丘陵山地自走式玉米收获机设计方法与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丘陵山地作为我国玉米的主要种植区,但其机收水平与平原地区相比,无论是规模还是速度,其差距都在进一步扩大。为此,本文以适用于丘陵山地的自走式玉米收获机为研究对象,基于田间适应性试验和室内试验台试验结果,分析了丘陵山地玉米收获机整机设计原则;基于玉米植株力学特性,研究了丘陵山地玉米收获机的设计方法;利用虚拟样机技术,对整机及摘穗部件进行了虚拟仿真分析;最终研制了适用于丘陵山地的玉米收获机,并进行了田间试验验证。本文的主要的研究工作如下:
     (1)在查阅大量文献和深入调研的基础上,分析了当前国内外玉米收获机发展动态、关键技术和研究方法,总结了国内主要玉米收获机生产企业的机型参数,在此基础上,确定了本文的研究内容和技术路线。
     (2)根据国内现有玉米收获机的分类和特点,提出了丘陵山地玉米收获机的筛选原则,筛选了两款小型玉米收获机,开展了丘陵山地玉米收获的适应性试验。基于试验结果,提出了目前国内玉米收获机在丘陵山地地区存在的问题和核心技术,为后续研究提供了数据支持。
     (3)研制了玉米收获机室内多功能试验台,并进行了玉米植株喂入及摘穗过程试验。试验台包括玉米植株喂入试验装置、多工况摘穗和剥皮试验装置、功耗测试系统以及高速摄像系统。玉米植株喂入装置能够模拟玉米收获时植株喂入状态,同时能够实现喂入速度、行距及株距可调,并满足进行不对行收获的技术要求。多工况摘穗和剥皮试验装置利用变频调速电机调节拉茎辊与剥皮辊转速,同时能够方便快速调节拉茎辊、摘穗板间隙,摘穗倾角,剥皮辊间隙,压送器长度等参数。针对自走式玉米收获机摘穗装置,开展了不同工况下的功耗试验,并基于高速摄像技术,对摘穗和剥皮过程玉米穗的运动特征进行了分析。
     (4)对丘陵山地某一种植品种的玉米植株物理几何参数进行了测量,获取了与机械化收获密切相关的植株几何参数,并建立了玉米植株关键几何参数的数学关联模型;基于试验和文献资料,研究了玉米茎秆的折弯、拉伸、剪切及挤压特性,获取了茎秆的最大折弯角、最大拉断力、最大剪切力和最大挤压破坏力;研究了苞叶和籽粒的力学特性,并获取了植株与不同材料的摩擦特性。
     (5)基于丘陵山地地形地貌特点和轮式农业机械行走机理,进行了玉米收获机底盘设计方法研究,确定了整机物流模块、行走机构及传动机构的设计方案;基于玉米植株的物理力学特性,研究了玉米收获机关键部件设计方法。以玉米茎秆折弯、拉伸、剪切以及挤压特性,苞叶的拉伸特性以及籽粒的力学特性为基础,提出了分禾器、摘穗机构、秸秆粉碎机构的设计方法。
     (6)基于虚拟样机技术和玉米植株在摘穗过程中的受力和运动分析,提出了玉米收获机关键部件仿真方法。以玉米植株的力学特性为基础,建立玉米茎秆及果穗的刚柔模型,确定了仿真关键参数取值,并进行玉米植株与关键部件相互作用的仿真分析。同时,进行了整机在不同坡度路面的爬坡及侧倾仿真试验。
     (7)与企业合作研制了适用于丘陵山地的4YZP-2自走式玉米收获机。该机长度仅为3980mm,比国内2行收获机平均尺寸(5490mm)小27%;质量仅为1680kg,比国内2行收获机平均质量(2560kg)小34%同时,整机功率仅为22.98kW。通过田间试验,验证了该机在丘陵山地地区的适应性和工作可靠性。
Hilly regions are the main planting areas of com in China. However, the mechanized corn harvesting level in these areas is far lower than that in plain area in the respects of scale and rate. Considering this situation, this paper focuses on self-propelled corn harvester suitable for hilly regions. According to the results of adaptability tests and indoor test-bed experiments, the design principles of corn harvester machine were determined. Furthermore, the design method of self-propelled corn harvester was discussed based on the physical and mechanical properties of corn plant. Provided virtual prototyping technology, the vehicle and its snapping components were simulated. Finally, a self-propelled corn harvester for hilly regions was developed with field tests conducted.
