GCr15/PMMA扭动微动磨损的力学行为分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扭动微动是指接触副在承受交变载荷作用下在接触界面间发生的扭动幅度很小的相对运动,其在航空航天业、汽车制造业等领域均广泛存在,是一种不容忽视的失效行为。根据受载情形,微动的失效形式表现为磨损和疲劳两种形式。由于微动损伤的危害日益凸显,因此对其研究显的越发重要。目前,针对微动磨损的研究已十分活跃,在实验和有限元模拟方面均取得了很多成果,尤其是清华大学和西南交通大学等在实验研究方面已进行了大量的探索并形成了较完整的体系,这些成果相互印证,更好的从机理上对微动磨损进行了分析,但有限元研究方面依然有所欠缺。本文采用工程软件对GCr15钢球/PMMA平板扭动微动时磨损接触区的力学行为进行分析,并与实验结果进行对比分析。
     1.采用有限元软件MARC建立GCr15钢球与PMMA有机玻璃平板扭动微动计算模型,对其在不同角位移和不同摩擦系数情况下进行有限元分析。结果表明:角位移和摩擦系数均对接触区的应力应变分布有着很大影响。
     2.对GCr15钢球与PMMA有机玻璃的扭动微动实验所获得的摩擦力矩-角位移曲线、磨痕形貌图和磨痕轮廓曲线进行定性分析。结果表明:随着角位移的增大,相同循环下所对应的摩擦力矩越大,且磨损深度和磨损范围也越大。
     3.将GCr15/PMMA扭动微动时的模拟计算结果与实验结果进行对比分析,结果表明,它们在一定程度上能较好的吻合,说明有限元结果与实验结果可相互预测验证。
Torsional fretting is the relative motion with a tiny amplitude between the contact interfaces induced by reciprocating torsion under alternate load. It is one kind of failure behavior which is not allowed to be neglected, as a result of wildly existing in many fields such as aerospace industry and automotive industry. The damages forms of fretting can be defined as wear and fatigue according to the loading cases. There is great significance in the research of fretting damage whose harm becoming gradually obvious. The current research on fretting damage is very active. Lots of achievements in the experiment were obtained, especially experimental research for Tsinghua University and Southwest Jiaotong University etc, which developed a completed system of experiment after a lots of exploration. Those achievements confirmed reciprocally and further analyzed fretting damage mechanism. However, little research has been made in FEM simulation. In this paper, a ball-plate contact geometry of GCrl5/PMMA was studied, and mechanical behavior on the contact surface was analyzed by a finite element code. The simulation results were compared to the results of experiments.
     (1)The finite model of GCr15/PMMA was established by FEM software MARC, and the stress-strain distribution was analyzed under different angular displacement and fiction coefficient. Results showed that angular displacement and friction coefficient had great influence on the stress and strain of the contact area.
     (2)The analyses in quality were taken to friction torque-angular displacement curves, worn scars micrographs and wear scars profiles of GCrl5ball and PMMA which were obtained by torsional fretting experiments. Results showed that the friction torque of the same cycle was bigger with the increasing angular displacement, and the corresponding wear depth and range were also bigger.
     (3) The simulation results and the test results were compared under the torsional fretting, and good consistency was obtained between the two kinds of results. It indicated that the FEM method could be used to predict the torsional fretting of GCrl5/PMMA.
引文
[1]朱旻昊.径向与复合微动的运行和损伤机理研究[D].西南交通大学博士学位论文.2001:1-16.
    [2]刘全.两类微动磨损的数值模拟研究[D].西南交通大学硕士学位论文.2009.
    [3]周仲荣,Leo Vincent.微动磨损.科学出版社[M].2002.
    [4]周仲荣.关于微动磨损与微动疲劳的研究[J].中国机械工程,2000,11(4):1146-1150.
    [5]杨皎,莫继良,C.VERRIER等.PMMA扭动微动摩擦学行为的研究[J].材料工程.2010,7:1-5.
    [6]刘军.微动接触应力的有限元分析[J].机械强度,2005,27(4):504-509.
    [7]Mindlin R D. Compliance of elastic bodies in contact[J]. ASME, Journal of Applied Mechanics,1949,16:259-268.
    [8]Hurrick P L. The mechanism of fretting-a review [J]. Wear.1970, 15:389-409.
    [9]Waterhouse R B. Fretting corrosion[M]. Oxford:Pergamon Press,1972.
