5Cu30.5Y11合金的压缩断裂强度分别提高了17%和48%。(Mg0.585Cu0.305Y0.11)90Ti10和(Mg0.585Cu0.305Y0.11)90(Ti0.7Be0.3)10两种合金的最大强度和最小强度的比值分别为5.1%和4.8%,而Mg58.5Cu30.5Y11合金的比值则为15.5%,表明Ti和Ti70Be30的加入提高了Mg基块体非晶合金的强度可靠性。
     研究了直径为3mm的(Mg0.585Cu0.305Y0.11)97(Zr0.35Ti0.3Be0.275Cu0.075)3合金的微观结构和力学性能。通过SEM可以观察到在该合金富Mg非晶基体之中分布着富Zr的球状非晶第二相。TEM和选区衍射分析表明合金在凝固过程中产生了相分离,形成了富Mg和富Zr的双相非晶。该合金的压缩断裂强度、弹性变形量和塑性变形量分别为1026MPa、2.2%和0.3%,表明合金的力学性能因为发生了相分离而有了很大提高。相分离产生的富Zr硬相在合金的压缩过程中能阻碍剪切带的扩展,进而促使新剪切带萌生,使剪切带增殖并发生交互作用,从而提高了合金的压缩断裂强度并使合金产生了塑性变形。
     研究了直径为2mm的含有长周期相的Mg81Ni8Zn5Y6非晶合金复合材料。该合金由富Mg非晶基体相、Mg12ZnY晶态相、α-Mg相和一种菱形立方结构的四元亚稳白色点状相组成,其中Mg12ZnY为14H型长周期相,在合金中具有空间网状结构。合金的断裂强度、屈服强度和塑性变形量分别为678MPa、510MPa和12.9%。合金的断裂过程可以分为应力集中阶段、剪切带形成的胚胎阶段、完整的剪切带形成阶段、剪切带的传播阶段、剪切带的增殖阶段以及合金的断裂等六个阶段。
As the lightest structural material, the ordinary Mg alloy has been applied in automobileindustry, electronics, aerospace industry and other fields. However, the application scope ofMg alloy is limited due to its low strength and poor corrosion resistance. For Mg-based bulkmetallic glasses (BMGs), the strength and corrosion resistance have been improved, but theyare brittle. The Mg-based BMG matrix composites, by contrast, have better comprehensivemechanical properties, which are the research hotspot in this field.
     Based on the Mg-Cu-Y alloy with high glass forming ability, the relationship betweenmicrostructure and mechanical properties for BMG matrix composite, the relationship betweenalloying element addition and phase separation, the formation mechanism of two-phaseglasses were investigated by adding Be, Ti and Zr alloying elements into the alloy. In addition,based on the Mg-Ni-Zn-Y BMG matrix composite with long period stacking order (LPSO)structure, the phase composition, spatial structure and fracture mechanism of the alloy weresystematically researched. The main experimental results are as following:
     The (Mg0.585Cu0.305Y0.11)100-xBex(x=3,5,7,10) alloys with3mm in diameter werefabricated by conventional Cu-mould casting method. The Cu-Y-Be second phase isdistributed in the alloys because of Be addition. The size and the quantity of the second phaseare increased with the increase of Be content. The compressive fracture strengths of the alloysare866,954,1086and953MPa, respectively, presenting a trend of first increase and thendecrease. It is known by using TEM and selected area electron diffraction analyses that phaseseparation was occurred in (Mg0.585Cu0.305Y0.11)95Be5alloy. The second phase of the alloy isconsisted of Cu-Y-Be amorphous phase and CuY crystalline phase. The compressive fracturestrengths of the samples with1,2and3mm in diameters for (Mg0.585Cu0.305Y0.11)95Be5alloyare959,955and954MPa, respectively, indicating the sample-size independence ofcompressive fracture strength.
     The (Mg0.585Cu0.305Y0.11)90Ti10and (Mg0.585Cu0.305Y0.11)90(Ti0.7Be0.3)10alloys wereinvestigated. A number of white CuTi crystalline phases are distributed in these two alloys.The second phase in the latter, which contain some amorphous phase, is bigger and more thanthat in the former. The compressive fracture strengths of these two alloys with3mm in diameter are798and1008MPa, respectively, which are increased by about17%and48%than that of Mg58.5Cu30.5Y11alloy. Compared with15.5%strength ratio between the maximumand the minimum fracture strength values for Mg58.5Cu30.5Y11alloy, the values5.1%and4.8%for the (Mg0.585Cu0.305Y0.11)90Ti10and (Mg0.585Cu0.305Y0.11)90(Ti0.7Be0.3)10alloys indicate thattheir strength reliability is improved by Ti and Ti70Be30addition.
