非恒定流作用下丁坝水毁试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁坝是航道整治的常用工程措施之一,但建成运行后往往在汛期出现水毁现象,需要经常性维护,为了减少后期维护量,急需要开展非恒定流条件下的丁坝水毁研究。本文在长江上游来流过程特征分析的基础上,采用概化水槽的定、动床模型试验,研究了7种非恒定流条件下丁坝周围的水力要素的变化过程,以及坝体周围的冲刷坑发展过程、丁坝的水毁过程,分析了丁坝水毁机理,并进行了对应恒定流的对比试验,研究成果可供丁坝优化设计及维护管理参考。论文取得的主要成果有:
     (1)长江上游天然年日均流量过程是一个非对称、非平衡的随机过程,具有单峰、双峰和多峰型态特征,一般峰数越少,最大峰值越大。本文利用一维一阶概率模型确定了不同频率洪水过程。
     (2)根据原型河道特点与丁坝特征,进行了水槽与丁坝概化设计。采用非恒定流控制与量测试验系统,实现了日均非恒定流量过程的控制与水位、流速过程的量测。
     (3)枯季流量较小时,丁坝多处于非淹没状态,坝头冲刷坑较小、坝体完好:随着流量增加,水流漫过坝顶,坝上下游出现大水位差,同时坝头前沿出现跌水,坝上下游及坝头前沿比降很大,但坝顶流速较小,易损部位主要在坝头;洪峰来临时,坝头前沿纵向水面比降较大、流速梯度较大,但坝顶流速及比降甚至超过坝头及主流区的流速和比降,易损部位主要在坝头与坝身。因坝头大流速水流持续作用的时间长,坝顶汛期水流作用力较大,坝头与坝身均为坝体易损部位,是丁坝结构设计和维护中应加强和重点防范的部位。
     (4)非恒定流条件下,坝体周围水面比降极值出现时间在流量极值出现之前,且同流量下涨水期纵比降要大于落水期纵比降;坝头极限冲深、范围及坝体的水毁程度远大于径流总量相同下的恒定流水体的作用。
     (5)随着流量增加,坝头流速增大,坝头冲刷坑逐步发展,坝头块石因失去河床的依托,开始失稳滑落;当首次洪峰来临、流速陡增,冲刷坑发展迅速,坝头、背水坡和坝顶往往出现突发性的块石坍塌水毁;随着后续水流的涨跌,坝头冲刷坑的发展相对平缓。
     (6)坝体水毁是周围河床变形与汛期流量增大的自身适应性反应;坝头螺旋流、主流、翻坝水流的综合作用下,坝顶处流速与比降迅速增大,坝头涡体随着下潜水流运动到坝头与坝面后破碎、撞击、分离,形成很大的能量,脉动流速很大,使坝头松动的块石直接被水流带走,形成突发性坝体溃缺。
The spur dike is commonly used as one of the engineering measures of channel regulation, but it is often destroyed by flow in the flood season when running, so regular maintenance is required. In order to reduce the amount of post-maintenance it is urgently needed to carry out research of the failure of spur dike under unsteady flow conditions. Based on the analysis of flow process feature upper reaches of the Yangtze River and using fixed bed and movable bed test of generalized sink, the change process of the hydraulic elements, the spur dike destroyed, the reason of groin destroyed and the development of the scour hole around the spur dike are researched under seven unsteady flow processes. And carry out the comparative tests between the constant flow with the unsteady flow. The achievements provide reference for optimization designing groins. The main results obtained in the paper like the following:
     (1) The natural annual daily-average discharge hydrograph upper reaches of the Yangtze River is a non-symmetric and unbalanced random process with a single peak or bimodal or multimodal Morphology. Generally the peak number is much fewer and the maximum value of the peak is much greater. The different frequency flood process is established according to one-dimensional first-order probabilistic model.
     (2) According to the characteristics of the prototype river and the spur dike, the sink and groin for test is generalized. Using the controlling and inspection system of unsteady flow, the average daily unsteady flow process controlling and water level, flow rate of the process measurement is achieved.
