栉孔扇贝Chlamys farreri和特蛎Crassostrea的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栉孔扇贝(Chlamys farreri)主要分布在我国北部沿海,极少数向南到东海,日本北海道以南及朝鲜西部沿海也有分布。在栉孔扇贝的养殖技术、生理生态等方面进行了广泛研究(王清印,2000,杨爱国,2002,周毅,2003),取得了许多成果。在栉孔扇贝的遗传学分子生物学研究方面也作了许多工作(宋林生,2002;赵洋等,2002;李红蕾等,2002,潘洁等,2002);在各种DNA多态分析技术中,DNA序列分析是遗传多样性和系统进化研究最有效的方法之一,但目前还没有栉孔扇贝DNA序列分析方面的研究。本研究利用DNA序列分析法进行了以下三个方面的研究:(1)研究了栉孔扇贝核基因片段ITS-1和ITS-2序列,探讨了栉孔扇贝该片段的特点,并对其进一步的应用进行了探讨;(2)对栉孔扇贝和海湾扇贝(Argopecten irradians)的线粒体16S rRNA基因片段的特点和同源性进行了比较;(3)利用线粒体16S rRNA基因片段对不同群体的栉孔扇贝的遗传多样性及群体的遗传结构进行了研究分析。希望丰富栉孔扇贝群体的遗传多样性研究内容,为今后的遗传育种和种质资源利用及管理提供理论基础。
     首先利用两对通用引物ITS-1A/B和ITS-2A/B对采自青岛的栉孔扇贝进行PCR扩增。引物序列为:ITS-1A/1B:5’-GGTTCTGTAGGTGAACCTGC-3’/5’-CTGCGTTCTTCATCGACCC-3’;ITS-2A/2B:5’-GTCGATGAAGAACGCAG-3’/5’-GCTCTTCCCGCTT CACTCG-3’。PCR扩增得到了340bp(ITS-1,AF245687)和510bp(ITS-2,AF245688)的PCR产物。两种序列的碱基组成没有明显的差别,其A,T,G,C含量在ITS-1为32.06%,20.59%,22.35%和25.00%;在ITS-2为30.00%,21.37%,24.12%和24.51%,总的A+T含量略高于G+C的含量。本实验扩增所用引物表现出了良好的通用性,表明这两对引物的结合序列高度保守,结合前人研究的结果,可以推测该引物在贝类中通用性较强。
    
    栉孔扇贝和牡蝎的遗传多样性研究
     对栉孔扇贝和海湾扇贝的线粒体165 rRNA基因片段进行了PCR扩增,分别得到
    634bp(AF526247)和542 bp(AF526239)长度的碱基序列,其A,T,G,C含量分别为
    25.08%、29.65%、27.60%和17.67%(栉孔扇贝),25.65%、29.52%、27.31%和17.53%
    (海湾扇贝)。对位排序结果表明,两者的扩增片段其长度相差92bp,还有80个核
    昔酸位点存在转换或颠换,同源性为68.1%,造成扩增片段长度差异的几个小区段的
    缺失/插入出现在扩增片段中部约13Obp范围内。这表明,分别分布于太平洋西北部
    沿海和大西洋北部沿海的两种扇贝在进化上分歧较早。
     用线粒体165 rRNA基因片段研究了栉孔扇贝大连(DL)、烟台(YT)、荣成(RC)、
    青岛(QD)、韩国(SK)和日本(JP)六个群体的遗传多样性,并探讨了栉孔扇贝各群体
    的遗传结构。所有47个个体中得到了长度为592bp的165 rRNA基因片段序列,把所
    有个体的165 rRNA基因片段序列用CIUSTALX(Thompson et al.1997)进行排序对
    比,用ARLEQUIN(Sehneider et al.,2000)计算群体特异性、单倍型多样性(Nei and
    Taj ima,1981)和核昔酸多样性(Nei,1987)。分析表明有31个核昔酸变异位点,共
    23个单倍型。单倍型A和B为最常见单倍型,存在于所有群体,其频率分别为 29.8%
    和17%,基于所有单倍型之间核昔酸歧异的网状图表明:大多数单倍型是互相密切
    关联的,最常见的单倍型A居于辐射状网状图的中央。许多邻近的单倍型互相只有一
    个核昔酸差异,有些单倍型则与A有两个核昔酸差异。EXACT TEXT单倍型频率分布
    分析显示,在所有样品中单倍型频率分布没有明显差异(P=0 .925),而且在所有两两
    群体之间也无明显差异。分子变异分析表明:绝大多数(99.65%)的遗传变异是群体
    内的变异。群体间无明显变异,只有少于2%的变异来源于不同地区的差异,而且这
    部分变异不明显(P=0 .195)。在各群体的单倍型多样性、核昔酸多样性和其他群体多
    样性指数中,SK群体的指数最大,其次为YT群体。YT群体为中国四个群体中各项值
    最高的群体,DL为最小。群体间核昔酸分歧最大的各群体对之间的分歧值位于SK和
    YT之间,最小的出现在DL和JP之间,而这两群体间的地理距离最大。结果表明,
    栉孔扇贝165 rRNA基因片段显示出了相当程度的变异,虽然165 rRNA基因一般来
    说是线粒体中基因组内变异较低的区域,但YT群体最丰富的变异支持这一事实;从
    上述结果看,烟台群体的种质基本没有受到影响,没有表现出遗传退化现象。从韩国
    群体的14个多态位点和8个单倍型来看,是六个群体中最丰富的变异,考虑从韩国引
    