     The microstructure and mechanical properties for the(Mg0.585Cu0.305Y0.11)97(Zr0.35Ti0.3Be0.275Cu0.075)3alloy with3mm in diameter were investigated.The Zr-rich amorphous spherical phase distributed in the Mg-rich glassy matrix was observedby using SEM. Based on the TEM and selected area electron diffraction analyses, it isindicated that the phase separation was occurred in the alloy during the solidification process,forming the Mg-rich and Zr-rich two-phase glasses. The compressive fracture strength, elasticstrain and plastic strain of the alloy are1026MPa,2.2%and0.3%, respectively, indicating theimprovement of the mechanical properties for the alloy. The improvement of compressivefracture strength and the formation of plastic deformation for the BMG are attributed to theshear-band propagation, multiplication and interaction caused by the hard Zr-rich amorphousspherical phase.
     The Mg81Ni8Zn5Y6BMG matrix composite containing LPSO phase with2mm indiameter was investigated. The alloy is consisted of Mg-rich amorphous matrix phase,Mg12ZnY crystalline phase, α-Mg phase and a diamond-cubic quaternary metastable phase.The Mg12ZnY is a14H-type LPSO phase, which is distributed in the glass matrix as net-liketexture. The fracture strength, yield strength and plastic strain of the alloy are678MPa,510MPa and12.9%, respectively. Six stages of fracture process for the alloy can be outlined asstress concentration, embryonic shear bands formation, mature shear bands formation, shearbands propagation, shear band multiplication and shear-off.
引文
[1]卢博斯基F E主编,柯成,唐与湛,罗阳等译.非晶态金属合金[M].北京:冶金工业出版社,1989.
    [2]汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):177-350.
    [3] Luborsky F E. Amorphous metallic alloys[M]. Butterworth, London,1983.
    [4] Jones H. Rapid solidification of metals and alloys[M]. Institution of Metallurgists, London,1982.
    [5] Wang J F, Li R, Hua N B, et al. Co-based ternary bulk metallic glasses with ultrahigh strength andplasticity[J]. Journal of Materials Research,2011,26(16):2072-2079.
    [6] Donth E. The glass transition: Relaxation dynamicsin liquids and disordered material[M]. Berlin:Spring-Verlag,2001.
    [7] Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progressin Materials Science,2012,57(3):487-656.
    [8] Wang W H. Metallic glasses: Family traits[J]. Nature Materials,2012,11:275-276.
    [9] Cohen M H, Turnbull D. Molecular transport in liquids and glasses[J]. Chemistry Physics,1959,31(5):1164-1169.
    [10] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature,1960,187(4740):869-970.
    [11] Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses[J]. ActaMaterialia,1974,22(12):1505-1511.
    [12] Drehman A J, Greer A L, Turnbull D. Bulk formation of a metallic glass: Pd40Ni40P20[J]. AppliedPhysics Letters,1982,41(8):716-717.
    [13] Kui H W, Greer A L, Turnbull D. Formation of bulk metallic glass by fluxing[J]. Applied PhysicsLetters,1984,45(6):615-616.
    [14] Inoue A, Nakamura T, Nishiyama N. Mg-Cu-Y bulk amorphous alloys with high tensile strengthproduced by a high pressure die casting method[J]. Materials Transactions JIM,1992,33(10):937-945.
    [15] Akatsuka R, Zhang T, Koshiba H, et al. Preparation of new Ni-based amorphous alloys with a largesupercooled liquid region[J]. Materials Transactions JIM,1999,40(3):258-261.
    [16] Inoue A, Miyouchi Y, Makino A. Microstructure and soft magnetic properties of nanocrystallineFe-Zr-B-Al, Fe-Zr-B-Si and Fe-Zr-B-Al-Si alloys with zero magnetostriction[J]. Materials TransactionsJIM,1996,37(1):78-88.
    [17] Amiya K, Nishiyama N, Inoue A. Mechanical strength and thermal stability of Ti based amorphousalloys with large glass forming ability[J]. Materials Science and EngineeringA,1994,179(7):692-696.