    [10]Hoeppner D W, Goss G L. Research on the mechanism of fretting fatigue, corrosion fatigue:chemistry, mechanics, and microstructure [J]. Nation Association Of Corrosion Engineers, 1972:617-626.
    [12]Waterhouse R B. The role of adhesion and delamination in the fretting wear of metallic materials [J]. Wear.1977,45:355-364.
    [13]Suh N P. An overview of the delamination theory of wear[J]. Wear. 1977,44:1-16.
    [14]Berthier Y, Vincent L, Godet M. Velocityaccommodation in fretting[J]. Wear. 1988,125:25-38.
    [15]Godet M. Third-bodies in tribology [J]. Wear.1990,136:29-45.
    [16]Hills D A. Mechanics of fretting fatigue [J]. Wear.1994,175:103-107.
    [17]Nowell D, Hills D A. Crack initiation criteria in fretting fatigue[J]. Wear.1990,136:329-343.
    [18]Maouche N, Maitournam M H, Dang Van K. On a new method of evaluation of the inelastic state due to moving contacts [J]. Wear.1997,203-204:139-147.
    [19]Vingsbo O, Soderberg S. On fretting maps[J]. Wear.1988,126:131-147.
    [20]Zhou Z R, Fayeulle S, Vincent L. Cracking behavior of various aluminium alloys during fretting wear[J]. Wear.1992,155:317-330.
    [21]Zhou Z R. Fissuration induite en petits debattements:application au cas d'alliages d'aluminium aeronautiques [J]. Thesis,Ecole Centrale de Lyon. 1992.
    [22]Zhou Z R, Vincent L. Effect of external loading on wear maps of aluminium alloys [J]. Wear.1993,162-164:619-623.
    [23]Zhou Z R, Vincent L. Mixed frettingregime[J]. Wear.1995,181-183:531-536.
    [24]Zhou Z R, Vincent L. Cracking induced by fretting of aluminium alloys[J]. Journal of Tribology,ASME.1997,119:36-42.
    [25]Uuromech 346 on Fretting Fatigue. University of Oxford,U.K.,1996.
    [26]Zhou Z R .International Symposium on Fretting[D]. Southwest Jiaotong University.1997.
    [27]周仲荣,罗唯力,刘家浚.微动摩擦学的发展现状及趋势[J].摩擦学学报.1997,17(3):272-280.
    [28]International Symposium on Fretting Fatigue. Salt Lake City,USA, 1998.
    [29]Levy G, Morri J. Impact fretting wear in CO2-based environment [J]. Wear.1985,106:97-137.
    [30]Jones D H, Nehru A Y, Skinner J. The impact fretting wear of nuclear reactor component [J]. Wear.1985,106:138-162.
    [31]Cha J H, Wambsganss M W, Jendrzejczyk J A. Experimental study on impact-fretting wear in heat exchanger tubes [J]. ASME, Journal of Pressure Vessel Technology, Trans. 1987,109:265-274.
    [32]Tyler J C, Burton R A, Ku P M. Contact fatigue under oscillatory normal load [J]. ASME, Journal of Pressure Vessel Technology, Trans.1963,6:255-269.
    [33]蔡振兵,朱旻昊,俞佳.扭动微动的模拟与实验研究[J].摩擦学学报.2008,28(1):18-22.
    [34]蔡振兵,高姗姗,何莉萍.聚甲基丙烯酸甲酯的扭动微动摩擦学特性研究[J].四川大学学报(工程科学版).2009,41(1):96-100.
    [35]李诗卓,董祥林.材料的冲击磨损与微动磨损[M].机械工业出版社,1987.
    [36]杨晓伟,张永振,邱明.氮气气氛条件下钢/铜摩擦磨损特性研究[J].摩擦学学报.2007,27(1):25-28.
    [37]DAVID N. Friction and wear behavior of engineering materials in a simulated Martain(CO2) environment, a preliminary study[J]. Wears.2007,263(1-6):89-92.
    [38]龙东平,谭建平.人工器官中的摩擦学问题[J].机械科学与技术.2008,27(2):198-204.
    [39]吴刚,张文光,王成焘.仿生多孔超高分子量聚乙烯的摩擦磨损性能研究[J].摩擦学学报.2007,27(6):539-543.
    [40]Shirong Ge, Shibo Wang, Norm Gitis, et al. Wear behavior and wear debris distribution of UHMWPE against Si3N4 ball in bi-directional sliding[J]. Wear. 2008,264:571-578.