    栉孔扇贝和牡蛹的遗传多样性研究
    进亲贝应是可行的。
     在所有海洋无脊椎动物中,牡砺是最常见、研究最多、也是形态变异最大的一类。
    由于它们均沿海岸分布,并且有很大的形态变异,因而,人们甚至是海洋动物学家有
    时都很难把它们区分开。从目前的研究结果可以看出,DNA序列分析方法特别是线
    粒体片段的序列分析是遗传学及分子系统进化研究非常有用的工具。本项研究中应用
    该技术方法,对太平洋牡砺(。“sostreag电闷s)的线粒体1 65 rRNA、Col基因片段进
    行PCR扩增及序列分析:对太平洋牡砺核基因片段rrs一1和ITS一2片段的遗传特点进
    行了初步研究;并利用165 rRNA和COI基
Occurring along the coast of northern China, South Korea, North Korea and Japan, the Chinese scallop (Chlamys farreri) has been one of the major species of the shellfish industry in the northern coast China for several decades. In recent years, however, scallop culture has been haunted by a high mortality problem. It is believed that the problem was caused by a combination of overcrowding N high summer temperature and deteriorating water quality. Additionally, one more possible reason for the problem to some extent, is that the scallop stock may be deteriorating genetically. Based upon this reason, refreshing scallop stock by introducing new stocks from other populations outside the coast of north China was considered. Consequently, investigation and evaluation on its stock structure throughout its geographic range are required.
    For benthic marine species with pelagic larvae, it has been proposed that they have population genetic structures reflecting the dispersal capacity of larvae. Most of them are supposed to have less or little genetic structure reflecting the dispersal capacity of larvae. Mitochondrial DNA sequences (including 16S rDNA) were used for many of these studies. In C. farreri, this hypothesis has almost never been tested. So, this also lead to our interest to examine population genetic structure using mitochondrial gene sequence data, with two more population samples (Korea and Japan) as well as four samples from China, within its geographic range of the species.
    Ribosomal Internal Transcribed Spacer Regions ITS-1 and ITS-2 in Scallop C. farreri were amplified via PCR, Fragments of the 16S rRNA gene and COI gene were amplified using two pairs of universal primers:
    
    
    The PCR products of ITS-1 and ITS-2 fragments from Scallop C.farrei were ligated into T-vector, cloned and sequenced. 340 bp (ITS-1, AF245687 ) and 510 bp (ITS-2, AF245688) nucleotide sequences were got respectively, and the contents of A, T, G and C were 32.06%, 20.59%, 22.35% and 25.00% in ITS-1, 30.00%, 21.37%, 24.12% and 24.51% in ITS-2. The primers of ITS-1 and ITS-2 proved to be very universal in a variety of mollusk species.
    Mitochondria! 16S rRNA gene fragments from Scallop C. farrei and Argopecten irradians were amplified via PCR. 634bp and 542bp nucleotide sequences were retrieved respectively. The content of A, T, G and C were 25.08%, 29.65%, 27.60% and 17.67% in C. farreri, 25.65%, 29.52%, 27.31% and 17.53% in A. irradians. Alignment indicated that the homology of two fragments was 68.1%, the nucleotide difference number was 80, and several small deletion/insertion sections, which contributed to length difference of the two fragments in two species, occurred in the middle of fragments (around 130bp) .
    A 592 base pairs fragment of the mitochondrial 16S ribosomal RNA gene in 47 Zhikong scallop (C. farreri) specimens was sequenced in order to examine its intra-specific genetic variation and geographic structure. These samples were collected from six populations (four from China, and one each from South Korea and Japan respectively) across its range. Thirty-one nucleotide positions were found variable and twenty-three haplotypes were detected in all samples, which showed that more 16S rDNA variation existed in C. farreri when compared with several oyster species. Analysis at the intra-population level showed that the South Korea samples had the richest sequence diversity. However, analysis of haplotype frequency distribution and analysis of molecular variance (AMOVA) indicated that little geographic structure was present among all samples, and an absolute majority (99.65%) of the genetic variation was distributed within populations, suggesting that the populations in this study may belong to a single panmictic unit. Relative smaller distribution range and various currents may account for sufficient gene flow among these populations for this benthic species.
    