    [18] Inoue A, Zhang T. Fabrication of bulk glass Zr55Al10Cu30Ni5alloy of30mm diameter by a suctioncasting method[J]. Materials Transactions JIM,1996,37:185-187.
    [19] Inoue A, Katsya A. Multicomponent Co-based amorphous alloys with wide supercooled liquid region[J].Materials Transactions JIM,1996,37(6):1332-1336.
    [20] Peker A, Johnson W L. A highly processing metallic glass: Zr41.5Ti13.8Cu12.5Ni10Be22.5[J]. AppliedPhysics Letters,1993,63(17):2342-2344.
    [21] Inoue A, Nishiyama N. New bulk metallic glasses for applications as magnetic-sensing, chemical andstructural materials[J]. MRS Bulletin,2007,32(8):651-658.
    [22] Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20alloy cylinder of72mm in diameter[J]. Materials Transactions JIM,1997,38(2):179-183.
    [23] Zheng B, Zhao D Q, Pan M X, et al. Amrophous metallic plastic[J]. Physical Review Letters,2005,15:205502.
    [24] Liu Y H, Wang G, Wang R J, et al. Super plastic bulk metallic glasses at room temperature[J]. Science,2007,315(5817):1385-1388.
    [25] Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels[J]. Applied Physics Letters,2004,92(24):245503.
    [26] Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughnessand tensile ductility[J]. Nature,2008,451(7182):1085-1089.
    [27] Kumar G, Tang H, Schroers J. Nanomoulding using thermoplastic forming with bulk metallic glass[J].Nature,2009,457(7231):868-872.
    [28] Lin X H, Johnson W L. Formation of Ti-Zr-Cu-Ni bulk metallic glasses[J]. Journal of Applied Physics,1995,78(11):6514-6519.
    [29] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia,2000,48(1):279-306.
    [30] Turnbull D. Under what conditions can a glass be formed[J]. Contemporary Physics,1969,10(5):473-488.
    [31] Lu Z P, Tan H, Li Y, et al. The correlation between reduced glass transition temperature and glassforming ability of bulk metallic glasses[J]. Scripta Materialia,2000,42(7):667-671.
    [32] Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys[J]. Journal of Non-Crystalline Solids,1993,473:156-158.
    [33] Waniuk T A, Schroers J, Johnson W L. Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Bealloys[J]. Applied Physics Letters,2001,78(9):1213-1215.
    [34] Lu Z P, Liu C T. A new glass forming ability criterion for bulk metallic glasses[J]. Acta Materialia,2002,50(13):3501-3512.
    [35] Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system[J]. AppliedPhysics Letters,2004,84(20):4029-4031.
    [36] Ma D, Tan H, Li Y, et al. Strategy for pinpointing the best glass-forming alloys[J]. Applied PhysicsLetters,2005,86:191906.
    [37] Wang W H, Dong C, Shek C H. Bulk metallic glasses[J]. Materials Science and Engineering R,2004,44:45-89.
    [38] Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional compositionspace[J]. Applied Physics Letters,2005,87:181915.
    [39] Ott R T, Fan C, Li J, et al. Structure and properties of Zr-Ta-Cu-Ni-Al buld metallic glasses and metallicglass matrix composites[J]. Journal of Non-Crystalline Solids,2003,317(1):158-163.
    [40] Calin M, Eckert J, Schultz L. Thermal an mechanical behavior of Cu-Ti-based bulk metallic glass by insitu formation of nanoscale precipitates[J]. Scripta Materialia,2003,48:653-658.
    [41] Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallicglasses with high strength and plasticity[J]. Journal of Materials Research,2007,22:869-875.
    [42] Chang C T, Shen B L, Inoue A. Bulk glassy alloys with superhigh strength and extremely lowmagnetostriction[J]. Applied Physics Letters,2006,89:051912.
    [43]张涛,门华,云结.Cu-Zr-Ti块体非晶合金的形成及其力学性能[J].北京航空航天大学学报,2004,30(10):925-929.
    [44] Rao X, Si P C, Wang J N, et al. Preparation and mechanical properties of a new Zr-Al-Ti-Cu-Ni-Be bulkmetallic glass[J]. Materials Letters,2001,50:279-283.
    [45] Shen J, Chen Q J, Sun J F, et al. Exceptionally high glass forming ability of an FeCoCrMoCBY alloy[J].Applied Physics Letters,2005,86(15):151907.