     (1) The development trend, key technology and research methods of corn harvester were investigated basing on literature review and in-depth survey. The model parameters of major domestic corn harvesting machine manufacturers were then summarized. From the above, the objectives and the technical route of this paper were determined.
     (2) Through the classification and features of the existing domestic corn harvesters, we proposed the screening principle of corn harvester for hilly regions. Two small-scale corn harvesters were screened for adaptability test. From the results, the existing problems and key technologies of domestic corn harvesters in current situation were presented.
     (3) The multifunction test-bed for corn harvester was developed for feed-in as well as snapping tests of corn plant. The test-bed consists of the plant-feed-in mechanism, the multi-condition snapping and peeling units, measurement system for power consumption, and high-speed camera system. The plant-feed-in mechanism can simulate the feed-in state during harvesting with adjustable feeding speed, row-spacing, and plant-spacing. Similarly, the rotating speeds of picking rolling and husking roller are adjustable by adopting a frequency conversion motor. Meanwhile, the snapping angle and the gaps of the stretching rollers, husking rollers and the snapping plate can be adjusted quickly and conveniently. The power consumption test was carried out and the motion characteristic parameters of corn stalk and ear were analyzed with the high-speed camera. The experimental data provides support for designing the snapping mechanism.
     (4) Provided the measured physical dimensions of a certain type of hilly corn plant, a mathematical model of the corn plant associated with the key geometric parameters was formulated. On account of the experimental data and references, the bending, tensile, shear and compression properties of com stalk were studied. Consequently, we obtained the maximum values of the bending angle of corn stem, the tensile, shear, and extrusion failure forces of corn stalk. The mechanical properties of the grain bract and kernel were taken into consideration, and the friction characteristics between the plant and various materials were gained. The data describing the physical and mechanical properties of corn plant provides support for designing the snapping mechanism.
     (5) The design method of harvester chassis was proposed considering the walking mechanism of wheeled agricultural machinery and hilly terrain features. Correspondingly we determined the design schemes of the whole logistics module, the walking and transmission mechanisms. The design method of the key components of corn harvester were then studied based on the mechanical properties of corn plants. Given the bending, tensile, shear and compression properties of corn stalk, the design approaches of the divider, snapping and straw chopper units were proposed.
     (6) The simulation approach of key components for corn harvester was proposed in consideration of the analyses on force and kinematics during snapping process with application of virtual prototyping technology. The rigid-flexible model of corn stalk and ear were built on the mechanical properties of corn plant, which provides the key parameters used as simulation input. Then the interaction between the corn stalk and the machine key components, and the dynamic behaviors of the harvester traveling on various sloping grounds were simulated.
     (7) A type of4YZP-2self-propelled corn harvester was developed in collaboration with an agricultural machinery manufacturer. It has a length of3980mm (27%less than the average length of domestic two-line harvesters) weighing1680kg (34%less than the average weight of domestic two-line harvesters) with a22.98kW engine power. Its adaptability and reliability were verified through field trials and it is proved to be applicable to hilly regions according to the results.
