自冲铆接头动力学数值模拟与疲劳分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自冲铆接是一种很有潜力的连接工艺,尤其对于轻型材料(轻合金、复合材料等)的连接。自冲铆接采用冲头将一个半空心的铆钉压入板材,铆钉管腿端部在嵌入板材的过程中喇叭状张开变形,在两层板或多层板中形成机械内锁,从而将上板和下板牢固地连接在一起。尽管自冲铆技术是一种新型的薄板连接技术,但它的机械性能比传统的点焊好。自冲铆技术被誉为下一代连接技术,是汽车轻量化过程中的一项关键技术,已在汽车行业得到广泛的应用。
     本论文利用数值模拟方法及实验方法研究了自冲铆接成型过程。用有限元软件LS-DYNA基于Cowper-Symonds材料模型建立了2D模型,用Lagrange方法及r-自适应网格划分技术模拟了整个铆接成型过程。结合铆接实体实验的载荷-位移曲线及接头剖面图验证了数值模拟的合理性。分析了凹模凸台尺寸、铆钉尺寸、动静摩擦系数、塑性应变比等参数对成型的影响,从而可以更好的对铆接过程的参数进行优化设计。
     利用有限元软件ANSYS对自冲铆接头进行静力学分析、动力学分析及疲劳分析。通过静力学分析得出最大应力主要分布在上下两板相互接触靠近铆钉孔的位置及上板与铆钉头部相接触的位置。对模态振型的研究提取了前25阶振型,分析得到横向振动的偶数振型关于两板搭接位置对称,搭接位置处在振型的峰值处。说明两板搭接位置对白冲铆接的机械性能有较大的影响,是疲劳分析的关键位置。
     对自冲铆接试件进行了拉伸剪切实验。通过对4组数据的研究对比发现,2系列铝合金自冲铆接-粘接试件的静态拉伸强度大于2系列铝合金自冲铆接试件。2系列铝合金自冲铆接试件的静态拉伸强度大于2系列铝合金压印连接试件。5系列铝合金自冲铆接试件的静态拉伸强度超过了5000N。为下阶段自冲铆接头的疲劳分析提供了应力信息。
     利用ANYSY/FE-SAFE有限元软件对5052铝合金自冲铆接头进行了疲劳分析。研究显示:疲劳破坏常常在上下两板相互接触靠近铆钉孔的位置,以及上板与铆钉头部接触并靠近铆钉孔的位置。通过ANSYS/LS-DYNA软件模拟了铆接接头裂纹扩展的整个过程。
     本文主要目的是实现自冲铆接头动力学数值模拟及疲劳分析,为更深一步的研究提供基础。
The self-piercing riveting(SPR) is a potential connection technology, especially for the connection of the light material(light alloy, composite material etc). SPR uses a punch forcing a semi-tubular rivet into the sheets, the rivet shank expansion and deformation like trumpet in the embedded process, forming a interlock between the two sheets or multilayer sheets, thus the upper sheet and the lower sheet connected together firmly. Though SPR is a new-type connection technique for sheets, the mechanical properties of it is better than the traditional spot welding. It known as the next generation connection technique is a key technology in the lightweight procedure of automobile, applied comprehensive in the auto industry.
     The molding process of the SPR used numerical method and experimental were approached in this paper. FEM software LS-DYNA based on Cowper-Symonds material model was used to built 2D model, and Lagrange method and r-self-adaptive mesh technique were used to simulate the whole shaping process of the riveting. The load displacement diagram of riveting experiment and the section of joint validated the rationality of the numerical simulation.
     This paper analyzed the influence of the parameter on shaping including the concave die and the convex platform, the dimension of the rivet, the static and dynamic friction coefficient, plastic strain ratio and so on, consequently making optimum design for the parameter of the riveting process better.