     (3)When it is dry season, the spur dike usually is in non-submerged state, the scour hole is smaller and the spur dike is perfect.With the flow rate increasing, the flow submerges over the top of the dam. There is a large difference between the downstream and the upstream of the spur dike and waterfall appearing the frontier of the groin at the same time. The hydraulic inclination upstream and downstream and the frontier of the spur dike is larger but the flow rate is smaller on the top of the groin, and the more vulnerable parts is the head of the spur dike.; When it is flood season, the hydraulic inclination and flow rate of the frontier of the spur dike are always larger but the flow rate and hydraulic inclination of the top of the spur dike are often larger than those of the head of the spur dike and the mainstream, so the more vulnerable parts is mainly the body of the spur dike. Thus the frontier of the spur dike is sustained the high-speed flow for a long time and the top of the spur dike is suffered the larger flow force, the frontier and body of the spur dike are all the vulnerable parts. Which are the parts that should be enhanced whin designning structure of spur dike.
     (4) Under unsteady flow conditions, the maximum of hydraulic inclination around the spur dike appears earlier than that of the discharge, and the hydraulic inclination of the rising limb is larger than that of the drop. Ultimate scour depth and range of the frontier of the spur dike and the degree of spur dike destroyed are much greater than that of the corresponding constant flow.
     (5) When the flow increasing, flow velocity and scour hole of the groin head are rising and gradually developing individually. The rock block of the spur dike will begin slipping instability due to losing the backing of the riverbed. When the first flood peak arriving, the flow rate increases sharply, the scour hole develops rapidly, the downstream slope and the frontier and the top of the spur dike will suddenly collapse by flow attacking; With the subsequent flow up and down, the scour hole develops relatively slowly.
     (6) The spur dike is destroyed which response to the riverbed deformation and flow increasing during flood season; The combined effects of the spiral flow of the groin head and mainstream flow and the running-over-groin flow make the flow rate and hydraulic inclination of the top of the spur dike increase rapidly, the vortex follows the diving flow and arrives the head and surface of the spur dike, and forms a lot of energy when crushing, impacting and separating. The spur dike suddenly collapses because the loose stone was dragged away by flow directly due to the large fluctuating velocity.
引文
[1]长江航道局.航道整治工程技术规范(JTJ312-2003)[M].人民交通出版社.2004.
    [2]李洪.丁坝水力学特性研究[M].四川大学博士论文.2003.
    [3]应强,焦志斌.丁坝水力学[M].海洋出版社.2004.
    [4]王平义,程昌华,荣学文等.航道整治建筑物水毁理论及模拟技术[M].北京:人民交通出版社.2005:23-80
    [5]荣学文.丁坝的水毁机理及其平面二维水流数值模拟[M].重庆交通学院硕士论文.2003.
    [6]高贵景.丁坝水力特性及冲刷机理研究[M].重庆交通大学硕士学位论文.2006.
    [7]高培.长江中游航道丁坝稳定性及防护技术研究[M].重庆交通大学硕士学位论文.2006
    [8]周济福,李家春.鱼咀及丁坝对长江口航道分流分沙的影响[J].应用数学与力学.2004,25(2):141-148.
    [9]Iehisa Nezu. Open-channel flow turbulence and its research prospect in the 21st century[J]. Journal of Hydraulic Engineering, ASCE,2005(4):229-246.
    [10]Andrew M,George C and Larry J W. Numerical investigation of flow hydrodynamics in a channel with a series of groynes[J]. Journal of Hydraulic Engineering, ASCE,2008(2):157-172.
    [11]孔祥柏,程年生.丁、潜坝局部水头损失的试验研究[J].水利水运科学研究.1992(12):387-393.
    [12]张可.不同结构型式丁坝水流特性研究.重庆交通大学硕士论文.2012.
    [13]何春光等.透水丁坝冲刷特性的试验研究[J].水运工程.2007(12):94-96.
    [14]陈稚聪,黑鹏飞,丁翔.丁坝回流区水流紊动强度试验[J].清华大学学报(自然科学版).2008,48(12):2054-2056.
    [15]高先刚等.透水丁坝收缩断面与冲深计算[J].人民长江.2009(9):64-65.
    [16]毛佩郁等.丁坝坝头冲深和堵口抛石大小的计算[J].水利水运工程学报.2001,6(2):46-50..
    [17]陈稚聪,黑鹏飞,丁翔.丁坝回流分区机理及回流尺度流量试验研究[J].水科学进展.2008(9):614-617.
