红花化学成分及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红花为菊科植物红花(Carthamus tinctorius L.)的干燥花,主产于新疆、河南、浙江和四川等省。红花用于治疗痛经、跌打损伤、冠心病、心绞痛和高血压等疾病。现代药理学实验证明红花具有广泛的药理活性,尤其是心脑血管方面的活性。目前红花中的主要成分羟基红花黄色素A已处于临床试验阶段,由于其结构中含有特殊的醌式查尔酮的结构骨架,使此类成分逐渐成为研究的重点。本论文的主要目的是在系统研究红花化学成分的同时,重点对含有醌式结构的化合物进行研究,以阐明醌式结构的多样性对生物活性的影响。
     采用了多种色谱方法(硅胶色谱、ODS色谱、凝胶色谱和HPLC色谱等)和光谱学方法(IR、UV、MS、1D-NMR和2D-NMR),分离鉴定了46个化合物的结构,其中有8个单体为新化合物。新化合物是:saffloquinoside A(1~*),saffloquinoside B(2~*),saffloquinoside C(3~*),saffloquinoside D(4~*),saffloquinoside E(5~*),safflospermidineA (11~*),safflospermidine B (12~*),2Z-decaene-4,6-diyn-1-O-β-D-glucopyranoside(46~*)。已知化合物为:safflomin C(6),黄色素A(7),cartormin(8),羟基红花黄色素A(9),anhydrosafflor yellow B(10),N~1,N~5,N~(10)-(Z)-tri-p-coumaroylspermidine(13),N~1,N~5,N~(10)-(E)-tri-p-coumaroylspermidine(14),6-羟基山奈酚-3,6-二-O-β-D-葡萄糖苷-7-O-β-D-葡萄糖醛酸(15),6-羟基山奈酚-3-O-β-芸香糖-6-O-β-D-葡萄糖苷(16),6-羟基山奈酚-3-O-β-芸香糖苷(17),6-羟基山奈酚-3,6-二-O-β-D-葡萄糖苷(18),6-羟基山奈酚-3-O-β-D-葡萄糖苷(19),山奈酚-3-O-β-槐糖苷(20),山奈酚-3-O-β-芸香糖苷(21),山奈酚-3-O-β-D-葡萄糖苷(22),山奈酚(23),芦丁(24),槲皮素-3-O-β-D-葡萄糖苷(25),槲皮素(26),6-羟基芹菜素(27),芹菜素(28),新红花苷(29),safflochalconeside(30),尿苷(31),腺苷(32),7,8-dimethylpyrazino[2,3-g]quinazolin-2,4-(1H,3H)-dione(33),腺嘌呤(34),胸腺嘧啶(35),尿嘧啶(36),对羟基桂皮酸(37),对羟基苯甲酸(38),丁二酸(39),4-O-β-D-葡萄糖氧基苯甲酸(40),脂肪酸(41),谷甾醇(42),胡萝卜苷(43),二氢红花菜豆酸-3-O-β-D-葡萄糖苷(44),roseoside(45)。在这46个化合物中有10个醌式查尔酮苷类化合物,其中5个为新化合物。新化合物1的醌式结构中含有酮糖和醌环以五元螺环稠合的骨架,新化合物2和4的醌式结构中含有以环己烯三酮的形式存在的骨架,它们丰富了醌式查尔酮苷类化合物的骨架类型。另外总结了醌式查尔酮苷类化合物的A环片段(醌环片段)的种类和核磁共振波谱特征。
     粗提物生物活性筛选:对醇提取物萃取得到的石油醚层、乙酸乙酯层、水层和水提物进行抗凝血酶活性筛选,结果表明醇提物的石油醚层、水层和水提物在抗凝血酶方面有活性;另外水提物经大孔树脂层析的5%、30%和50%醇洗脱部分在体外经保肝活性、抗氧化活性、细胞保护作用和抗血小板聚集活性筛选,结果显示这三部分均无保肝活性、抗氧化活性和细胞保护作用,而在抗血小板聚集方面,5%和30%醇洗脱部分均有一定的效果。
     单体化合物生物活性筛选:单体化合物3~*、4~*、11~*、12~*、13和14对小鼠腹腔巨噬细胞TNFα分泌的影响,考察其抗炎活性,结果表明这六个化合物均无明显的抗炎活性;单体化合物3~*、4~*、11~*、12~*、13和14对肿瘤细胞HCT-8、Bel-7402、BGC-823、A-549和A2780的影响,考察其抗肿瘤活性,结果表明这六个化合物均无明显的抗肿瘤活性;单体化合物1~*和9对心血管活性的筛选表明,这两个化合物均无明显的心血管活性;单体化合物1~*、2~*、3~*、4~*、7、8、9和10对保肝活性和抗氧化活性的筛选表明,这八个化合物均无明显的保肝活性和抗氧化活性;单体化合物1~*、4~*、7、8、11~*和12~*对抗病毒活性的筛选表明,这六个化合物无明显的抗病毒活性:单体化合物1~*、2~*、3~*、4~*、5~*、6、7、8、9和10对细胞保护作用的筛选表明,这些化合物均无明显的细胞保护作用;单体化合物1~*、2~*、3~*、4~*、5~*、6、7、8、9、10和30对抗血小板的聚集活性的筛选表明,化合物1~*、2~*和4~*有抗血小板聚集的作用;考察单体化合物1~*、2~*、3~*、4~*、7、8、9和10对PAF刺激的多形核白细胞β葡萄糖苷酸酶释放的抑制作用,结果表明,新化合物2和已知化合物8有抗炎活性,抑制率分别达到了54.3%(10~(-5)mol/L)和63.4%(10~(-5)mol/L)。