     The ANSYS software was used to investigate the mechanical property including statics analysis, dynamics analysis and fatigue analysis. Statics analysis obtained the maximum stress mainly distributed in the location where the two sheets contacted and closed to rivet hole, the upper sheet and the rivet head contacted and closed to rivet hole. From the modal analysis which extracted the first twenty-five mode shape, the odd shapes of the transverse vibration shown symmetry between the lap position for the two sheets, and the lap position located at the peak of shapes. It was explained that the lap position influenced the dynamic property of single lap-jointed SPR greatly, was the key location for fatigue analysis.
     The tensile shear experiments on specimens were made. Compared with 4 group data, the static tensile strength of the 2 series aluminum alloy SPR-adhesive bonded pieces were bigger than the 2 series aluminum alloy SPR pieces. The static tensile strength of the 2 series aluminum alloy SPR pieces were bigger than the 2 series aluminum alloy clinched pieces. The static tensile strength of the 5 series aluminum alloy SPR pieces exceeded 5000N. It provided enough preparatory work for the fatigue analysis of the joints in the future research.
     ANYSY/FE-SAFE was used to made fatigue analysis for SPR joints. From the fatigue performance analysis of the 5052 aluminum alloy single lap-jointed SPR found that fatigue damage existed in the location where the two sheet contacted and closed to rivet hole, the upper sheet and the rivet head contacted and closed to rivet hole. The FEM software ANSYS/LS-DYNA was used to simulate the whole crack propagation process of the riveting joint.
     The purpose of this paper was to realize the dynamics numerical simulation and fatigue analysis of the SPR joints, providing foundation for further research.
引文
[1]Xiaocong He,Ian Pearson,Ken Young.Self-pierce riveting for sheet materials:State of the art.Journal of Materials Processing Technology,2008,199(1):27-36
    [2]刘瑞军,李双义,张连洪等.自冲铆接技术在汽车车身轻量化中的应用.汽车技术,2004,23(11):33-37
    [3]苏鸿英.自冲铆技术-轻金属连接方法,世界有色金属,2004,40(3):50-51
    [4]Xiaocong He,Biao Dong,Xunzhi Zhu.Free vibration characteristics of hybrid SPR beams.AIP Conference Proceedings,2009,1233(3):678-683
    [5]R.Porcaro,A.G.Hanssen,M.Langseth, A.Aalberg.Self-piercing riveting process:An experimental and numerical investigation. Journal of Materials Processing Techno-logy,2006,171(2):10-20
    [6]R.Porcaro,A.G.Hanssen,M.Langseth,etal.The behavior of a self-pierce riveted connection under quasi-static loading conditions.International Journal of Solids and Structures,2006,43(3):5110-5131
    [7]Y.Abe,T.Kato,K.Mori.Self-piercing riveting of high tensile strength steel and aluminum alloy sheets using conventional rivet and die.Journal of Materials Processing Technology,2008,209(11):3914-3922
    [8]P.O.Boucharda,T.Laurenta,L.Tollier.Numerical modeling of self-piercing riveting: From riveting process modeling down to structural analysis.Journal of Materials Processing Technology,2008,202(3):290-300