引文
[1]柳琪.从国际农机展看玉米收获机发展趋势.当代农机,2013,11:30-32
    [2]张小明.我国丘陵山地农业机械化的现状与发展.全国丘陵山地农机化技术发展高层论坛论文集,2011,23-26
    [3]屈哲,余泳昌,何勋.我国西南丘陵地区玉米收获机械化的研究探讨.现代农业装备,2013,3:26-29
    [4]陈志,郝付平,陈锋德,等.中国玉米收获技术与装备发展研究.农业机械学报,2012,12:44-50
    [5]闫洪余,陈晓光,吴文富.玉米收获机的分类解析,农机化研究,2007,10:213-215
    [6]李宝筏.农业机械学.北京:中国农业出版社,2006
    [7]宋建农.农业机械与装备.北京:中国农业出版社,2006
    [8]佟金,贺俊林,陈志,等.玉米摘穗辊试验台的设计和试验.农业机械学报,2007,11:48-51
    [9]张道林,孙永进,赵洪光,等.立辊式玉米摘穗与茎秆切碎装置的设计.农业机械学报,2005,36(7):50-52
    [10]曹文,丁俊华,李在臣.玉米摘穗装置的设计研究.农业装备与车辆工程,2009,1:20-22
    [11]Dennis E Bollig. Corn head with tension control for deck plates:US, US20080092507A1.2006
    [12]卢里耶,格罗姆博切夫斯基.农业机械的设计和计算.北京:中国农业机械出版社,1983
    [13]杨维宇.我国玉米收获机发展现状及建议.农业科技与装备,2011,200(2):132-134
    [14]卡那沃依斯基.收获机械.北京:中国农业机械出版社,1983
    [15]殷江旋.玉米收获机械化影响因素分析:[硕士学位论文].晋中:山西农业大学,2013
    [16]Thomas Burnell Colbert. Iowa farmers and mechanical corn pickers. Agricultural History,2000, 74(2):530-544
    [17]郝付平,陈志.国内外玉米收获机械研究现状及思考.农机化研究,2007,10:206-208
    [18]籍俊杰.国外玉米收获机发展趋势.农机推广与安全,2006,5:22-23
    [19]Ivanov D. The effect of the physical and mechanical properties of maize plants on the cutting process. Selsko stopanska Tehnika.1984,21:19-33
    [20]Zorerb.G.C, Hall.C.W. Some mechanical and rheological propertiesk of grain. The Journal of Agricultural Engineering.1960,5(1):83-92
    [21]Prasad J, Gupta C P. Mechanical properties of maize stalks as related to harvesting. J. Agric. Engng. Res,1975,20 (1):79-87
    [22]Kosutic, S. The investigation into some physical and mechanical properties of grain and ear of maize during the maturing process. Poljoprivredna Znanstvena Smotra.1981,55,187-199.
    [23]Kravchenko V.S. Truflyak. Elastic-plastic properties of maize stalks. Tekhnika v Sel'skom Khozyaistve.2004,4:23-26
    [24]Boas L do A V, Barbosa J A. Determination of properties physicist-mechanical of cultivate of maize having aimed at the sizing of cut mechanisms. Proceedings of the International Conference of Agricultural Engineering, ⅩⅩⅦ Brazilian Congress of Agricultural Engineering, International Livestock Environment Symposium-ILES Ⅷ,2008.
    [25]Wacker P. Maize grain damage during harvest. Landtechnik,2005,60(2):84-85
    [26]朱纪春,陈金环.国内外玉米收获机械现状和技术特点分析.农业技术与装备,2010(4):23-24
    [27]Deere C. Drive arrangement for corn head equipped with or without a corn stalk chopper:US, US20100870243.2011
    [28]Hoffman Daniel Stephe. Converting a corn head row unit for harvesting corn stalks in addition to ears:US, US20090504772.2011
    [29]Ready Machine Inc. Method and apparatus for partially husking corn:US, US85185692A.1992
    [30]Hughes Company Inc. Husker rolls:US, US 19990356146.2001
    [31]Hughes Company Inc. Husker rolls:US, US 19990356146.2001
    [32]郝付平,陈志.国内外玉米收获机械研究现象及思考.农机化研究,2007,10:206-208
    [33]胡伟.中国玉米收获机械化发展研究:[硕士学位论文].北京:中国农业大学,2009
    [34]陈志,韩增德,颜华,等.不分行玉米收获机分禾器适应性试验.农业机械学报,2008,39(1):50-52
    [35]李新广,李亚男.3行玉米联合收割机割台部分设计.农机化研究,2013(3):134-136
    [36]孙进良,刘师多,丁慧玲.我国玉米收获机械化的应用现状及展望.农机化研究,2009,3:217-219