    With 14 polymorphic sites and 8 hyplotypes, SK population showed the richest variation in all 6 populations, this may support the idea of stock introduction from South Ko
引文
包振民,万俊芬等。海洋经济贝类育种研究进展 青岛海洋大学学报。2002,32(4)-567-573
    陈再忠、喻子牛、孔晓瑜等。栉孔扇贝三个自然群体遗传变异初步研究。贝类论文集,海洋出版社2001,No.Ⅸ:53-59
    陈灵芝。中国的生物多样性现状及其保护政策。北京:科学出版社,1993
    陈伟,李钰,陈宇,冯会臣等。中国北方汉族人mtDNh D环多态性研究,中华医学遗传学杂志,1999,16(4):246-248
    蔡英亚,李海燕。越南沿海的双壳纲软体动物 湛江海洋大学学报,2002,22(4).-1-13
    丁君,常亚青,王子臣等。太平洋牡蛎(Crassostrea gigas)不同组织DNA相对含量及细胞周期的分析,海洋科学进展,2003,21(2)-203-208
    何平。真核生物中的微卫星及其应用。遗传,1998,20(4):42-47
    何舜平,王伟,陈宜瑜。低等鲤科鱼类RAPD分析及系统发育研究。水生生物学报,2000,24(2):101-105
    季维智、宿兵。遗传多样性研究原理与方法。浙江:浙江科学技术出版社,1999
    蒋志刚、马克平。保护生物学与遗传多样性。浙江:浙江科学技术出版社,1997
    李春丽,郑康乐.应用RAPD标记检测与水稻株高和抽穗其有关的QTLs。遗传学报1998,25(1)34-39
    李红蕾,宋林生,刘保忠,崔朝霞,相建海。栉孔扇贝不同种群的遗传结构及其杂种优势。海洋与湖沼,2002,33(2):188-195。
    李太武,孙修勤等。中日栉孔扇贝杂交子—代群体的遗传变异高技术通讯。2002,12(6):101-105
    李孝绪,中国牡蛎的比较解剖,系统学和进化研究。海洋科学集刊,1995,35:193-197.。
    李赞,王品虹:太平洋牡蛎精液的超低温保存,青岛海洋大学学报,.2002,32(2).-207-211
    刘必谦、戴继勋,巨蛎属牡蛎的遗传多样性研究。水产学报,1998,22(3):193-198
    刘必谦、戴继勋、喻子牛,RAPD标记在大连湾牡蛎种群研究中的应用,青岛海洋大学学报,1998,28(1):82-88.
    刘志毅、相建海,微卫星DNA分子标记在海洋动物遗传分析中的应用。海洋科学,2001,25(6):11-13
    刘亚军、喻子牛、姜艳艳等,栉孔扇贝16S rRNA基因片段序列的多态性研究。海洋与湖沼,2002.33(5):477-483
    
    
    高天翔,张秀梅,陈大刚等。中国花鲈细胞色素b基因片段的序列研究。青岛海洋大学学报 2001,31(2):185-189
    姜明,汝少国;太平洋牡蛎(Crassostrca gigas)鳃氯细胞的超微形态研究,高技术通讯,2001,11(8).-26-28
    孔令锋,王昭萍,二倍体与三倍体太平洋牡蛎(Crassostrea gigas)的细胞学比较研究 青岛海洋大学学报,2002,32(4).-551-556
    孔晓瑜、刘亚军、喻子牛等。牙鲆、石鲽和川鲽的线粒体16S rRNA基因片段的序列比较研究。青岛海洋大学学报(自然科学版) 2001,31(5):713-717
    潘洁、包振民等,栉孔扇贝不同地理群体的遗传多样性分析。高技术通讯.2002,12(12):78-82
    权洁霞,邓景耀。梭鱼人工养殖群体与自然群体的随机扩增多态DNA(RAPD)分析.海洋学报。2000,22(5):2-87
    齐钟彦,中国经济软体动物。北京:中国农业出版社,1998
    齐钟彦等,黄渤海软体动物。农业出版社,1989,176-180.
    钱迎倩、马克平主编,生物多样性研究原理与方法。中国科学技术出版社,1994,P123-140
    钱亚屏,褚嘉佑,初正韬等.应用线粒体DNA D-LOOP区遗传多样性分析云南4个少数民族的遗传关系.遗传学报,2001,28(4):291-300
    邱芳等,遗传多样性的分子检测。生物多样性,1998,6(2):143-150
    邱高峰、常林瑞、徐巧婷等,中国对虾16S rRNA基因序列多态性的研究。动物学研究,2000,21(1):35-40
    宋林生,常亚青。用RAPD技术对我国栉孔扇贝野生种群与养殖群体的遗传结构及其遗传分化的研究。高技术通讯,2002,12(7):83-86
    万俊芬、汪小龙、包振民等,日本盘胞×皱纹盘胞子代杂种优势的RAPD分析。青岛海洋大学学报,2001,31(4):506-512
    王斌,中国海洋生物多样性的保护和管理对策。生物多样性,1999,7(4):347-350
    王可玲等,中国近海带鱼种群生化遗传结构及其鉴别的研究。海洋学报,1994,16(1):93-104
    王鉴,王志松;太平洋牡蛎生理活动的季节变化,水产科学,2000,19(2).-17-19
    王梅林、郑家声、余海,栉孔扇贝染色体核型。青岛海洋大学学报,1990,20(1):81-84
    王献溥、刘玉凯,生物多样性的理论与实践。北京:中国环境科学出版社,1994
    王清印,杨爱国。 栉孔扇贝三倍体研究进展和展望中国水产科学.2000,7(3):93-96
    王如才,王昭萍,张建忠。海水贝类养殖学。青岛海洋大学出版社,1993
    肖武汉、张亚平。鱼类线粒体的遗传与进化。水生生物学报,2000,24(4):384-391.
    