    [18]Hong Koo Yeo, Joon Gu Kang, Sung Jung Kim. An experimental study on tip velocity and downstream recirculation zone of single groynes of permeability change. Journal of civil Engineering,2005,9(1):46-53.
    [19]假冬冬等.边墩纵向宽度对回流长度的影响研究[J].水科学进展.2008(11):814-819.
    [20]张华庆等.丁坝紊动特性研究.水道港口.2008(6):185-192.
    [21]Wim S.J.Uijttewaal. Effects of groyne layout on the flow in groyne fields:laboratory experiments[J]. Journal of Hydraulic Engineering, ASCE,2005(9):782-791.
    [22]张柏山,吕志咏,祝立男.绕丁坝流动结构实验研究.北京航空航天大学学报.2002,28(5):585-588.
    [23]Volker Weitbrecht,Scott A.Socolofsky and Gerhard H. Experiments on mass exchange between groin fields and main stream in rivers[J]. Journal of Hydraulic Engineering, ASCE,2008(2):173-183.
    [24]Sylvain ouillon and Denis Dartus.Three-dimensional computation of flow around groyne[J]. Journal of Hydraulic Engineering, ASCE,1997(11):962-970.
    [25]Robert Ettema and Marian Muste. Scale effects in flume experiments on flow around a spur dike in flatbed channel[J]. Journal of Hydraulic Engineering, ASCE,2004(7):635-646.
    [26]Tang Xue-lin, Ding Xiang, Chen Zhi-cong. Experimental and numerical investigation on secondary flows and sedimentations behind a spur dike[J].Journal of hydrodynamics.2007 (1): 65-73.
    [27]Au.Molls T, Chaudhry M.H, Khan K.W. Numerical simulation of two-dimensional flow near a spur-dike[J]. Advances in Water Resources.1995,18(4):145-153.
    [28]假冬冬等.大系数法与壁函数结合在丁坝绕流三维数值模拟中的应用[J].水利水运工程学报.2008(3):36-41.
    [29]李小芹,李超,张泽中.丁坝附近湍流的数值模拟[J].人民黄河.2008(7):32-33.
    [30]崔占峰,张小峰.三维紊流模型在丁坝水流中的应用研究[J].长江科学院院报.2008(4):21-25.
    [31]叶桢.丁坝附近紊流的三维数值模拟及局部冲刷.浙江大学硕士学位论文.2007.
    [32]周宜林等.非淹没丁坝附近三维水流运动特性的研究[J].水利学报.2004(8):46-53.
    [33]张兆顺,崔桂香.湍流大涡数值模拟的理论和应用[J].清华大学出版社.2008.
    [34]凌建明.绕流丁坝附近流场数值分析[J].公路交通科技.2006(1):10-14.
    [35]李中伟等.丁坝附近局部流场的数值模拟[J].武汉水利电力大学学报.2000(6):18-22.
    [36]唐学林,丁翔.Large eddy simulations of Three-Dimensional flows Around a spur dike.清华大学学报.英文版.2006(1):85-90.
    [37]Xuelin Tang,Xiang Ding,Zhicong Chen. Experimental investigations and numerical simulations of reducing secondary flows around a spur dike. International sediment research..2006(2):88-93.
    [38]田伟平,李惠萍.丁坝挑角等参数对坝头冲刷深度的影响[J].长安大学学报(自然科学版).2002(9):42-44.
    [39]田伟平.漫水高度对丁坝水流结构及冲刷影响的研究[J].西安公路交通大学学报.1995(1):137-141.
    [40]应强,曹民雄.丁坝坝头冲刷坑深度的研究[J].南昌水专学报.1999(3):16-20.
    [41]宗绍利,吴宋仁,秦宗模.山区航道丁坝冲刷深度研究[J].水运工程.2007,400(3):68-72.
    [42]方达宪,王军.丁坝坝头床沙起冲流速及局部最大水深计算模式的探讨[J].泥沙研究.1992(12):77-84.
    [43]万艳春,黄本胜.丁坝坝头局部冲深计算方法综述[J].广东水利水电.2003(4):52-57.
    [44]张俊华等.河道整治及堤防管理[M].黄河水利出版社.1998.
    [45]高冬光.桥台的冲刷机理和冲刷深度[J].中国公路学报.1998(1):54-62.
    [46]Bruce W.Melville. Pier and abutment scour:integrated approach[j]. Journal of Hydraulic Engineering, ASCE,1997(2):125-136.