    [41]C.J. Schwartz, S.bahadur. Investigation of articular cartilage and couterface compliance in multi-directional sliding as in orthopedic implants[J]. Wear. 2007,262:331-339.
    [42]蔡振兵,何莉萍,俞佳,等PMMA树脂扭动微动磨损特性研究[C].第八届全国摩擦学学术会议.2007.11:38-41.
    [43]任平弟,朱旻昊,周仲荣.油、水介质对GCr15钢微动磨损特性的影响[J].西安交通大学学报.2004,38(11):1152-1155.
    [44]熊党生.离子注入超高分子量聚乙烯摩擦磨损性能研究[J].摩擦学学报.2004,24(3):244-248.
    [45]刘峰壁,李续娥,谢友柏.三体磨粒磨损中摩擦副表面粗糙度预测研究[J].西安交通大学学报.1999,33(12):35-39.
    [46]史正良,刘金龙,宋明,等.人工髋关节的摩擦学现状[J].中国组织工程研究与临床康复.2008,12(4):731-734.
    [47]周银生.陶瓷人工关节的跑合褐摩擦性能研究[J].摩擦学学报.1998,18(2):103-107.
    [48]黄传辉,马瑞,葛世荣.滑动模式对超高分子量聚乙烯摩擦磨损行为的影响[J].摩擦学学报.2005,25(4):348-352.
    [49]王观民,张永振,杜三明,等.不同气氛环境中钢/钢摩擦副的高速干滑动摩擦磨损特性研究[J].摩擦学学报.2007,27(4):346-351.
    [50]王昌祥,郑昌琼,冉均国.关节置换材料及摩擦磨损[J].生物医学工程学杂志.1997,14(1):64-67.
    [51]张志毅,章明秋,曾汉民,等.聚醚醚酮摩擦磨损行为和机理的研究[J].复合材料学报.1995,12(4):49-54.
    [52]Kerlly S. Debris from cobalt-chrome cable may cause acetabular loosening[J]. Clin Orthop.1992,285:140-146.
    [53]李政,朱旻昊,周仲荣.60Si2Mn钢复合微动磨损行为的研究[J].机械工程学报.2005,(01)
    [54]康少伟,黄志超,陈兴茂.自冲铆接中微动的研究概况[J].煤矿机械,2008.
    [55]Tadesuz Wichercon. Metal Surface Engineering[M]. New York:Science Press, 1998:1-35.
    [56]黄传辉.人工髓关节的磨损行为及磨粒形态研究[D].中国矿业大学博士学位论文.2004.
    [57]刘云湘,刘廷华UHMWPE摩擦磨损性能及其机理的研究进展[J].现代塑料加工应用.2004,16(4):55-59.
    [58]郭治天,熊党生,葛世荣.不锈钢表面粗糙度对超高分子量聚乙烯摩擦磨损性能的影响[S].理化检验--物理分册.2001,37(9):369-372.
    [59]陈战,王家序,秦大同.超高分子量聚乙烯工程塑料的摩擦磨损性能研究[J].农业机械学报.2002,33(1):103-105.
    [60]杨敏,郑昌琼,冉均国,等UHMWPE与钦基-TiN-TiC系梯度薄膜材料对磨的生物摩擦磨损特性[J].生物医学工程学杂志.2000,17(1):1-4.
    [61]龚国芳.LIHMWPE/Kaolin复合材料的摩擦磨损特性和机理研究[D].中国矿业大学博士学位论文,2000.
    [62]周仲荣,朱旻昊.复合微动磨损[M].上海交通大学出版社.2004.
    [63]王承鹤.塑料摩擦学--塑料的摩擦、磨损、润滑理论与实践[M].机械工业出版社.1994.
    [64]徐进,朱旻昊,江晓禹,等.柴油机连杆齿形配合面裂纹成因研究[J].机械工程 材料.2003,27(4):51-54.
    [65]K.L.Johnson.接触力学[M].高等教育出版社.1992:263-266.
    [66]蔡武.钢轨接头处轮轨接触有限元分析[D].西南交通大学博士学位论文.2006.
    [67]周文,孙伟明,屠立群,等.微动摩擦力的有限元分析[J].甘肃科技.2007,23(6):93-97.
    [68]蔡振兵.扭动微动磨损机理研究[D].西南交通大学博士学位论文.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700