Safflower (Carthamus tinctorius L.) belongs to the family Compositae and is widely distributed in the Xinjiang Uygur Autonomous Region, Zhejiang, Henan, and Sichuan province of China. The flowers of this plant are used as a remedy for dysmenorrheal, wound, coronary disease, angina pectoris, and hypertension in Chinese folk medicine. Various bioactives of Safflower have been confirmed by modern pharmacology, especially the cadiovascular bioactivities. Now, hydroxysafflor yellow A as a main constituents of safflower are in Clinical Trials. Because this compound has an especial frame of quinochalcone, they have been paid more attentions gradually. The purpose of this dissertation was to study constituents of safflower systematically. Furthermore, the emphasis was to study quinochalcone glycosides so as to elucidate the relationship between the quino-structure and their bioactivity.
     In the course of our study, 46 compounds were isolated and identified by chromatograms (silica gel, ODS, sephadex LH-20 and HPLC et al) and spectroscopic (IR, UV, MS, 1D-NMR and 2D-NMR) methods, of which 8 compounds were new, which were as follows: saffloquinoside A (1*), saffloquinoside B (2*), saffloquinoside C (3*), saffloquinoside D (4*), saffloquinoside E (5*), safflospermidine A (11*), safflospermidine B (12*), 2Z-decaene-4,6-diyn-1-O-β-D-glucopyranoside (46*), the others were known compounds, including safflomin C (6), safflor yellow A (7), cartormin (8), hydroxysafflor yellow A (9), anhydrosafflor yellow B (10), N~1,N~5,N~(10)-(Z)-tri-p-coumaroylspermidine (13), N~1,N~5,N~(10)-(E)-tri-p-coumaroylspermidine (14), 6-hydroxy kaempferol 3,6-di-O-β-D-glucoside-7-O-β-D-glucuronide (15), 6-hydroxykaempferol 3-β-rutinoside-6-β-D-glucoside (16), 6-hydroxykaempferol 3-β-rutinoside (17), 6-hydroxy kaempferol 3,6-di-O-β-D-glucoside (18), 6-hydroxykaempferol 3-O-β-D-glucoside (19), kaempferol 3-O-β-sophoroside (20), kaempferol 3-β-rutinoside (21), kaempferol 3-O-β- D-glucoside (22), kaempferol (23), quercetin 3-O-β-rutinoside (24), quercetin 3-O-β-D-glucoside (25), quercetin (26), 6-hydroxyapigenin (27), apigenin (28), neocarthamin (29), safflochalconeside (30), uridine (31), adenosine (32), 7,8-dimethyl pyrazino[2,3-g]quinazolin-2,4-(1H,3H)- dione (33), adenine (34), thymine (35), uracil (36), p-coumaric acid (37), p-hydroxybenzoic acid (38), succinic acid (39), 4-O-β-D-glucopyranosyloxy-benzoic acid (40), fat acid (41), sitosterol (42), daucosterol (43), dihydrophaseic acid 3-O-β-D-glucopyranoside (44), roseoside (45). Among all of these 46 compounds, 10 compounds were quinochalcone glycosides, whereas 5 were new compounds. The structrue of 1 were comprised by ketose and a quinocycle, and they were fused as five-member dioxaspirocycle, while 2 and 4 included cyclohexatrione. The novel structures of 1, 2, and 4 have enriched new frameworks of quinochalcone glycosides. In addition, the spectral characteristic of NMR and the sorts of quinocycle segment of quinochalcone glycosides were summarized.