    [47]Roger A.Kuhnle,Carlos V. Alonso and F. Douglas ShieldsJr. Geometry of scour holes associated with 900 spur dikes[J]. Journal of Hydraulic Engineering, ASCE,1999(9):972-978.
    [48]Roger A.Kuhnle,Carlos V. Alonso and F.Douglas ShieldsJr. Local scour associated with angled spur dikes[J]. Journal of Hydraulic Engineering, ASCE,2002(12):1087-1093.
    [49]Munsur Rahman and Anisul Haque.Local scour at sloped-wall spur-dike-like structures in alluvial rivers. Journal of Hydraulic Engineering, ASCE,2004(2):70-74.
    [50]Subhasish Dey and Rajkumar V.Raikar.Clear-water scour at piers in sand beds with an armor layer of gravels[J]. Journal of Hydraulic Engineering, ASCE,2007(6):703-711.
    [51]Christian Chreties,Gonzalo Simarro and Luis Teixeira. New Experimental method to find equilibrium scour at bridge piers[J]. Journal of Hydraulic Engineering, ASCE,2008(10):1491-1495.
    [52]A.Ercan,B.A.Younis. Prediction of bank erosition in a reach of the sacramento river and its mitigation with groyne[J]. Water Resources Management.2009(2):75-83.
    [53]Majid Fazli, Masoud Ghodsian, Seyed. Scour and flow field around a spur dike in a 900 bend. Journal of hydrodynamics. Ser. B.2008 (1).
    [54]Siow-Yong Lim.泥沙级配对丁坝附近冲刷的影响[J].人民长江.1994.
    [55]航道整治工程技术规范(JTJ312-98).中华人民共和国交通部.1998.12.
    [56]苏德慧.丁坝冲刷过程试验研究[J].水动力学研究与进展.1993(12):632-635.
    [57]赵世强.丁坝的冲刷机理和局部冲刷[J].重庆交通学院院报.1989(1):13-21.
    [58]张义青,杜小婷.丁坝的平衡冲刷及冲刷计算[J].西安公路交通大学学报.1997(12):56-59.
    [59]沈焕荣等.丁坝局部冲刷深度计算问题探讨[J].四川大学学报(工程科学版).2001(3):5-8.
    [60]沈波.丁坝局部冲刷的平面二维数学模型[J].西安公路交通大学学报.1997,17(3):32-36.
    [61]崔占峰,张小峰,冯小香.丁坝冲刷的三维紊流模拟研究[J].水动力学研究与进展.2008(1):33-41.
    [62]彭静,玉井信行,河原能久.丁坝坝头冲淤的三维数值模拟[J].泥沙研究.2002(2):25-29.
    [63]曹艳敏等.丁坝冲刷坑及下游回流区流场和紊动特性试验研究.水动力学研究与进展.2008(9):560-569.
    [64]Kuhnle R A,Alonso C V,Shields Jr F D.Local scour associated with angled spur dikes[J].J Hydr.Eng,2002,128(12):1087-1093.
    [65]Kuhnle R A,Alonso C V,Shields Jr F D.Geometry of scour holes associated with 90 spur dikes[J]. J Hydr.Eng,1999,125(9):972-978.
    [66]Duan J G,Nanda S K.Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field[J]. J Hydrology,2006(327):426-437.
    [67]张玮,瞿凌锋,徐金环.山区河流散抛石坝水毁原因分析[J].水运工程.2003(4):10-12.
    [68]唐银安,吴安江.山区冲积性河流整治建筑物水毁原因及防治初探[J].水运工程.1997(4):37-40.
    [69]秦宗模.澜沧江曼厅大沙坝抛石坝体水毁分析及防护措施[J].云南交通科技.2002(2):53-54.
    [70]王先登,彭冬修,夏炜.丁坝坝体局部水流结构与水毁机理分析.中国水运(下半月).2009(9).
    [71]佘俊华.川江航道整治物新结构研究.重庆交通大学硕士学位论文.2006.
    [72]童秉纲,张秉暄,崔尔杰.非定常流与涡运动,北京:国防工业出版社,1993.
    [73]胡江.光滑明渠非恒定流传播特性及流速分布研究.河海大学博士学位论文.2008.