    [46] Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: brittleness or plasticity[J]. PhysicsReview Letters,2005,94(12):125510.
    [47] Gilbert C J, Schroeder V, Ritchie R C. Mechanisms for fracture and fatigue-crack propagation in a bulkmetallic glass[J]. Metallurgical and Materials Transactions A,1999,30(7):1739-1753.
    [48] Johnson W J. Bulk glass-forming metallic alloys: science and technology[J]. MRS Bulletin,1999,24(10):42-56.
    [49] Inoue A. High strength of bulk amorphous alloys with low critical cooling rates[J]. MaterialsTransactions JIM,1995,36(7):866-875.
    [50] Inoue A, Koshiba M, Zhang T, et al. Thermal and magnetic properties of Fe56Co7Ni7Zr10-xNbxB20amorphous alloys with wide supercooled liquid region[J]. Materials Transactions JIM,1997,38:577-582.
    [51] Chen M W. Mechanical behavior of bulk metallic glasses: Microscopic understanding of strength andductility[J]. Annual Review of Materials Research,2008,38:445-469.
    [52] Schuh C A, Hufnag T C, Ramamurty U. Mechanical behavior of amorphous alloys[J]. Acta Materialia,2007,55(12):4067-4109.
    [53]郭贻成,王震西.非晶态物理学[M].北京:科学出版社,1984.
    [54]何圣静,高莉如.非晶态材料及其应用[M].北京:机械工业出版社,1987.
    [55][美]泽仑R.非晶态固体物理学[M].北京:北京大学出版社,1988.
    [56] Waseda Y. The Structure of the non-crystalline materials, liquid and amorphous solids[M]. New York:McGraw-Hill,1980.
    [57] Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallicglasses[J]. Nature Materials,2009,8:30-34.
    [58] Ye J C, Lu J, Liu C T, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses[J].Nature Materials,2010,9:619-623.
    [59] Soifer Y M, Kobelev N P, Brodova L G, et al. Internal friction and the Young’s modulus changeassociated with amorphous to nanocrystalline phase transition in Mg-Ni-Y alloy[J]. Nanostructuredmaterials,1999,12:875-878.
    [60] Ohnuma M, Pryds N H, Linderoth S, et al. Bulk amorphous (Mg0.98Al0.02)60Cu30Y10alloy[J]. ScriptaMaterialia,1999,41(8):889-893.
    [61] Audebert F, Rozenberg S, Galano M. Rapidly quenched Mg65YXCu25-XMM10(MM: Mischmetal) alloy[J].Journal of Non-Crystalline Solids,2001,287(1):45-49.
    [62] Xu Y K, Ma H, Xu J, et al. Mg-based bulk metallic glass composites with plasticity and gigapascalstrength[J]. Acta Materialia,2005,53(6):1857-1866.
    [63] Inoue A, Kohinata M. Mg-Ni-La amorphous alloys with a wild supercooled liquid region[J]. MaterialsTransactions JIM,1989,30:378-381.
    [64] Park E S, Kang H G, Kim W T, et al. The effect of Ag addition on the glass-forming ability of Mg-Cu-Ymetallic glass alloys[J]. Journal of Non-Crystalline Solids,2001,279(2):154-160.
    [65] Gyoo K S, Inoue A, Masumoto T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphousalloys with significant supercooled liquid region[J]. Materials Transactions JIM,1990,31(11):929-934.
    [66] Lu Z P, Li Y, Ng S C. Reduced glass transition temperature and glass forming ability of bulk glassforming alloys[J]. Journal of Non-Crystalline Solids.2000,270(1):103-114.
    [67] Xi X K, Zhao D Q, Pan M X, et al. Highly processable Mg65Cu25Tb10bulk metallic glass[J]. Journal ofNon-Crystalline Solids,2004,344(3):189-192.
    [68] Xi X K, Wang R J, Zhao D Q, et al. Glass-forming Mg-Cu-RE (RE=Gd, Pr, Nd, Tb, Y, and Dy) alloyswith strong oxygen resistance in manufacturability[J]. Journal of Non-Crystalline Solids,2004,344(3):105-109.
    [69] Men H, Hu Z Q, Xu J. Bulk metallic glass formation in the Mg-Cu-Zn-Y system[J]. Scripta Materialia,2002,46:699-703.