     Extracts evaluating in vitro: The petroleum ether layer, EtOAc layer, and water layer of ethanol extract and water extract were tested in vitro with antithrombotic methods. The petroleum ether, and water layer of ethanol extract and water extract exhibited antithrombotic activities. At the same time, the 5%, 30%, and 50% ethanol eluates of water extract in chromatographing over porous polymer column were evaluated in vitro with hepatoprotection, antioxidant, and cyteprotection model, the results exhibited no activities. But the 5% and 30% parts of ethanol eluates showed activities by evaluating in vitro with antiplatelet aggregate model.
     Compound evaluating in vitro: Compound 3*, 4*, 11*, 12*, 13, and 14 were evaluated in vitro to study the effect on releasing of TNFαof mice peritoneal macrophage and the result exhibited no antiinflammatory activities of these compounds; Compound 3*, 4*, 12*, 13, and 14 were evaluated in vitro using HCT-8, Bel-7402, BGC-823, A-549, and A2780 model and the results exhibited no anti-tumor activities; Compound 1* and 9 were evaluated in vitro and exhibited no cadiovascular activities; Compound 1*, 2*, 3*, 4*, 7, 8, 9, and 10 were evaluated in vitro and the results exhibited no hepatoprotection, and antioxidant activities; Compound 1*, 4*, 7, 8, 11*, and 12* were evaluated in vitro and the results exhibited no antivirus activities; Compound 1*, 2*, 3*, 4*, 5*, 6, 7, 8, 9, and 10 were evaluated in vitro and the results exhibited no cyteprotection activities; Compound 1*, 2*, 3*, 4*, 5*, 6, 7, 8, 9, 10, and 30 were evaluated in vitro and the results exhibited that compound 1*, 2*, and 4* have antiplatelet aggregate activities; Compound 1*, 2*, 3*, 4*, 7, 8, 9, and 10 were evaluated in vitro to study the inhibitory effect on releasing ofβ-glucuronidase from rat PMNs induced by PAF, and the results showed compound 2* and 8 exhibiting good antiinflammatory activities and the inhibitory rates were 54.3% (10~(-5)mol/L) and 63.4% (10~(-5)mol/L), respectively.
引文
[1] 《全国中草药汇编》编写组.全国中草药汇编[M].北京:人民卫生出版社,上册,1992:386.
    [2] 郑虎占,懂泽宏,佘靖.中药现代研究与应用[M].北京:学院出版社,第三卷,1998:2057.
    [3] 梁晓天主编.常用中药基础研究(第二卷)[M].北京:科学出版社,2004:106.
    [4] Yin H. B., He Z. S. A novel semi-quinone chalcone sharing a pyrrole ring C-glycoside from Carthamus tinctorius [J]. Tetrahedron Letters, 2000, 41:1955-1958.
    [5] Meselhy M. R., Kadota S., Momose Y., Hattori M., Namba T. Tinctormine, a novel Ca~(2+) antagonist N-containing quinochalcone C-glycoside from Carthamus tinctorius. L. [J]. Chem. Pharm. Bull., 1992,40(12): 3355-3357.