    [74]Bergant,A.,Simpson,A.R.and Vitkvsky,J. A theory for turbulent pipe and channel flow[J].Journal of hydraulic research,2001,39(3):249-257.
    [75]Carstens,M.R. and Roller,J.E. Boundary shear stress in unsteady turbulent pipe flow. Journal of the hydraulic division,1959:67-81.
    [76]Axworthy,D.H.,Ghidaoui,M.S. and Mcinnis,D.A. Extended thermodynamics derivation of energy dissipation in unsteady pipe flow[J].Journal of hydraulic engineering,2000,126(4):276-287.
    [77]Vardy,A.E.and Brown JMB. On trubulent,unsteady,smoothpipe friction.In proceeding of 7th international conference on pressure surges and fluid transients in pipelines and open channels,1996:289-311,Harrogate,England.
    [78]Adamkowski,Adam,Lewandowski,Mariusz. Experimental examination of unsteady friction models for transient pipe flow simulation[J].Journal of Fluids Engineering,Transactions of the ASME,2006,128(6):1351-1363.
    [79]Viola et al. Experiments on unsteady turbulent pipe flow. Journal of hydraulic research,1991,29(5):669-684.
    [80]Eichinger,P. and Lein,G. The influence of friction on unsteady pipe flow[J]. In proceeding of international conference on unsteady flow and fluid transiments,1992:41-50.
    [81]Silva-Araya,W.F. and Chaudhry,M.H. Unsteady friction in rough pipes[J].Journal of hydraulic engineering,2001,127(7):607-618.
    [82]Pezzinga,G. Quasi-2d model for unsteady flow in pipe networks[J].Journal of hydraulic engineering,1999,125(7):676-685.
    [83]Pezzinga,G. Evaluation of unsteady flow resistances by puasi-2d of Id models[J].Journal of Hydraulic engineering,2000,(126(10):778-785.
    [84]Attia,Hazem A. Unsteady MHD flow of a dusty non-newtonian bingham fluid through a circular pipe[J]. Journal of the brazilian society of mechanical sciences and engineering.2006,28(3):264-268.
    [85]Tong Dengke, Liu Yusong. Exact solutions for the unsteady rotational flow of non-newtonian fluid in an annular pipe[J].International journal of engineering science.2005,43(3):281-289.
    [86]Seo E R, Lee D,Parameswaran S. A finite-volume based computational model for one dimensional unsteady two fluid flow in a pipe[J]. Advances in fluid mechanics.2004,37:23-32
    [87]Zhao M,Ghidaoui M S,Kolyshkin A A. Perturbation dynamoics in unsteady pipe flows[J]. Journal of fluid mechanics.2007,570:129-254.
    [88]Tu, S.W. and Ramaprian,B.R. Fully developed periodic turbulent pipe flow. Part 1.the detailed structure of the flow.Journal of fluid mechanics,1983(137):31-58
    [89]Ramaprian,B.R.and Tu,S. W.Fully developed periodic turbulent pipe flow. Part,2.the detailed structure of the flow.Journal of fluid mechanics,1983(137):59-81
    [90]Ramaprian,B.R. A review of experiments in periodic turbulent pipe flow. In unsteady turbulent boundary layers and friction,1984(12):1-16.
    [91]Shemer,L.and Kit,E. An experimental investingation of the quasisteady turbulent pulsating flow in pipe.Physics of fluids.1984,27(1):72-76.
    [92]Sleath J F A.Turbulent oscillatory flow over rough beds.J. of fluid mechanics.1987(182):369-409.
    [93]Jensen B L,Sumer B M,Fredsoe J.Turbulent oscillatory boundary layers at high Reynolds numbers. J. of Fluids mechanics.1989(206):265-297.
    [94]Shuy,E.B. Approximate wall shear equation for unsteady laminar pipe flow[J]. Journal of hydraulic research,1995,33(4):457-469.
    [95]Giuseppe Pezzinga. Evaluation of unsteady flow resistances by quasi-2d or Id models[J]. Journal of Hydraulic Engineering, ASCE,2000(10)778-785.
    [96]Walter F.Silva-Araya and M.Hanif Chaudhry. Unsteady friction in rough pipe[J]. Journal of Hydraulic Engineering,ASCE,2001 (7):607-617.