    [70] Men H, Kim W T, Kim D H. Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx(x=0,5and10) alloys[J]. Journal of Non-Crystalline Solids,2004,337:29-35.
    [71] Ma H, Ma E, Xu J. A new Mg65Cu7.5Ni7.5Zn5Ag5Y10bulk metallic glass with strong glass-formingability[J]. Journal of Material Research,2003,18(10):2288-2291.
    [72] Amiya K, Inoue A. Preparation of bulk glassy Mg65Y10Cu15Ag5Pd5alloy of12mm in diameter by waterquenching[J]. Materials Transactions JIM,2001,42(3):543-545.
    [73] Kato A, Inoue A. Consolidation and their mechanical properties of amouphous Mg87.5Cu5Y7.5andMg70Ca10Al20powders produced by high press gas atomization[J]. Materials Transactions JIM,1995,36(7):977-981.
    [74] Lee J C, Kim Y C, Ahn J P, et al. Enhanced plasticity in a bulk amorphous matrix composite:macroscopic and microscopic viewpoint studies[J].Acta Materialia,2005,53:129-139.
    [75] Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation andenhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendritedispersions[J]. Physical Review Letters,2000,84:2901-2909.
    [76] Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength[J].Applied Physics Letters,2003,83(14):2793-2795.
    [77] Kawanura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2alloys withexcellent tensile yield strength above600MPa[J]. Materials Transactions JIM,2001,42:1171-1176.
    [78] Nishida M, Kawamura Y, Yamamuro T. Formation process of unique microstructure in rapidly solidifiedMg97Zn1Y2alloy[J]. Materials Science and EngineeringA,2004,375-377:1217-1223.
    [79] Chino Y, Mabuchi M, Hagiwara S, et al. Novel equilibrium two phase Mg alloy with the long-periodordered structure[J]. Scripta Materialia,2004,51:711-714.
    [80] Hui X, Dong W, Chen G L, et al. Formation, microstructure and properties of long-period order structurereinforced Mg-based bulk metallic glass composites[J].Acta Materialia,2007,55(3):907-920.
    [81] Xu W Q, Zheng R K, Laws K J, et al. In situ formation of crystalline flakes in Mg-based metallic glasscomposites by controlled inoculation[J]. Acta Materialia,2011,59:7776-7786.
    [82] Kündig A A, Ohnuma M, Ping D H, et al. In situ formed two-phase metallic glass with surface fractalmicrostructure[J].Acta Materialia,2004,52:2441-2448.
    [83] Park B J, Chang H J, Kim W T, et al. In situ formation of two amorphous phases by liquid phaseseparation in Y-Ti-Al-Co alloy[J]. Applied Physics Letters,2004,85:6353-6355.
    [84] Mattern N, Kühn U, Gebert A, et al. Microstructure and thermal behavior of two-phase amorphousNi-Nb-Y alloy[J]. Scripta Materialia,2005,53:271-274.
    [85] Kündig A A, Ohnuma M, Ohkubo T, et al. Glass formation and phase separation in the Ag-Cu-Zrsystem[J]. Scripta Materialia,2006,55:449-452.
    [86] Cao Q P, Li J F, Zhou Y H, et al. Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20metallic glass and its crystallization[J].Acta Materialia,2006,54:4373-4383.
    [87] Du X H, Huang J C, Hsieh K C, et al. Two-glass-phase bulk metallic glass with remarkable plasticity[J].Applied Physics Letters,2007,91:131901.
    [88] Park E S, Kyeong J S, Kim D H. Phase separation and improved plasticity by modulated heterogeneityin Cu-(Zr, Hf)-(Gd, Y)-Al metallic glasses[J]. Scripta Materialia,2007,57:49-52.
    [89] Antonowicz J. Phase separation and nanocrystal formation in Al-based metallic glasses[J]. Journal ofAlloys and Compounds,2007,434-435:126-130.
    [90] Cao Q P, Li J F, Hu Y, et al. Deformation-strengthening during rolling Cu60Zr20Ti20bulk metallic glass[J].Materials Science and Engineering A,2007,457:94-99.
    [91] Zhang Q S, Zhang W, Xie G Q, et al. Formation of a phase separating bulk metallic glass inCu40Zr40Al10Ag10alloy[J]. Materials Science and Engineering B,2008,148:97-100.