    
    徐善良、刘艳。环境因子对栉孔扇贝种群基因的表达研究.浙江海洋学院学报
    杨锐,喻子牛等,2000,山东近海褶牡蛎和太平洋牡蛎等位基因酶遗传变异研究,水产学报,24(2):130-133.
    喻子牛,孔晓瑜。同工酶电泳技术与遗传变异研究.海洋湖沼通报,1997,2:32-42
    张福绥等,海湾扇贝不同种群在磷酸葡萄糖变位酶基因位点的遗传结构与性状。海洋与湖沼,1999,30(4):321-329.
    张福绥、杨洪生。山东沿岸夏季循孔扇贝大规模死亡原因分析。海洋科学,1999(1):44-47
    张福绥、杨红生。栉孔扇贝大规模死亡问题的对策与应急措施。海洋科学,1999(2):38-42
    张国范、张福绥。海洋贝类遗传多样性及其永续利用.海洋科学,1993,(5):17-21
    张国范,海洋动物线粒体DNA研究进展.海洋科学,1997,1:25-28
    张亚平等.动物线粒体多态研究概况。动物学研究,1992,13(2):280-298
    张艳、张树义。微卫星方法简介。动物学杂志,1999,34(2):42-45
    张跃、朱新平、罗兼仁、夏仕玲。DNA指纹技术及其在水产上的应用。中国水产科学,1998,5(1):79-83
    张四明。分子生物技术及其在渔业科学中的应用。水产学报,1997,21:97-109
    张四明,吴清江,张亚平。中华鲟及相关种类的mtDNA控制区串联重复序列及其进化意义.中国生物化学与分子生物学报,2000,16(4):458-461
    张玺等。中国牡蛎研究。动物学报,1956,8(1):65-94.
    张喜昌、梁玉波等.海湾扇贝养殖群体遗传多样性的研究。海洋学报,2002,24(2):107-113
    赵洋、包振民、潘洁等。人工选育对栉孔扇贝(Chlaxys farreri)遗传多样性的影响。青岛海洋大学学报,2002,32:41-44
    邹喻苹等。系统与进化植物学中的分子标记。北京:科学出版社,2001
    周毅,杨红生,张福绥。栉孔扇贝生理生态学特征的实验研究。应用生态学报.2003,14(2):227-233
    庄志猛。日本对虾野生和养殖群体遗传多样性的PAPD分析。自然科学进展,2001,11(3):250-255
    章怀云、刘荣宗等。草鱼和鲤鱼群体遗传变异的RAPD指纹分析。水生生物学报,1998,22(2):168-173
    Allard, M. W., 1991, Ribosomal DNA variation within and between species of rodents, with emphasis on the genus Onychomys. Mol. Biol. Evol., (J) 8:71-84.
    Agresti J.J. et al. 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture, 185, 839-850
    Amdt, A. & J. Smith. 1998. Oenetic diversity and population structure in two species of sea cucumber: differing pattcms according to mode of development Mol. Ecol. 7: 1053-1064.
    Avise J.C.. 1983, Polymorphism of mtDNA in populations of higher animals. In. NeiM. And
    
    Koehn R.K.(eds). Evolution of Gene and Proteins, Sinauer, Sunderland,: 147-164
    Alison L., Venennaam J. P., et al., 1996, Rapd verification of meiotic gynogenesis and polyploiy in white sturgeon (Acipenser transmontanus Richardson), Aquaculture, 147:177-189
    Arise, J.C., 1987, Identification and interpretation of mitochondrial DNA stocks in marine species. In: Stock Identification in Marine Fishes. Kumpf, H. and Nakamura, E.L. (eds.). NOAA Technical Memorandum 441, NMFS, SEFC.
    Balnc F., Jaziri H., 1990, Variation of allozymic polymorphism in Ostrea angasi and O. edulis, Aquaculture, 85:331-332
    Bandelt, H.J, P. Forster and A. R(?)hl ,1999, Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16:37-48.
    Banks, M.A., D. Hedgecock & C. Waters, 1993, Discrimination between closely related Pacific oyster spp. (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA, Mol. Mar. Biol. Biotech. 2:129-136.
    Bartlett S. E., W. S. Davidson, 1991, Identification of Thunnus tuna species by Thepolymerase chain reaction ane direct sequence analysis of their mitochondrial cytochrome b genes. Can. J. Fish. Aquat. Sci., 48:309-317
    Benzie J. A. H., Ballment E. and Frusher S., 1993, Genetic structure of Penaeus monodon in Australia: concordant results from mtDNA and allozymes. Aquaculture, 111: 89-93
    Benzie J. A. H., Frusher S., and Ballment E., 1992, Geographical variation in allozyme frequencies of populations ofPenaeus monodon (Crustacea: Decapoda) in Australia. Aust. J. Mar. Freshwater Res., 43: 715-725
    Bielawski J.P., Pumo D.E.. Radomly amplified polymorphic DNA (RAPD) analysis of Atlantic Coast striped bass. Heredity, 1997, 78:32-40
    Borsa P., Benzie J.A.H., 1996, Population genetics of Tectus coerulescens, topshells with short-lived larvae. Mar. Biol., 125:531-541
    Bouchon D., Catherine Souty-Grosset, 1994, Roland Raimond mtDNA variation and markers of species identity in two penaeid shrimp species: penaeus monodon Fabricius and P.japonicus Bate. Aquaculture, 127:131-144
    Boudry, P., S. Heurtebise, B. Collet, F. Cornette & A. Gerard, 1998,Differentiation between population of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J. Exp. Mar. Biol. Ecol., 226: 279-291.
    Boulding E. G., 1993, Genetic Variation in Bottlenecked and Two Wild Populations of the Japanese Scallop(Patinopecten yessoensis) :Empirical Parameter Estimates from Coding Regions of Mitochondrial DNA. Can.J.Fish.Aquat.Sci., 50:1147-1157
    Borowsky, R. and L. Mertz. 2001 Genetic differentiation among populations of the cave fish, Schistura oedipus (Cypriniformes: Balitoridae). 《The Biology of Hypogean Fishes》 2001 Kluwer Academic Publishers
    