    [37]范红.玉米收获机的发展现状、问题及对策.现代农业装备,2011,4:59-60
    [38]张华光.2013年中国玉米收割机累计销量达7.1万台.中国食品报,2013,7:1-3
    [39]姜心禄,李旭毅,池中志,等.四川丘陵山地玉米机械化生产技术.耕作与栽培,2013,2:49-50
    [40]孙红闯,刘民,白铁强,等.贵州现代农业发展战略玉米种植机械化建议.第十届沈阳科学学术年会论文集
    [41]凌云.南方地区玉米收获机产业集群在崛起.农机市场,2013,6
    [42]陈进,袁志英,郭鹏.关于推进四川省丘陵地区农业机械化发展的思考.四川农业与农机,2014,1:20-21
    [43]贺俊林.低损伤玉米摘穗部件表面仿生技术和不分行喂入机构仿真.长春:吉林大学,2007
    [44]周海玲.玉米果穗物理力学性质研究及脱粒过程仿真分析:[硕士学位论文].长春:2013
    [45]李心平,高连兴.种子玉米籽粒果柄断裂机理试验研究.农业工程学报,2007,23(11):47-51
    [46]Ronald W.Brass, Stephen J.Marley. Roller Sheller:Low Damage Corn Shelling Cylinder. Trans of the ASAE,1973,16 (2):64-66
    [47]吴子恺,郝小琴,罗高玲,等.微胚乳超高油玉米几个性状的研究.种子,2004,23(9):25-31
    [48]盛玉萍,黄其椿,周琼,等.微胚乳玉米子粒显微结构研究.玉米科学,2008,16(5):20-24
    [49]Tracy W F, Galinat W C. Thickness and cell layer number of the pericarp of sweet corn and some of its relatives. Hortscience,1987,22 (4):645-647
    [50]张丽,董树亭,刘存辉,等.玉米籽粒容重与产量和品质的相关分析.中国农业科学,2007,40(2):405-411
    [51]刘鸿文.材料力学(第四版).高等教育出版社:2003
    [52]刘静,刁培松,张道林,等.玉米收获机分禾器的研究.农机化研究,2007,11:145-149
    [53]吴鸿欣,陈志,韩增德,等.玉米植株抗弯特性对分禾器结构的影响分析.农业机械学报,2011,42(Z1):6-9
    [54]张录达,李少坤,赵明,等.玉米植株几何形态特征的统计模型研究.作物学报,1998,24(5):635-638
    [55]曹文,丁俊华,李在臣.玉米摘穗装置的设计研究.农业装备与车辆工程,2009(1):20-22
    [56]于勇,林怡,毛明,等.玉米秸秆拉伸特性的试验研究.农业工程学报,2012,6:70-75
    [57]梁晓军.纵卧辊式玉米收获机收获损失试验研究:[硕士学位论文].长春:吉林大学,2013
    [58]陈争光,王德福,李利桥,等.玉米秸秆皮拉伸和剪切特性试验.农业工程学报,2012,21: 59-65
    [59]Lee S, Shupe T F, Hse C Y. Mechanical and physical properties of agro-based fiberboard. European and Life Sciences,2006,64:74-79
    [60]Kronbergs E. Mechanical strength testing of stalk materials and compacting energy evaluation. Industrial Crop sand Products,2000,11(2):211-216.
    [61]Nazari Galedar M, Jafari A, Mohtasebi S S, et al. Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosystems Engineering,2008,101(2):199-208
    [62]Maruf M F. Shear strength of Apus bamboo root reinforced soil. Ecological Engineering,2012(41): 84-86
    [63]崔涛.三辊组合式玉米摘穗与茎秆切碎一体化机构设计研究:[博士学位论文].北京:中国农业大学,2013
    [64]Johnson Phillip C, Clementson Clairmont L, Mathanker Sunil K, et al. Cutting energy characteristics of Miscanthus x giganteus stems with varying oblique angle and cutting speed. Biosystems Engineering,2012(112):42-48
    [65]王兆凤,杨在宾,杨维仁,等.不同收获期玉米植株剪切力及其饲料营养特性的研究.山东农业大学学报,2012,43(1):38-42
    [66]郭颖杰,胡晓丽,刘庆福.不同收获期玉米秸秆挤压力的试验研究.农业与技术,2013,33(9):5-7
    [67]高梦祥,郭康权,杨中平.玉米茎秆的力学特性测试研究.农业机械学报,2003,34(4):47-49
    [68]赵成帅,徐丽明,刘佳,等.玉米苞叶力学特性试验研究.农机化研究,2011,12:100-104
    [69]Activity. Chinese Journal of Eco-agriculture,2007,15 (6):108-112
    [70]Zhan Ping, Tian Honglei, Li Kaixiong. Extraction of corn-bract flavonoid and related antioxidative
    [71]白瑜,杨中平,郭康权,等.玉米苞叶力学性能研究.农机化研究,2008,4:143-145
    [72]白瑜.玉米苞叶特性及成型性能的试验研究:[硕士学位论文].杨凌:西北农林科技大学,2008
    [73]王先霞,倪长安,刘师多,等.玉米果穗剥皮装置影响剥皮性能的试验分析[J].农机化研究,2009,2:117-120
    [74]李心平,高连兴.种子玉米籽粒果柄断裂机理试验研究[J].农业工程学报,2007,23(11):47-51
    [75]赵可夫.玉米生理.济南:山东科学技术出版社,1982
    [76]王多成,肖占文.种子玉米生产与加工技术.兰州:甘肃科学技术出版社,2008
    [77]张永丽,高连兴,等.玉米籽粒剪切破碎的试验研究[J].农机化研究,2007(5):136-138.