    [6] Meselhy M. R., Kadota S., Momose Y, Hatakeyama N., Kusai A., Hattori M., Namba T. Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca~(2+) antagonistic activity of Tinctormine [J]. Chem. Pharm. Bull., 1993, 41(10): 1796-1802.
    [7] Onodera J., Obara H., Hirose R., Matsuba S., Sato N., Sato S., Suzuki M. The structure of safflomin C, a constituent of safflower [J]. Chemistry Letters, 1989:1571-1574.
    [8] Kazuma K., Takahashi T., Sato K., Takeuchi H., Matsumoto T., Okuno T. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L. [J]. Biosci. Biotechnol. Biochem., 2000, 64(8): 1588-1599.
    [9] Hattori M., Huang X. L., Che Q. M, Kawata Y, Tezuka Y, Kikuchi T., Namba T. 6-hydroxykaempferol and its glycosides from Carthamus tinctorius petals [J]. Phytochemistry, 1992, 31(11): 4001-4004.
    [10] Li F., He Z. S., Ye Y Flavonoids from Carthamus tinctorius [J]. Chin. J. Chem., 2002, 20: 699-702.
    [11] Ahmed K. M., Marzouk M. S., El-Khrisy E. A. M., Wahab S. A., El-Din S. S. A new flavone diglycoside from Carthamus tinctorius seeds [J]. Pharmazie, 2000, 55(8): 621-622.
    [12] Novruzov E. N., Shamsizade L. A. Anthocyanins of Carthamus species [J]. Chem. Nat. Compd. 1999, V 1998, 34(4): 514-515.
    [13] Koshi S., Akiyoshi F. Apparent expression of flower colors and internal variation of enzyme activity in some typical phenotypes of dyers' saffron cultivars [J]. Acta Soc. Bot. Pol., 1989, 58(4): 593-603.
    [14] Roh J. S., Han J. Y., Kim J. H., Hwang J. K. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis [J]. Biol. Pharm. Bull., 2004, 27(12): 1976-178.
    [15] Niwa T, Etoh H, Shimizu A, Shimizu Y. Cis-N-(p-Coumaroyl)serotonin from Konnyaku, Amorphophallus konjac K. Koch [J]. Biosci. Biotechnol. Biochem., 2000, 64(10): 2269-2271.
    [16] Zhang H. L., Nagatsu A., Watanabe T., Sakakibara J., Okuyama H. Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake [J]. Chem. Pharm. Bull., 1997, 45(12): 1910-1914.
    [17] Sato H., Kawagishi H., Nishimura T., Yoneyama S., Yoshimoto Y, Sakamura S., Furusaki A., Katsuragi S., Matsumoto T. Serotobenine, a Novel Phenolic Amide from Safflower Seeds (Carthamus tinctorius L.) [J]. Agric. Biol. Chem., 1985, 49(10): 2969-2974.
    [18] Sadao S., Yoshihiko T., Satomi K., Akitami I., Hideya S. Conjugated serotonins and phenolic constituents in safflower seed (Carthamus tinctorius L.) [J]. Agric. Biol. Chem., 1980, 44(12): 2951-2954.
    [19] Nagatsu A., Zhang H. L., Watanake T., Taniauchi N., Hatano K., Mizukami H., Sakakibara J. New steroid and matairesinol glycosides from safflower (Carthamus tinctorius L.) oil cake [J]. Chem. Pharm. Bull., 1998, 46(6): 1044-1047.
    [20] 常海涛,韩宏星,屠鹏飞.中药红花化学成份及药理作用[J].国外医药-植物药分册,1999,14(5):201-203.
    [21] Yin H. B., He Z. S., Ye Y Cartorimine, a New Cycloheptenone Oxide Derivative from Carthamus tinctorius [J]. J. Nat. Prod., 2000, 63: 1164-1165.