    
    Brown B. L. and Paynter K. T., 1991, Mitochondrial DNA analysis of native and selective inbred Chesapeake Bay oysters, Crassostrea virginica. Mar. Biol., 110:343-352
    Brown J. R., et al, 1992, Mitochondrial DNA length variation and heteroplasmy in population of white sturgeon (Acipenser tranmontanus). Genetics, 132:211-228
    Buroker, N. E. 1983, Population genetics of the American oyster Crassostea virginica along the Atlantic and coast and the Gulf of Mexico. Mar. Biol. 75:99-112.
    Canapa A., Barucca M., Marinelli A., and Olmo E., 2000, Molecular data from the 16S rRNA gene for the phylogeny of Pectinidae (Mollusca: Bivalvia) J. Mol. Evol., 50:93-97
    Garcia D.K., Dhar A.K., and Alcivar-warren A. 1996, Molecular analysis of a RAPD marker reveals two microsatellites and differential mRNA expression in Penaeus vanname. Mol. Mar. Biol. Biotech., 5(1): 71-83
    Carr S. M. Marshall H. D., 1991, Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic eod (Gadus morhua) by the polymerase chain reaction. Can.J. Fish. Aquat. Sci., 48:48-52
    Chow S. et al., 1997, Genetic stock structure of the swordfish ( Xiphias gladius ) inferred by PCR-RFLP analysis of the mitochondrial DNA control region, Mar. Biol., 127:359-367
    Chu K.H. , C.P. Li , H.Y. Ho ,2001,The First Internal Transcribed Spacer (ITS-1) of Ribosomal DNA as a Molecular Marker for Phylogenetic and Population Analyses in Crustacea. Marine Biotechnology ,Volume 3(4):0355-0361
    Crozier R. H., Crozier Y. C. and Mackinlay A. G., 1989, The COⅠ and COⅡ region of the honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates, Mol. Bio. Evol., 6:399-411
    Eizadora T. Yu, Ma Antomette Juinio-menez, Virginia D. Monie, 2000, Sequence Variation in the Ribosomal DNA Internal Transcribed Spacer of Tridacna crocea. Mar. Biotechnol ,2: 511-516.
    Felsenstein. J., 1989, PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics, 5: 164-166.
    O'Foighil, D., Gaffney, P. M. et al, 1995, Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American (Crassostrea virginica) and Asian (C. gigas, C. ariakensis) oyster species, J. Exp. Mar. Biol. Ecol. 192:211-220.
    O'Foighil, D., P.M. Gaffney, et al., 1998, Mitochondrial cytochrome oxidae Ⅰ gene sequence support an Asian origin for the Portuguese oyster Crassostrea angulata. Marine Biology. 131: 497-503.
    Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994, DNA primers for amplification of mitochondrial cytochrome c oxidase subunit Ⅰ from diverse metazoan invertebrate. Mol. Mar. Biol. Biotechnol. 3:294-299.
    Frankel O. H., Soul M. F. 1981.Conservation and Evolution. New York: Cambridge University
    
    Press.
    Furlong, J.C., 1995, Patterns of major divergence between the internal transcribed spacers of ribosomal DNA in Xenopus broealis and Xenopus laevis. EMBO 2:443-448.
    Gaffney P. M., Orbaez E. A. and Yu Z., 1998, Using the D code system to identify DNA sequence variation for studies of population structure in marine organisms, Mutation Analysis. Mutation Analysis, 2329
    Gao T. X. and Watanabe S., 1998, Genetic Variation among Local Population Miten Crab Eriocheir japonica De Hean. Fish.Sci., 64(2): 198-205
    Garcia D. K. Faggart M. A., Rhodes L., et al. 1994, Genetic diversity of cultured Penaeus vanamei shrimp using three molecular genetic techniques. Mol. Mar. Biol. Biotech. 3: 270-280
    Garcia D. K., Benzie J. A. H., 1995, RAPD markers of potential use in penaeid prawn (Penaeus monodon) breeding programs. Aquaculture, 130:137-144
    Garcia D. K. Dhar A. K., Alcivar-Warren A., 1996, Molecular analysis of RAPD marker reveal two microsatellites and differential mRNA expression in Penaeus vannamei. Mol. Mar. Biol. Biotech. 5(1): 71-83
    Geller, J. B., J. T. Carlton & D. A. Powers, 1993, Inetrspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp. (Bivalvia: Mollusca). Mol. Mar. Biol. Biotechnol, 2(1): 44-50.
    Goff, D.J.,K.Galvin and H.Katz et al., 1992, Identification of polymorphie simple sequence repeats in the genome of the zebrafish, Genomics, 14:200-202
    Graig S. Wilding, 1997, Mitochondrial DNA Variation in the Scallop Pecten maximus (L.) Assessed by a PCR-RELP Method. Heredity, 79:178-189
    Grant H P, Hlefterios Z. Allozyme and RFLP heterozygosities as correlates of growth rate in the scallop placopecten magellanicus: a test ofthe associative overdominance hypothesis. Genetics, 1994, 137:221—231
    Guo X. M., Ford S. E., Molluscan aquaculture in China. J oumal of shellfish research, 1999, 18(1): 19-31
    Hansen M. M., 1997, Mensberg K. L. D., Rasmussen G, et al., Genetic variation within and among Danish brown trout (Salmo trutta L.) hatchery strains, assessed by PCR-RFLP analysis of mitochondrial DNA segments, Aquaculture, 153: 15
    Harris A.S., et al., 1991, DNA fingerprinting of tilapia (Oroechromis niloticus) and its application to aquaculture genetics. Aquaculture, 92:157-163
    Harry, H. W., 1985, Synopsis of the supraspecific classification of living oysters, Veliger, 23(2): 121-158.
    Hellberg, M. E., 1996, Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution, 50:1167-1175.
    