    [92] Du X H, Huang J C, Chen H M, et al. Phase-separated microstructures and shear-banding behavior in adesigned Zr-based glass-forming alloy[J]. Intermetallics,2009,17:607-613.
    [93] Pan J, Liu L, Chan K C. Enhanced plasticity by phase separation in CuZrAl bulk metallic glass withmicro-addition of Fe[J]. Scripta Materialia,2009,60:822-825.
    [94] Zhang P N, Li J F, Hu Y, et al. Microstructural evolution during annealing and rollingZr52.5Cu17.9Ni14.6Al10Ti5Bulk metallic glass[J]. Materials Science and Engineering A,2009,499:374-378.
    [95] Mattern N, Goerigk G, Vainio U, et al. Spinodal decomposition of Ni-Nb-Y metallic glasses[J]. ActaMaterialia,2009,57:903-908.
    [96] Park B J, Sohn S W, Kim W T, et al. Structural evolution during crystallization in phase separatedTi-Y-Al-Co metallic glass[J]. Journal of Alloys and Compounds,2009,483:260-264.
    [97] He J, Li H Q, Yang B J, et al. Liquid phase separation and microstructure characterization in a designedAl-based amorphous matrix composite with spherical crystalline particles[J]. Journal of Alloys andCompounds,2010,489:535-540.
    [98] Ren Y L, Zhu R L, Sun J, et al. Phase separation and plastic deformation in an Mg-based bulk metallicglass[J]. Journal of Alloys and Compounds,2010,493:L42-L46.
    [99] Massalski T B. Binary alloy phase diagrams[S]. ASM International,1990.
    [100] Kim D H, Kim W T, Park E S, et al. Phase separation in metallic glasses[J]. Progress in MaterialsScience,2013,58:1103-1172.
    [101] Madge S V, Alexander D T L, Greer A L. An EFTEM study of compositional variations in Mg-Ni-Ndbulk metallic glasses[J]. Journal of Non-Crystalline Solids,2003,317:23-29.
    [102] Ma H, Zheng Q, Xu J, et al. Doubling the critical size for bulk metallic glass formation in the Mg-Cu-Yternary system[J]. Journal of Materials Research,2005,20(9):2252-2255.
    [103] Kinaka M, Kato H, Hasegawa M, et al. High specific strength Mg-based bulk metallic glass matrixcomposite highly ductilized by Ti dispersoid[J]. Materials Science and Engineering A,2008,494(1/2):299-303.
    [104] Wiest A, Duan G, Demetriou M D, et al. Zr-Ti-based Be-bearing glasses optimized for high thermalstability and thermoplastic formability[J].Acta Materialia,2008,56:2625-2630.
    [105] Miedema A R, Deboer F R, Boom R. Model predictions for the enthalpy of formation of transitionmetal alloys[J]. Calphad,1977,1:341-359.
    [106] Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses[J].Philosophical Magazine Letters,2005,85:77-87.
    [107] Johnson W L, Samwer K: A universal criteria for plastic yielding of metallic glasses with a (T/Tg)2/3temperature dependence[J]. Physics Review Letters,2005,95:195501.
    [108] Li Q F, Qiu K Q, Yang X, et al. Glass forming ability and reliability in fracture stress forMg-Cu-Ni-Nd-Y bulk metallic glasses[J]. Materials Science and Engineering A,2008,491(1-2):420-424.
    [109] Kozie T, Zielinska-Lipiec A, Latuch J, et al. Microstructure and properties of the in situ formedamorphous-crystalline composites in the Fe-Cu-based immiscible alloys[J]. Journal of Alloys andCompounds,2011,509:4891-4895.
    [110] Nayeb-Hashemi A A. Alloy Phase Diagrams Monograph[S]. ASM International,1987.
    [111] Li Z G, Hui X, Zhang C M, et al. Strengthening and toughening of Mg-Cu-(Y, Gd) bulk metallicglasses by minor addition of Be[J]. Materials Letters,2007,61(28):5018-5021.
    [112] Wang W H. Correlations between elastic moduli and properties in bulk metallic glasses[J]. Journal ofApplied Physics,2006,99:093506.
    [113] Wang W H. Elastic moduli and behaviors of metallic glasses[J]. Journal of Non-Crystalline Solids,2005,351:1481-1485.
    [114] Wright W J, Saha R, Nix W D. Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24bulk metallicglass[J]. Materials Transactions JIM,2001,42(4):642-649.