    [78]袁明月,等.玉米籽粒力学性质的试验研究[J].吉林农业大学学报,1996,18(4):75-78
    [79]曹灿纯,曹崇文.干燥过程中玉米颗粒内部应力的有限元分析.农业机械学报,1996,27(1):57-62
    [80]牛海华,赵武云,史增录.玉米籽粒力学特性的研究进展及应用.中国农机化,2011,2:101-103
    [81]曲宏杰.籽粒型玉米收获机适应性的试验与研究:[硕士学位论文].淄博:山东理工大学,2013
    [82]Irufayaraj J, Haghighi K and Stroshine R.Finite element analy-sis of drying with application to cereal grains. J.agri.eng.res.1992,53:209-229
    [83]J Jrudayara, J K Haghighi, R Stroshine. Stress analysis ofviscoelastic materials during drying[J]. application to grain kernels. Drying Techoology,1993,11(5):929-959
    [84]Akritidis C B. The mechanical characteristics of maize stalks in relation to the characteristics of cutting blade. Journal of Agricultural Engineering Research.1974,19:1,1-12.
    [85]Watson S A, Herum F L. Comparison of Eight Devices for Measuring Breakage Susceptibility. Cereal Chemistry,1986,63(2):139-142
    [86]Mohsenin N N. Physical Properties of Plant and Animal Materi-als. New York:Gordon and Breach Science Publisher,1970
    [87]Srivastava A K, Herum F L, Stevens K K. Impact Parameters Related to Physical Damage to Corn Kernel. Trans ASAE.1976,19(8):1147-1151
    [88]赵学笃,马中苏,孙永海等.玉米籽粒力学性能的实验研究[J].吉林工业大学学报,1996,21(1):60-65
    [89]赵武云.组合式螺旋板齿种子玉米脱粒装置研究:[博士学位论文].杨凌:西北农林科技大学,2012
    [90]张明涛.玉米摘随装置的理论分析与仿真研究:[硕士学位论文].杨凌:西北农林科技大学,2008
    [91]崔涛,刘佳,杨丽,等.基于高速摄像的玉米种子滚动摩擦特性试验与仿真.农业工程学报,2013,29(15):34-37
    [92]曲东亮.基于流动摩擦特性的玉米水分及容重检测方法的研究:[硕士学位论文].长春:吉林大学,2009
    [93]仇高贺.小型甘蔗收割机底盘的虚拟设计及仿真研究:[硕士学位论文].南宁:广西大学,2006
    [94]巩青松.履带式工作车辆设计及分析的关键技术研究:[硕士学位论文].扬州:扬州大学,2008
    [95]王子佳.4YZ-2自走式玉米联合收获机总体设计及关键部件的研究:[硕士学位论文].长春:吉林大学,2013
    [96]Carlin Jerry F. Electro-hydraulic control of combine header height and reel speed. SAE Special Publications,1984:37-41
    [97]刘静.玉米收获机不对行技术的研究:[硕士学位论文].淄博:山东理工大学,2007
    [98]Gustapson D J, Buchde W F'Johnson C E. Combine header for mwless. Amer SocAgr Fag Winter Meeting,Chicago,1969:17
    [99]郭春芳,郭金跃,赵秀全.玉米收获机板式割台参数分析.山西农业大学学报(自然科学版),2011,31(4):377-380
    [100]任延昭.玉米秸秆在卧式切茎割台中运动规律的研究:[硕士学位论文].淄博:山东理工大学,2012
    [101]李耀明,秦同娣,陈进,等.玉米茎秆往复切割力学特性试验研究.农业工程学报,2011,27(1):160-164
    [102]曹玉,刘伟峰,张新达.玉米茎秆切割力影响因素试验研究.农机化研究,2012,11:129-132
    [103]刘晓亮.秸秆粉碎还田机新型刀片的设计与试验:[硕士学位论文].长春:吉林大学,2012
    [104]张彦河,玉米秸破碎力学特性的研究.黑龙江八一农垦大学学报.2003,12(4):43-44