    
    Hirschfeld B. M., Dhar A. K., Rask K., et al., 1999, Genetic diversity in the oyster (Crassostrea virginica) from massachusetts using the RAPD technique. J. Shell. Res., 18(1): 121-125
    Hixson, J. E. & W. M. Brown, 1986, A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution and phylogenetic implications. M. Biol. Evol., 3:1-18.
    Halward TM, Stalker HT, LaRue EA and Koehert G, 1992, Use of single primer DNA amplification in genetic studies of peanut. Plant Mol Biology, 18:315-325
    Hoskin, M. G. 1997. Effects of contrasting modes of larval development on the genetic structure of populations of three species of prosobraneh gastropods. Mar. Biol. 127: 647-656.
    Howland D. E., Hewitt G M., 1995, Phylogeny of the Coleopteran based on mitochondrial cytochromc oxidase Ⅰ sequence data, Insect Mol. Biol., 4: 23-215
    Huang, B. X., R. Perkall & P. J. Hanna, 2000, Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and micrisatellite markers. Mar. Biol. 136: 207-216.
    Iyahana H., Yoshimoto K., Itakura M., 1992, Detection of point mutations by SSCP of PCR-amplified DNA after endonuclease digestion, Biotechniques, 12:64-66
    Jetvaj B. G., Ball R. M., et al., 1997, Amounts of Polymorphism at Mierosatellite Loci in Sea Scallop Placopecten Magellanicus. J.Shellfish Res., 16(2): 547-553
    Jozefowicz, C. J. & D. O'Foighil, 1998, Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochonddal 16S rRNA gene sequences. Mol. Phylogenet. Evol. 10(3): 426-435.
    Jun Kitaura, Gunji Yamamoto and Mutsumi Nishida, 1998, Genetic Variation in Populations of the Diamond-shaped Squid Thysanoteuthis rhombus as Examined by Mitochondrial DNA Sequence Analysis. Fish. Sci., 64(4): 538-542.
    Karakousis, Y. & D. O. F. Skibinski, 1992, An analysis of allozyme, mitochondrial DNA and morphological variation in mussel (Mytilus galloprovincialis) populations from Greece. Experientia, 48: 878-881.
    Karl, S. A. & J. C. Avise, 1992, Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science, 256: 100-102.
    Kenchington, E., Bird, C.J.Osborne, J. and Reith, M., 2002, Novel repeat elements in the nuclear ribosomal RNA operon of the flat oysters Ostrea edulis C. Linnaeus and O. angasi Sowerby, J. Shell. Res., 21: 697-705.
    Kimura M., 1980, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nueleotide sequences. J. Mol. Evol., 16:111-120.
    King T. L., Ward R. and Zimmerman E. G, 1994, Population structure of eastern oysters (Crassostrea virginica) inhabiting the Laguna Madre, Texas and adjacent bay systems. Can. J. Fish. Aqu. Sci., 51:215-222
    King T. L. Michael S. Eaekles, Branimir Gjetvaj and Walter R. Hoeh. Intraspecific
    
    phylogeography of Lasmigona subviridis (Bivalvia: Unionidae): conservation implications of range discontinuity. Molecular Ecology Volume 8 Issue sl Page S65 - December 1999
    Kocher T.D. et al., 1998, A Genetic Linkage Map of a Cichlid Fish, the Tilapia (Oreochromis niloticus), Genetics, 148:1225-1232
    Kohen R.K., Hall J.G., 1984, Genetic differentiation of Mytilus edulis in eastern North America. Marine Biology, 79:117-126
    Kyle, C. J. & E. G. Boulding, 2000, Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar. Biol,, 137: 835-845.
    Lapegue, S., I. Boutet, A. Leitao, S. Heurtebise, P. Garcia, C. Thiriot-Quievreux & P. Boudry, 2002, Trans-Atlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analysis. Biol. Bull., 202:232-242.
    Lee,W.J. and T.D.Kocker, 1996, Microsatellite DNA markers for genetic mapping in Oreochromis niloticus, J.Fish Biol., 49:169-171
    Li, L. and X. Guo, 2002, A preliminary linkage map for the Pacific oyster Crasspstrea gigas, constructed with AFLP and RAPD markers. J. Shellfish Res., 21: 433. (Abstract)
    Li, X. & Z. Qi, 1994, Studies on the comparative anatomy, systematic classification and evolution of Chinese oysters. Studia Marina Siniea, 35:143-173.
    Lin J. J., Kuo J., Ma J., 1996, A PCR-based DNA fingerprinting technique: AFLP for molecular typing for bacteria, Nucl. Acids Res., 24:3649-3650
    Linsheng Song, Wei Xu, Honglei Li, Ximing Guo, Jianhai Xiang. 2002, The construction of cDNA library and sequencing of ESTs for scallop Chlamys farreri and Argopecten irradians. World Aquaculture, p715, Apr. 23-27, 2002.
    Littlewood, D. T. J., 1994, Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Mol. Phylogenetic. Evol., 3:221-229.
    Liu, B. & J. Dai, 1998, Studies on genetic diversity of oysters of genus Crassostrea. J. Fish. China, 22(3): 193-198.
    Lu G, et al., 1996, Mitochondrial DNA diversity, population structure, and conservation genetics of four native crabs species within the Yangtze R, China. Can. J. Fish. Aquat. Sci., 54:47-58
    Lynch M., 1990, The similarity index and DNA fingerprinting. Mol. Biol. Evol., 7:478
    Machado E. G., Dennebouy M,, Suarez M. O. et al., 1993, Mitochondrial 16S-rRNA gene of two species of shrimps: sequence variability and secondary structure . Crustaxeana, 65(3): 279-286
    Margaret M., Hsiu-Ping Liu, Karen L. K., 1998, Application of molecular genetic markers to conservation of freshwater bivalves. J. Shell. Res., 17(5): 1395-1405
    Matthew A.C., 1993, Mitochondrial DNA Variation in Chinook (Oncorhynchus tshawytscha ) and Chum Salmon (O. Keta) Detected by Restriction Enzyme Analysis of Polymerase
    