    [97]M. Rashidul I and Hanif C. Modeling of constituent transport in unsteady flows in pipe networks. Journal of Hydraulic Engineering,ASCE,1998(11):1115-1124
    [98]Giuseppe P,Quasi-2D model for unsteady flow in pipe networks. Journal of Hydraulic Engineering ASCE,1999(7):676-685
    [99]David H et al.Exteded thermodynamics deriveation of energy dissipation in unsteady pipe flow[J]. Journal of Hydraulic Engineeringr,ASCE,2000(4):276-287
    [100]Mahmood K,Yevjevich V.明渠不恒定流(第一卷)[M].林秉南译校.北京:水利电力出版社,1987.
    [101]吴持恭.水力学[M].高等教育出版社.2008.12.
    [102]林秉南.明渠不恒定流研究的现状和发展.林秉南论文选集.中国水利水电出版社.2000.340-351
    [103]罗景.明渠非恒定流的有关特性及应用.武汉大学硕士学位论文.2004.
    [104]刘春晶.明渠非恒定流运动规律及推移质输沙特性的试验研究.清华大学博士学位论文.2004.
    [105]Iehisa Nezu and Hiroji Nakagawa. Turbulent structure in unsteady depth-warying open-channel flows[J]. Journal of Hydraulic Engineering,ASCE,1997(9):752-763.
    [106]Qu Z. Unsteady open-channel flow over a mobile bed.[PhD Thesis],Lausance, Switzerland:EPFL.2003.
    [107]Weiming Wu,Dalmo A Vieira and sam S Y Wang. One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks[J]. Journal of hydraulic engineering,2004,(130(9):914-923.
    [108]Iehisa Nezul, Akihiro Kadota and Hiroji Nakagawa. Turabulent structure in unsteady depth-varing open-channel flows[J]. Journal of Hydraulic Engineering, ASCE,1997(9):752-763
    [109]Tu H. Velocity distribution in unsteady flow over gravel beds. [PhD Thesis],Lausanne,S witzerland:EPFL,1991.
    [110]D.Ambrosi et al. Numerical simulation of unsteady flow at Po river delta[J]. Journal of Hydraulic Engineering,aSCE,1996(12):735-743.
    [111]Kotaro Onizuka and Samuel Nii Odai. Burgers' equation model for unsteady flow in open channels[J]. Journal of Hydraulic Engineering,ASCE,1998(5):509-512.
    [112]T.Song and W.H.Graf. Velocity and turbulence distribution in unsteady open-channel flows[J]. Journal of Hydraulic Engineering, ASCE,1996(3):141-154.
    [113]Nezu,I.,Kadota, A.and Nakagawa,H.Experimental study on the turbulent structure in unsteady open-channel flows.Fundamentals and Advancements in Hydr.Measurements and Experimentation,ASCE.1994:185-193.
    [114]Nezu I, Nakagawa H. Turbulence measurements in unsteady free-surface flows[J].Flow Measurement and Instrumentation.1995,6(1):49-59.
    [115]Nezu I,Kadota H. Turbulent structure in unsteady depth-varying open-channel flows[J], Journal of Hydraulic Engineering, ASCE,1997,123(9):752-763.
    [116]Iehisa Nuzu and MIchio Sanjou.Numerical calculation of turbulence structure in depth-varying unsteady open-channel flows[J]. Journal of Hydraulic Engineering,ASCE,2006(7):681-695.
    [117]Tu,H. and Graf,W.H. Friction in unsteady open-channel flow over gravel beds[J]. Journal of hydraulic research,1993,31(1):99-110.
    [118]Graf,W.H. and Song,T. Bed-shear stress in non-uniform and unsteady open-channel flows[J].Journal of hydraulic research,1995,33(5):699-704.
    [119]Graf,W.H. and Song,T. Sediment transport in unsteady flow. In proc.,26th congress,IAHR,1995b,480-485,London,UK.
    [120]Song,T. and Graf,W.H. Experimental study of bed-load transport in unsteady open-channel flow[J].International journal of sediment research,1997,12(3):63-71.
    [121]Brereton G J.Mankbadi R R.Revies of recent advances in study of unsteady turbulent internal flows. Applied Mechanics Review-ASME,1995,48(4):189-212.
    [122]曹民雄等.向家坝水电站下游非恒定流水沙特性研究[J].水利水运工程学报.2011(3):28-34.