    [9]Christian Westerberg.Finite element simulation of crash testing of self-piercing rivet joints.[Master Dissertation].Sweden,Lund University,2002
    [10]黄志超,占金青.半空心铆钉自冲铆接工艺过程的数值模拟.锻压技术,2007,32(5):54-58
    [11]岁波,都东,常宝华等.铝合金自冲铆连接过程的模拟分析.材料科学与工艺,2007,15(5):713-717
    [12]L.Han,K.W.Young,A.Chrysanthou.The effect of pre-straining on the mechanical behavior of self-piercing riveted aluminum alloy sheets.Materials and Design, 2006,27(5):1108-1113
    [13]C.GPickin,K.Young,I.Tuersley. Joining of lightweight sandwich sheets to alumi- num using self-pierce riveting.Materials and Design,2007,28(8):2361-2365
    [14]Maofeng Fu,P.K.Mallick.Fatigue of self-piercing riveted joints in aluminum alloy 6111.International Journal of Fatigue,2003,25(3):183-189
    [15]N.H.Hoang,R.Porcaro,M.Langseth,etal.Self-piercing riveting connections using aluminum rivets.International Journal of Solids and Structures,2010,47(1):427-439
    [16]XinSun,Elizabeth.V.Stephens,Moe A.Khaleel. Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals. International Journal of Fatigue, 2007,29(2):370-386
    [17]姜鸿澎.自冲铆接增加结合点的疲劳寿命.重型汽车,2003,17(2):21-22
    [18]岁波,都东,常保华等.轻型车身自冲铆连接技术的发展.汽车工程,2006,19(1):85-89
    [19]Y.Abea,T.Katb,K.Moil.Join ability of aluminum alloy and mild steel sheets by self-piercing rivet.Journal of Materials Processing Technology,2006,177(1):417-421
    [20]黄志超.板料连接技术进展.锻压技术,2006,31(4):119-122
    [21]赵海鸥LS-DYNA动力学分析指南.北京:兵器工业出版社,2003
    [22]曾攀.有限元分析及应用.北京:清华大学出版社,2004
    [23]Daryl,L.Logan著.伍义生,吴永礼等译.有限元方法基础教程(第三版).北京:电子工业出版社,2003
    [24]黄志超,姜宁,王建忠.实心铆钉自冲铆接过程的数值模拟及参数优化.锻压技术,2009,34(3):156-161
    [25]John O.Hanllquist.Ls-dyna Theory Manual.2005
    [26]LS-DYNA Keyword User's Manual V971.2007
    [27]刘秀全,张连红,李双义等.自冲铆接工艺过程的有限元数值模拟.汽车技术,2006,38(12):42-45
    [28]张朝晖ANSYS11.0结构分析工程应用实例解析.北京:机械工业出版社,2008
    [29]盛和太,喻海良,范训益ANSYS有限元原理与工程应用实例大全.北京:清华大学出版社,2006
    [30]K.Iyer,S.J.Hu,F.L.Brittman.Fatigue of single-lap and double-rivet self-piercing riveted lap joints.Fatigue Fracture of Engineering Materials & Structures, 2005,11 (28):997-1007
    [31]K.Iyer,F.L.Brittman,S.J.Hu,etal.Fatigue and fretting of self-piercing riveted joints. Making Tracks for Tomorrow's Transportation(ASME IMECE 2002).New Orleans,2002
    [32]Singiresu S.Rao著.李欣业,张明路编译.机械振动(第四版),北京:清华大学出版社,2009
    [33]张洪信,赵清海ANSYS有限元分析完全自学手册.北京:机械工业出版社,2008
    [34]曹树谦,张文德,萧龙翔.振动结构模态分析.天津:天津大学出版社,2001
    [35]何晓聪,何家宁,丁燕芳等.自冲铆接头的质量评价及强度可靠性预测.湖南大学学报,2010,37(12):01-04
    [36]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003
    [37]机械设计手册编委会.机械设计手册(单行本)疲劳强度设计.北京:机械工业出版社,2007
    [38]陈耀明编著.评价及估算切口疲劳强度的新方法.北京:航空工业出版社,2006
    [39]傅祥炯.结构疲劳与断裂.西安:西北工业大学出版社,1995
    [40]陈传尧,高大兴.疲劳断裂基础.湖北:华中理工大学出版社,1991
    [41]刘义伦.工程构件疲劳寿命预测理论方法.湖南:湖南科学技术出版社,1997
    [42]李舜酩.机械疲劳与可靠性设计.北京:科学出版社,2006.9
    [43]姜年朝ANSYS和ANSYS/FE-SAFE软件的工程应用实例.南京:河海大学出版社,2006
    [44]FE-safe user doc.SAFE TECHNOLOGY LIMITED,2006
    [45]Fe-Safe Works User's Manual.ANSYS Inc,2003
    [46]屠立群,孙伟明,蔡东海ANSYS参数化设计在裂纹扩展模拟中的应用.化工装备技术,2007,28(3):37-38
    [47]贾超,张树壮.三维裂纹扩展仿真.系统仿真学报,2006,18(12):3399-3402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700