    [105]马素玲.玉米秸秆揉切特性及其虚拟仪器测试系统的研究:[硕士学位论文].北京:中国农业大学,2000
    [106]吴子岳,高焕文,张晋国.玉米秸秆切断速度和切断功耗的试验研究.农业机械学报,2011,32(2):38-41
    [107]张晋国,高焕文,杨光.不同条件下麦秸切碎效果的试验研究.农业工程学报,2000,16(3):70-72
    [108]Akrtiidis C.B. The mechanical characteristics of maize stalks in relation of the characteristics of cutting blade. Agricultural Engineering Res.19:1-12
    [109]Siqueiar R, Boiler W. Gamero CA Cutting efficiency and energy consumption of a straw chopper in different cover crops. Engenharia Agricola.1997,17 (2):79-86
    [110]Dogherty M J. Laboratory studies of the effect of blade parameters and stem configuration on the dynamics of cutting grass, agric. Engineering Res,1991,49:99-111
    [111]Dogherty M J. A Review of Research on Forage Chopping. Journal of Agricultural Engineering Research,1982,27:267-289
    [112]Hanna H M, Kohl K D,Haden D A. Machine losses from conventional versus narrow rowcorn harvest. Applied Engineering in Agriculture,2002,18(4):405-40
    [113]P.S.Tiwari and L.P.Gite,Evaluation of work-rest schedules during operation of a rotarypower tiller.International Journal of Industrial Ergonomics,2006,36(5):203-210
    [114]李寒杰.虚拟样机技术及其在工程机械中的应用.装备制造技术,2012,6:302-304
    [115]云善良,张士新.基于虚拟样机技术的玉米收获机拨禾轮运动仿真分析.农业装备与车辆工程,2010,8:13-15
    [116]王凯湛,马瑞骏,胡剑锋.虚拟样机技术在农业机械设计上的应用和发展.中国农机化,2008,7:62-66
    [117]黎运宇.虚拟样机技术助推农业机械设计.机械研究与应用,2013,26(4):193-195
    [118]孙秀花,梁式,胡珊珊.基于柔性化的小型甘蔗收获机的仿真技术.机械设计与制造,2005,7:62-64
    [119]高建民,区颖刚.甘蔗螺旋扶起机构的理论研究及虚拟样机仿真.农业工程学报,2004,20(5):1-5
    [120]蒲明辉,吴江.基于ADAMS的甘蔗柔性体模型建模研究.系统仿真学报,2009,21(7):1930-1932
    [121]李婉,李尚平,刘东美.小型整秆甘蔗收获机械喂入机构仿真分析与试验研究.农机化研究,2010,7:152-155
    [122]贾晶霞,张东兴,郝新明,等.马铃薯收获机参数化造型与虚拟样机关键部件仿真.农业机械学报,2005,36(11):64-67
    [123]陈海涛,顿国强.基于虚拟样机动力学仿真的大豆扶禾器参数优化.农业工程学报,2012,28(18):23-29
    [124]贺俊林,佟金,等.指形拨禾轮分禾机构的虚拟设计与运动仿真.农业机械学报,2007,38(6):53-55
    [125]李杰,阎楚良,杨方飞.基于虚拟样机技术的联合收获机切割机构的仿真.农业机械学报,2006,37(10):74-76
    [126]陈军MSC.ADAMS技术与工程分析实例.北京:中国水利水电出版社,2008:157-205
    [127]蒋永林,吴珂,郭占军.基于WES法的越野汽车松软地面通过性预测.轻型汽车技术,1999(4):20-22
    [128]袁志华,李云东,陈合顺.玉米茎秆的力学模型及抗倒伏分析.玉米科学,2002,10(3):74-75
    [129]蒲明辉,吴江.’基于ADAMS的甘蔗柔性体模型建模研究.系统仿真学报,2009,21(7):1930-1932
    [130]李增刚.ADAMS入门详解与实例.北京:国防工业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700