    Chain Reaction (PCR) Products. Can.J.Fish.Aquat.Sci., 50:708-715
    Mc Connell S., Hamilton L., Morris D., et al., 1995, Isolation of salmonid microsatellite loci and their application to Atlantic salmon. Aquaculture, 137:19-30
    Merrel D. J., 1983, Ecological genetics. Longman
    Meyran J. C., Monnerot M., Taberlet P., 1997, Taxonmic status and phylogenetic relationships of some species of the genus Gammarus ( Crustacea Amphipoda ) deduced from mitochondrial DNA sequence. Mol. Phyl. Evol., 8:1-10
    Meveigh, H.P. and Davidson, W.S., 1991, A salmonid phylogeny inferred from mitochondrial cytochrome b gene sequences. J. Fish. Biol., 39:277-282.
    Miller MP, Stevens LE, Busch JD, Sorensen JA, Keim P., 2000, Amplified Fragment Length Polymorphism and mitochondrial sequence data detect genetic differentiation and relationships in endangered southwestern U.S.A. ambersnails (Oxyloma spp.). Candian Journal of Zoology, 78(10), 1845-1854.
    Mizukami, Y. and H. Kito, 1999, Necleotide sequence variation in the ribosomal Internal transcribed Spacer regions of cultivated (cuitivars) and field-collected Thalli of Porphyra yezoensis. Fisheries Science, 65(6):787-789.
    Mohsin U. P., 1993, Revealing Genetic Markers in Gelidium Vagum (Rhodophyta) through the Random Amplified Polymorphic DNA (RAPD)Technique. J.Phycol., 29:216-222
    Navajas M., Lagnel J., Gutierrez J., et al., 1998, Species-wide homogeneity of nuclear ribosomal ITS-2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COⅠ polymorphism, Heredity, 80:742-752
    Nei M. and F. Tajima. 1981, DNA polymorphism detectable by restriction endonucleases. Genetics, 97:145-163
    Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press. New York.
    O'Foighil, D., P. M. Gaffney & T. J. Hilbish, 1995, Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American (Crassostrea virginica) and Asian (C. gigas, C. ariakensis) oyster species, J. Exp. Mar. Biol. Ecol., 192:211-220.
    O'Foighil, D., P. M. Gaffney & W.A. Wilbur., 1998, Mitochondrial cytochrome oxidase Ⅰ gene sequence support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar. Biol. 131: 497-503.
    Orbacz E. A. and Gaffney P. M., 2000, Genetic structure of tautog (Tautoga onitis) population assayed by RFLP and DGGE analysis ofmitochondrial and nuclear genes, Fishery Bulletin, 98(2): 336-344
    Oreta M., Suzuki T., Hayashi K., 1989, Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction, Genomics, 5:874-879
    Palumbi, S. R. & A. C. Wilson, 1990, Mitochondrial DNA diversity in the sea urchins Stronglyocentrotus purpuratus and S. droebachiensis. Evolution, 44(2): 403-415.
    Palumbi, S. R., A. Martin & S. Romano, 1991, The simple fool's guide to PCR. University of
    