    [115] Liu C T, Heatherly L, Easton D S, et al. Test environments and mechanical properties of Zr-base bulkamorphous alloys[J]. Metallurgical and Materials Transactions A,1998,29:1811-1820.
    [116] Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms ofZr59Cu20Al10Ni8Ti3bulk metallic glass[J]. Acta Materialia,2003,51(4):1167-1179.
    [117] Flores K M, Dauskardt R H. Local heating associated with crack tip plasticity in Zr-Ti-Ni-Cu-Be bulkamorphous metals[J]. Journal of Material Research,1999,14:638-643.
    [118] Gilbert C J, Anger J W, Schroeder V, et al. Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulkmetallic glass[J]. Applied Physics Letters,1999,74:3809-3811.
    [119] Wright W J, Schwarz R B, Nix W D. Localized heating during serrated plastic flow in bulk metallicglasses[J]. Materials Science and Engineering A,2001,319-321:229-232.
    [120] Park E S, Jeong E Y, Lee J K, et al. In situ formation of two glassy phases in the Nd-Zr-Al-Co alloysystem[J]. Scripta Meterialia,2007,56(3):197-200.
    [121] Chang H J, Yook W, Park E S, et al. Synthesis of metallic glass composites using phase separationphenomena[J]. Acta Materialia,2010,58(7):2483-2491.
    [122] Zeng X Q, Wang Q D, Lu Y Z, et al. Behavior of surface oxidation on molten Mg-9Al-0.5Zn-0.3Bealloy[J]. Materials Science and EngineeringA,2001301(2):154-161.
    [123] Kim Y C, Lee J C, Cha P R, et al. Enhanced glass forming ability and mechanical properties of newCu-based bulk metallic glasses[J]. Materials Science and Engineering A,2006,437(2):248-253.
    [124] Mattern N, Vainio U, Park J M, et al. Phase separation in Cu46Zr47xAl7Gdxmetallic glasses[J]. Journalof Alloys and Compounds,2011,509S:S23-S26.
    [125] Zheng Q, Cheng S, Strader J H, et al. Critical size and strength of the best bulk metallic glass former inthe Mg-Cu-Gd ternary system[J]. Scripta Materialia,2007,56:161-164.
    [126] Park E S, Kim W T, Kim D H. Bulk glass formation in Mg-Cu-Ag-Y-Gd alloy[J]. MaterialsTransactions JIM,2004,45(7):2474-2477.
    [127] Yuan G Y, Inoue A. The effect of Ni substitution on the glass-forming ability and mechanicalproperties of Mg-Cu-Gd metallic glass alloys[J]. Journal of Alloys and Compounds,2005,287(1-2):134-138.
    [128] Inoue A, Kato A, Zhang T. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by ametallic mold casting method[J]. Materials Transactions JIM,1991,32(7):609-616.
    [129] Park E S, Chang H J, Kim D H. Mg-rich Mg-Ni-Gd ternary bulk metallic glasses with highcompressive specific strength and ductility[J]. Journal of Materials Research,2007,22(2):334-338.
    [130] Tanner L E, Ray R. Metallic glass formation and properties in Zr and Ti alloyed with Be in the binaryZr-Be and Ti-Be systems[J].Acta Metallurgica,1979,27(11):1727-1747.
    [131] Khalili A, Kromp K. Statistical properties of Weibull estimators[J]. Journal of Materials Science,1991,26(24):6741-6752.
    [132] Greer A L, Ma E. Bulk metallic glasses: At the cutting edge of metals research[J]. MRS Bulletin,32(8):611-619.
    [133] Greer A L. Metallic glasses[J]. Science,1995,267(5206):1947-1953.
    [134] Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass[J]. Applied Physics Letters,88(12):122106.
    [135] Oh J C, Ohkubo T, Kim Y C, et al. Phase separation in Cu43Zr43Al7Ag7bulk metallic glass[J]. ScriptaMaterialia,2005,53:165-169.
    [136] Wang L, Qiu K Q, You J H, et al. Phase separation and sample size independence of fracture strengthfor (Mg0.585Cu0.305Y0.11)95Be5bulk metallic glass[J]. Journal of Non-Crystalline Solids,2013,370:1-5.
    [137] Ren Y L, Zuo J H, Qiu K Q, et al. Eutectic structure and bulk glass formation in Mg-based alloys[J].Intermetallics,2004,12(10-11):1205-1209.