    [22] Kanehira T., Takekoshi S., Nagata H., Matsuzaki K., Kambayashi Y., Osamura R. Y., Homma T. A novel and potent biological antioxidant, Kinobeon A, from cell culture of safflower [J]. Life Sciences, 2003, 74: 87-97.
    [23] 高其铭.中药红花的药理研究概况[J].中西医结合杂志,1984,4(12):758.
    [24] 曾贵云.冠心Ⅱ号方及其单味药对冠脉循环的作用[J].心脏血管疾病,1978,6(3):214.
    [25] 陈铎葆,刘建国,管云凤.红花黄色素对犬缺血心肌的影响[J].中国药理学通报,2000,16(5):590-591.
    [26] 王幼平,乔俊,钱中希.红花黄色素对缺血心肌的保护及抗氧化作用的实验研究[J].中华胸心血管外科杂志,1995,11(3):176-177.
    [27] 李世英,时德,吴凯.红花对周围血管作用的初步研究-动物离体器官实验[J].中华医学杂志,1979,59(9):550-553.
    [28] 鲍善芬,崔凯荣,赵淑芸.红花油对小鼠实验性高胆固醇血症影响的初步实验[J].药学通报,1984,19(5):59.
    [29] 刘发,魏苑,杨新中.红花黄色素对高血压大鼠的降压作用及对肾素-血管紧张素的影响[J].药学学报,1992,127(10):785-786.
    [30] 黄正良,崔祝梅,高其铭.红花黄色素降压作用及机理的初步分析[J].中成药研究,1986,7:27-29.
    [31] Fu F. H., Su C. F., Liu K. Effect of safflower yellow A on the blood pressure in dog and man [J]. Antihypertensive Drugs And Pharmacology, 2005, 18(5): 59A.
    [32] 李承珠,杨诗春.红花对大鼠凝血功能的影响[J].中草药,1983,14(7):27-28.
    [33] 陈文梅,金铭,吴伟.红花黄色素抑制血小板激活因子介导的血小板活化作用的研究[J].中国药学杂志,2000,35(11):741-744.
    [34] 陈希元,马军,阿不力克木.红花黄色素对大鼠动脉血浆中6-Keto-PGF12和TXB2含量的影响[J].中国药理学通报,1996,12(6):483.
    [35] 李江伟.红花黄色素对家兔血浆纤溶酶原激活剂及抑制水平的影响[J].中草药,1999,30(2):128-129.
    [36] 柏惠英,秦月琴,秦月琴.红花对脑减压缺氧缺血幼鼠脑神经元的保护作用[J].中草药,1992,23(10):531-533.
    [37] 石米扬,昌兰芳,何功倍.红花、当归、益母草对子宫兴奋作用的机理研究[J].中国中药杂志,1995,20(3):173-175.
    [38] 马宝华,赵伟,王哲民.复方红花对地鼠的抗早孕作用与子宫内膜上皮细胞凝集素受体表达的相关性研究[J].生殖与避孕,2001,21(4):237-239.
    [39] 杨东焱,马永明,田治峰.红花对大鼠子宫平滑肌电活动的影响[J].甘肃中医学院学报,2000,17(1):15-17.
    [40] 程建祥,朱作金,梁纲,何美珍,蔡福盛,张明安.川芎嗪、红花对免疫功能的影响[J].实用中西医结合杂志,1993,6(5):261-262.
    [41] 陆正武,刘发,胡坚,边棣,李芳桂.红花总黄素对免疫功能的抑制作用[J].中国药理学报,1991,12(6):537-542.
    [42] 黄虹,俞曼雷,翟世康,沈美玲,宋纯清.红花多糖的免疫活性研究[J].中草药,1984,15(5):21-24.
    [43] 金铭,李金荣,蔡亚欣等.红花水溶性成分抗氧化作用的研究[J].心肺血管病杂志,1998,17(4):277-279.
    [44] 陈文梅,金铭,李金荣等.红花黄色素对羟自由基损伤抗凝血酶Ⅲ的保护作用[J].心肺血管病杂志,1998,17(3):215-217.
    [45] 凌均綮,樊明文,魏国贤.植物红花抑制变形链球菌附着的实验研究[J].华西口腔医学杂志,1989,7(4):217-220.