    Hawaii Press, Honolulu, USA.
    Palumbi, S.R., Benzie, J., 1991, Large mitochondrial DNA differences between morphologically similar penaeid shrimp (J). Mol.Mar.Biol., 1(1): 27-34.
    Patwary M. U., Kenchington E. L., Bird C. J., et al., 1994, Use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (grnelin 1971). J. Shellfish Res., 13 (2): 547-553
    Patwary, M.U., C. W. Sensen, 1998, Nucleotide sequences of small-sub-unit and internal transcribed spacer regions of nuclear RNA genes support the autonomy of some genera of the Gelidiales (Rhodophyta). J.Phycol., 34:299-305.
    Qi, Z., 1989, Mollusk of Yellow Sea and Bohai Sea. Agricultural Publishing House, Beijing. pp176-180
    Raymond, M. & F. Rousset, 1995, An exact test for population differentiation. Evolution, 49: 1280-1283.
    Reeb, C. A. & J. C. Avise, 1990, A genetic discontinuity in a continuously distributed species: mitoehondrial DNA in the American oyster, Crassostea virginica. Genetics 124: 397-406.
    R(?)hl, A. 1999, Phylogenetisehe Netzwerke. PhD Thesis, Department of Mathematics, University of Hamburg, Germany.
    Sambrook, J., E. F. Fritseh and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
    Sara L. F. S. and Scott K. D. 1991, Evolution of genetic variation in a domestic population of Penaeus vannamei (Boone): a comparison with three natural populations. Aquaculture, 97: 131-142
    Sarkar G., Yoon H. S., Sommer S., 1992, Screening for mutations by RNA single-strand conformation polymorphism ( rSSCP ): comparison with DNA-SSCP, Nucl. Acids Res., 20:871-878
    Schizas, N. V., G. T. Street, B. C. Coull, G. T. Chandler & J. M. Quattro, 1999, Molecular population structure of the marine benthic eopepod Microarthridion littorale along the southeastern and Gulf coasts of the USA. Mar. Biol., 135: 399-405.
    Schneider, S., D. Roessli & L. Excoffier, 2000, Arlequin ver.2000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
    Small, M, P. & R. W. Chapman,1997, Intraspecific variation in the 16S ribosomal gene of Crassostrea virginica. Mol. Mar. Biol. Biotechnol. 6(3): 189-196.
    Smith P. J., 1989, Mitochondrial DNA in the Atlantic cod, Gadus morhua: lack of genetic dibergence between eastern and western populations, J. Fish. Biol., 34:369-373
    Sosa P. A. and Garcia-Reina G., 1992, Genetic variability and differentiation of sporophytes and gametophytes in populations of Gelidium arbuscula determined by isozyme electrophoresis, Mar. Biol., 113: 679-688
    
    
    Stothard J., et al., 1997, Observation on shell morphology, enzymes and random amplified polymorphic DNA (RAPD) in Bulinus africanus group snails (Gastropoda: Planorbidae) in Zanzibar. J. Mollus. Stud., 63(4): 459-503
    Tam Y. K., Chu K., 1993, Electrophoretic study on the phylogenetic relations of some species of Penaeus and Metaplenaeus (Decapoda: penaeidae) from the south China sea . J. Crust. Biol., 13(4): 697-705
    Tetsuo Fujii and Mutsumi Nishida, 1997, High sequence variability in the mitochondrial DNA control region of the Japanese flounder paralichthys olivaceus. Fisheries Science, 63(6): 906-910
    Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D.G. Higgins, 1997, The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 24: 4876-4882.
    Thompson, J.D., D.G. Higgins & T. J. Gibson, 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4672-4680.
    Torigoe, K., 1981, Oysters in Japan. J. Sci. of Hiroshima Univ., Set B. Div. 1 (Zool) 29 (2): 291-419.
    Vos P., Hogers R., Bleeker M. et al., 1995, AFLP: a new technique for DNA fingerprinting, Nucl. Acids Res., 23:4407-4414
    Ward R. D., Grewe P. W., 1994, Appraisal of molecular genetic techniques in fisheries, Rev. Fish. Biol., 4:300-325
    Ward R. O., Elliott N. G., Innes B. H. et al., 1997, Global population structure of yellow tuna (Thunnus albacares) inferred from ailozyme and mitochondrial DNA variation, Fish. Bull., 95(3): 566-575
    Weir, B. S. & C. C. Cockerham, 1984, Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370.
    Welsh J., Mclelland M., 1990, Fingerprinting genomes using PCR with arbitrary primers, Nucl. Acids Res., 18:7213-7218
    Wilbur A., Orbacz E. A., Wakefield J.R., and Gaffney P. M., 1997, Mitochondrial genotype variation in a siberian population of the Japanese scallop, Patinopecten yessoenssis (JAY). Journal of Shellfish Research, 16 (2): 541-545
    Wilding C. S., Beaumont A. R. and John W. Latchford, 1997, Mitochondrial DNA variation in the scallop Pecten maximus (L.) assessed by a PCR-RFLP method. Heredity, 79:178-189
    Williams J. G. K., Hanafey M. K., Rafalski J. A., et al., 1993, Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymology, 218:704-740
    Williams K., et al., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc. Aci. Res., 18(22): 6531-6535
    Young W.P. et al. 1998, A Detailed Linkage Map of Rainbow Trout Produced Using Doubled
    
    Haploids, Genetics, 148, 839-850
    Yoshimoto, Role of P53 mutations in endocrine tumorigenesis: Mutation detection by polymerase chain reaction-single strand conformation polymorphism, Cancer Res., 1992, 52: 5061-5064.
    Yu, Z., and X. Guo, 2003, Genetic Linkage Map of the Eastern Oyster Crassostrea virginica Gmelin. Biol. Bull., 204: 327-338.
    Yu, Z., X. Kong, L. Zhang, X. Guo & J. Xiang. 2003. Taxonomic status of four Crassostrea oysters from China as inferred from mitochondrial DNA sequences. J. Shellfish Res., 22:31-38.
    Zhang, G. F. & F. S. Zhang. 1997, The genetic structure and variation of five populations in the Chinese scallop, Chlamys farreri. Proceedings of the fourth Asian fisheries forum, China Ocean Press, Beijing, pp422-425.
    Zhang X., & Z. Lou, 1956. Studies on oysters in China, Acta Zool. 8 (1): 65-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700