    [138] Prak E S, Kim D H. Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallicglasses[J].Acta Materialia,2006,54(10):2597-2604.
    [139] Kim K B, Das J, Baier F, et al. Heterogeneity of a Cu47.5Zr47.5Al5bulk metallic glass[J]. Applied PhysicsLetters,2006,88:051911.
    [140] Luo Z P, Zhang S Q, Tang Y L, et al. Microstructures of Mg-Zn-Zr-RE alloys with high RE and lowZn contents[J]. Journal of Alloys and Compounds,1994,209(1-2):275-278.
    [141] Luo Z P, Zhang S Q. High-resolution electron microscopy on the X-Mg12ZnY phase in a high-strengthMg-Zn-Zr-Y magnesium alloy[J]. Journal of Materials Science Letters,2000,19:813-815.
    [142]张松,袁广银,卢晨等.长周期结构增强镁合金的研究进展[J].材料导报,2008,22(2):61-63.
    [143] Li R G, Nie J F, Huang G J, et al. Development of high-strength magnesium alloys via combinedprocesses of extrusion, rolling and ageing[J]. Scripta Materialia,2011,64(10):950-953.
    [144] Xu C, Zheng M Y, Xu S W, et al. Microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloysheets processed by combined processes of extrusion, hot rolling and ageing[J]. Materials Science andEngineering A,2013,559:844-815.
    [145] Xu C, Xu S W, Zheng M Y, et al. Microstructures and mechanical properties of high-strengthMg-Gd-Y-Zn-Zr alloy sheets processed by severe hot rolling[J]. Journal of Alloys and Compounds,2012,524:46-52.
    [146] Itoi T, Inazawa T, Yamasaki M, et al. Microstructure and mechanical properties of Mg-Zn-Y alloysheet prepared by hot-rolling[J]. Materials Science and Engineering A,2013,560:216-223.
    [147] Chi Y Q, Zheng M Y, Xu C, et al. Effect of ageing treatment on the microstructure, texture andmechanical properties of extruded Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt%) alloy[J]. Materials Science andEngineering A,2013,565:112-117.
    [148] Kim J, Kawamura Y. Influence of rare earth elements on microstructure and mechanical properties ofMg97Zn1Y1RE1alloys[J]. Materials Science and Engineering A,2013,573:62-66.
    [149] Hu J L, Zhang X M, Tang C P, et al. Microstructures and mechanical properties of theMg-8Gd-4Y-Nd-Zn-3Si (wt%) alloy[J]. Materials Science and Engineering A,2013,571:19-24.
    [150] Jin Q Q, Fang C F, Mi S B. Formation of long-period stacking ordered structures in Mg88M5Y7(M=Ti,Ni and Pb) casting alloys[J]. Journal of Alloys and Compounds,2013,568:21-25.
    [151] Mi S B, Jin Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys[J].Scripta Materialia,2013,68:635-638.
    [152] Qiu K Q, Hu N N, Zhang H B, et al. Mechanical properties and fracture mechanism of as-castMg77TM12Zn5Y6(TM=Cu, Ni) bulk amorphous matrix composites[J]. Journal of Alloys andCompounds,2009,478:419-422.
    [153] Shao X H, Yang Z Q, You J H, et al. Microstructure and microhardness evolution of a Mg83Ni6Zn5Y6alloy upon annealing[J]. Journal of Alloys and Compounds,2011,509:7221-7228.
    [154] Zhang C M, Hui X, Yao K F, et al. Formation of high strength Mg-Cu-Zn-Y alloys[J]. MaterialsScience and Engineering A,2008,491(1-2):470-475.
    [155] Amiya K, Ohsuna T, Inoue A. Long-period hexagonal structures in melt-spun Mg97Ln2Zn1(Ln=Lanthanide metal) alloys[J]. Materials Transactions JIM,2003,44(10):2151-2156.
    [156] Itoi T, Seimiya T, Kawamura Y, et al. Long period stacking structures observed in Mg97Zn1Y2alloy[J].Scripta Materialia,2004,51:107-111.
    [157] Shimizu F, Ogata S, Li J. Yield point of metallic glass[J]. Acta Materialia,54(16):4293-4298.
    [158] Klaumünzer D, Maa R, L ffler J F. Stick-slip dynamics and recent insights into shear banding inmetallic glasses[J]. Journal of Materials Research,2011,26(12):1453-1463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700