    [46] 赵永娜,蒋家雄.活血化瘀药、血管活性药及还原型谷胱甘肽对四氯化碳损伤离体大鼠灌流肝作用的研究[J].昆明医学院学报,1994,15(4):48.
    [47] 赵永娜,蒋家雄.活血化瘀药、血管活性药及还原型谷胱甘肽对四氯化碳损伤离体大鼠灌流肝作用的研究[J].中华中西医杂志,1994,15(4):48.
    [48] 朱海波,王振华,田京伟.羟基红花黄色素 A 对实验性脑缺血的保护作用[J].药学学报,2005,40(12):1144-1146.
    [49] 王兴文,周晓红,郭锐,李莉,彭吉霞.红花甙对小鼠脑缺血再灌注后记忆行为的影响[J].山西医科大学学报,2005,36(2):192-194.
    [1] 《全国中草药汇编》编写组.全国中草药汇编[M].北京:人民卫生出版社,上册,1992:386.
    [2] 郑虎占,懂泽宏,佘靖.中药现代研究与应用[M].北京:学院出版社,第三卷,1998:2057
    [3] Sato S., Obara H., Kumazawa T., Onodera J., Furuhata K. Synthesis of (+),(-)-model compounds and absolute configuration of carthamin; a red pigment in the flower petals of safflower [J]. Chemistry Letters, 1996: 833-834.
    [4] Sato S., Kumazawa T., Watanabe H., Takayanagi K., Matsuba S., Onodera J., Obara H.,. Furuhata K. Synthesis of carthamin acetate, the red pigment in safflower petals [J]. Chemistry Letters, 2001: 1318-1319.
    [5] Meselhy M. R., Kadota S., Momose Y., Hatakeyama N., Kusai A., Hattori M., Namba, T. Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca~(2+) antagonistic activity of Tinctormine [J]. Chem. Pharm. Bull., 1993, 41(10): 1796-1802.
    [6] Yin H. B., He Z. S. A novel semi-quinone chalcone sharing a pyrrole ring C-glycoside from Carthamus tinctorius [J]. Tetrahedron Letters, 2000, 41: 1955-1958.
    [7] Kazuma K., Takahashi T., Sato K., Takeuchi H., Matsumoto T., Okuno T. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L. [J]. Biosci. Biotechnol. Biochem., 2000, 64(8): 1588-1599.
    [8] Ma C. M, Nakamura N., Hattori M. Inhibitory effects on HIV-1 Protease of tri-p-coumaroylspermidine from Artemisia caruifolia and related amides [J]. Chem. Pharm. Bull., 2001,49(7): 915-917.
    [9] Strack D., Eilert U., Wray V., Wolff J., Jaggy H. Tricoumaroylspermidine in flowers of rosaceae [J]. Phytochemistry, 1990, 29(9): 2893-2896.
    [10] Hattori M., Huang X. L., Che Q. M, Kawata Y., Tezuka Y. 6-hydroxykaempferol and its glycosides from Carthamus tinctorius petals [J]. Phytochemistry, 1992, 31(11): 4001-4004.
    [11] Gamez E. J. C., Luyengi L., Lee S. K., Zhu L. F., Zhou B. N., Fong H. H. S.,Pezzuto J. M., Kinghorn A. D. Antioxidant Flavonoid Glycosides from Daphniphyllum calycinum [J]. J. Nat. Prod., 1998, 61(5): 706-708.
    [12] Rikke N., Tadao K. Flavonol glycosides from flowers of Crocus speciosus and C.antalyensis [J]. Phytochemistry, 1999, 51(8): 1113-1120.
    [13] Vassiliki E., Anastasios Y., Ioannis P. G., Maria T., Dimitrios B. Do strong intramolecular hydrogen bonds persist in aqueous solution? Variable temperature gradient ~1H, ~1H-~(13)C GE-HSQC and GE-HMBC NMR studies of fiavonols and flavones in organic and aqueous mixtures [J]. Tetrahedron, 2002, 58(37):7423-7430.