    [123]王志力,陆永军.向家坝水利枢纽下泄非恒定流的数值模拟[J].水利水电科技进展.2008(6):12-15.
    [124]黄颖,李义天,韩飞.三峡电站日调节对下游河道水面比降的影响[J].水利水运工程学报.2004(9):62-66.
    [125]季荣耀,陆永军,左利钦.水电枢纽下泄非恒定流作用下的航道整治研究[J].水利学报(增刊).2007(10):318-323
    [126]魏根群,陈壁宏,宿晓辉.反调节水库非恒定流数值模拟[J].水科学进展.2001(12):491-498.
    [127]郭志学等.电站下游非恒定流清水冲刷水沙运动特性研究[J].中国科技论文在线.2010(7):549-556.
    [128]房丹,刘亚辉.电站日调节非恒定流对系缆力的影响研究[J].船舶工程2008(3):68-72.
    [129]徐灿波等.梯级电站日调节过程中非恒定流控制[J].水道港口.2008(2):49-53.
    [130]张成,傅旭东,王光谦.复杂内边界长距离输水明渠的一维非恒定流数学模型[J].南水北调与水科科技.2007(12):16-19
    [131]孙广才.物理分步法在二维非恒定流数值模拟中的应用[J].武汉理工大学学报.2002(12):871-873.
    [132]程永光,索丽生.二维明渠非恒定流的格子Boltzmann模拟[J].水科学与进展.2003(1):9-14.
    [133]赵克玉.天然河道一维非恒定流数学模型[J].水资源与水工程学报.2004(3):38-41.
    [134]付典龙,傅春.一维圣维南方程组的特征线法[J].南昌大学学报.工科版.2006(12):386-389.
    [135]梁国亭.非恒定流泥沙数学模型原理及应用[J].泥沙研究.1999(4):44-48.
    [136]徐高洪,郭生练,张万顺.河网非恒定流数值模拟及应用研究[J].人民长江.2008(1):33-36
    [137]张莉.河道二维非恒定流场的一种计算方法[J].广西轻工业.2007(2):65-67.
    [138]左一鸣,夏光平,崔广柏.基于GIS的平原河网非恒定流计算模型[J].水利水运工程学报.2005(6):32-35.
    [139]万晖.明渠非恒定流的特征线解法[J].黑龙江水专学报.2006(3):20-22.
    [140]乐培九,方修泮.非恒定流垂线流速分布规律的初探[J].水道港口。2002(6):53-59.
    [141]Bingnan Lin. Unsteady transport of suspended load at small concentrations.林秉南论文集.2000:424-429
    [142]KE Feng, Che Han-ping, Liu Ying-zheng. Experimental study of unsteady characteristics of turbulent mixing layer flow over an open step and a square-edged rib[J].Journal of hydrodynamics.Ser.B.2007.(6)701-709.
    [143]余常昭.非恒定环境中的紊动射流.余常昭水力学论文集.科学出版社.2002.221-231
    [144]林秉南,姜凯,温丽林.不恒定流的闸门流量系数,林秉南论文选集.中国水利水电出版社。2002:247-250
    [145]胡江,杨胜发,周华君.光滑明渠非恒定流传播速度实验研究[J].水运工程.2009(3):15-17.
    [146]陈建华,刘星,唐银安.山区河流非恒定流航道沙卵石浅滩整治[J].水运工程.2005(6):65-68.
    [147]刘春晶等.明渠非恒定流推移质输沙试验研究[J].水力发电学报.2006(4):31-37.
    [148]范杰.渠道非恒定流水力学响应研究[J].水科学进展.2006(1):55-60.
    [149]林桂宾,张佰战,戴荣尧.桥渡非恒定流水工模型试验研究[J].泥沙研究.2005(12):70-75.
    [150]李玲,王薇宇.系统仿真技术在河道非恒定流研究中的应用[J].水力发电学报.2008(12):106-110.
    [151]汪拥赤.通航工程模型试验中非恒定流量测技术的研究[J].水运工程.2007(1):38-41.
    [152]吴宋仁,陈永宽.港口及航道工程模型试验[M].人民交通出版社.1993.陈小莉.竖轴漩涡对丁坝坝头块石颗粒起动的影响[J].水力发电学报.2007(10):98-101.
    [153]朱位秋.随机振动[M].科学出版社.1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700