    [14] Beninger C. W., Hosfield G. L. Flavonol Glycosides from Montcalm Dark Red Kidney Bean: Implications for the Genetics of Seed Coat Color in Phaseolus vulgaris L. [J]. J. Agric. Food Chem., 1999, 47(10): 4079-4082.
    [15] Chu H. W., Wu H. T., Lee Y. J. Regioselective hydroxylation of 2-hydroxy chal cones by dimethyl dioxirane towards polymethoxylated flavonoids [J].Tetrahedron, 2004, 60(11): 2647-2655.
    [16] Exarchou V., Nenadis N., Tsimidou M., Gerothanassis I. P., Troganis A., Boskou D.Antioxidant Activities and Phenolic Composition of Extracts from Greek Oregano,Greek Sage, and Summer Savory [J]. J. Agric. Food Chem., 2002, 50(19):5294-5299.
    [17] Novruzov E. N., Shamsizade L. A. Anthocyanins of Carthamus species [J]. Chem.Nat. Compd. 1999, V 1998, 34(4): 514-515.
    [18] Takahashi Y., Miyasaka N., Tasaka S., Miura I., Urano S., Ikura M., Hikichi K.Constitution of two coloring matters in the flower petals of carthamus tinctorius L.[J]. Tetrahedron Letters, 1982,49(23): 5163-5166.
    [19] Ogilvie K. K., Mcgee D. P. C, Boisvert S. M., Hakimelahi G. H., Proba Z. A. The preparation of protected arabinonucleosides [J]. Can. J. Chem., 1983, 61:1204-1212.
    [20] Jacques R. Isotopic multiplets in the carbon-13 NMR spectra of aniline derivatives and nucleosides with partially deuterated amino groups: effect of intra- and intermolecular hydrogen bonding [J]. J. Am. Chem. Soc., 1987, 109(2): 316-321.
    [21] Schneller S. W., Christ W. J. The synthesis of 'Strethched-Out' analogs of lumazine,6,7-dimethyllumazine and 2-Amino-5,6,7,8-tetrahydro-6,7-dimethyl-4-pteridinone (1,2) [J]. J. Heterocyclic Chem., 1981, 18: 539-542.
    [22] Gonnella N. C, Nakanishi H., Holtwick J. B., Horowitz D. S., Kanamori K.,Leonard N. J., Roberts J. D. Studies of tautomers and protonation of adenine and its derivatives by nitrogen-15 nuclear magnetic resonance spectroscopy [J]. J. Am.Chem. Soc, 1983, 105(7): 2050-2055.
    [23] Pouwels P. J. W., Hartman R. F., Rose S. D., Kaptein R. Evidence for Reversibility of the Photosensitized Splitting of Pyrimidine Dimers [J]. J. Am. Chem. Soc, 1994,116(15): 6967-6968.
    [24] Huang X., Liu Z. X. Solid-Phase Synthesis of 4(1H)-Quinolone and Pyrimidine Derivatives Based on a New Scaffold-Polymer-Bound Cyclic Malonic Acid Ester [J].J. Org. Chem, 2002,67(19): 6731-6737.
    [25] Barakat H. H., El-Mousallamy A. M. D., Souleman A. M. A, Awadallah S.Flavonoids ofOchradenus baccatus [J]. Phytochemistry, 1991, 30(11): 3777-3780.
    [26] Wang M. F., Kikuzaki H, Zhu N. Q, Sang S. M, Nakatani N., Ho C. T. Isolation and Structural Elucidation of Two New Glycosides from Sage (Salvia officinalis L.) [J]. J. Agric. Food Chem, 2000,48(2): 235-238.
    [27] Nunes M. T, Gil V. M. S, Ascenso J. The conformation of succinic acid in aqueous solution studied by ~1H- and ~(13)C-NMR [J]. Tetrahedron, 1981, 37: 611-614.
    [28] Uwe D, Karl H. 4-(β-D-glucopyranosyloxy)benzoic acid, a characteristic phenolic constituent of the Apiaceae [J]. Phytochemistry, 1984, 23(8): 1811-1812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700