中国甘薯地方品种的遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过形态标记和分子标记(RAPD、ISSR和AFLP)的方法,首次对中国甘薯地方品种的遗传多样性进行了系统分析,所使用的品种共计108份,其中中国地方品种100份,分别来自广东、福建、浙江、广西、四川、湖北6个省,育成品种8份,获得的主要结果如下:
     1.用区分甘薯品种最基本的9个形态特征:株型、茎端茸毛、基部分枝、干物质含量、叶形、叶色、薯皮色、薯肉色、薯形,可以将104份甘薯品种完全区分开,表明中国甘薯地方品种形态变异丰富,其中福建和广东的地方品种形态变异较大,且地方品种形态多样性高于育成品种。基于形态特征产生的聚类图与已知育成品种的系谱图不吻合。
     2.用30个RAPD引物、14个ISSR引物和9对AFLP引物对108份甘薯品种进行扩增,分别扩增出218条、239条和245条多态性带,可将108份甘薯品种完全区分开。AFLP在揭示多态性水平和实验的稳定性上高于RAPD和ISSR,表明AFLP可以作为甘薯遗传多样性分析的首选标记。
     3.根据ISSR标记产生的聚类图与育成品种系谱图完全吻合,表明ISSR可以有效地鉴定已知亲缘关系的品种。综合3种分子标记的数据对108份甘薯品种进行聚类分析,可将供试材料分为4个组群,且与育成品种系谱图吻合。
     4 根据RAPD、ISSR和AFLP计算得到的遗传距离,表明地方品种间遗传距离变异幅度大,分别为0.0537~0.9418、0.1678~1.4800和0.0227~0.9676,平均遗传距离分别为0.3594、0.5725和0.4754,从分子水平上证实中国是甘薯次生多样性中心。
     5.对不同地区内的地方品种间的平均遗传距离进行比较分析,表明广东地区内品种间遗传变异程度最高,而且广东地方品种与其余地区的地方品种间遗传距离较大,认为甘薯最早从中国广东地区引入,并以此为中心向周边和内陆地区扩散。
     6 综合3种分子标记得到育成品种与地方品种间的平均遗传距离为0.5269,并且广东的地方品种与育成品种遗传距离最大。因此,在今后甘薯亲本选配和品种保护上,应重点考虑该地区的地方品种。
This paper describes, for the first time, the analysis of genetic diversity among sweetpotato landraces in China as revealed by morphological traits and molecular markers (RAPD, ISSR and AFLP). The sweetpotato accessions used in this study included 100 landraces from 6 provinces, Guangdong, Fujian, Zhejiang, Guangxi, Sichuan and Hubei in China and 8 breeding lines. The main results obtained are as follows:
    1. One hundred and four sweetpotato accessions were distinguished clearly based on 9 morphological traits, plant type, pubescence on vine, plant branch, dry weight, leaf shape, leaf color, root skin color, root fresh color and root shape, suggesting that Chinese sweetpotato landraces possessed sufficient genetic variation. Of these landraces, the landraces from Fujian had the highest level of variation. Chinese sweetpotato landraces had higher level of genetic diversity than the breeding lines. The dendrogram of the breeding lines based on morphological traits was not in agreement with known origin.
    2. Both 30 RAPD and 14 ISSR primers and 9 AFLP primer combinations were used for assessing genetic diversity among 108 sweetpotato accessions, and generated 218, 239 and 24S polymorphic bands, respectively. AFLPs were better than RAPDs and ISSRs in terms of the number of polymorphic bands and me experimental stability.
    3. The dendrogram of the breeding lines based on ISSRs agreed better with known origin man those based on RAPDs and AFLPs, suggesting that ISSRs are powerful markers for identifying accessions with known origin. The dendrogram based on the combined RAPDs, ISSRs and AFLPs dataset appeared to be appropriate in resolving relationships of the sweetpotato accessions. By using this approach, 108 sweetpotato accessions could be divided into four groups, and 6 of 8 breeding lines with known origin were clustered together.
    4. The genetic distances between landraces revealed by RAPDs, ISSRs and AFLPs differed greatly, being 0.0537-0.9418, 0.1678-1.4800 and 0.0227-0.9676, respectively, with the mean genetic distances of 0.3594, 0.5725 and 0.4754, respectively. These results supported the viewpoint that China is a secondary diversity center of sweetpotato.
    5. Based on the 3 molecular markers, landraces from Guangdong had the highest level of genetic variation in 6 provinces. Meanwhile, the genetic distances between Guangdong and the other 5 provinces were larger than those between the other 5 provinces. These results provided the support that sweetpotato was firstly introduced to Guangdong in china, from which sweetpotato was dispersed to other regions of China.
    
    
    6. The mean genetic distance between the Chinese sweetpotato landraces and the breeding lines calculated by the combined RAPDs, ISSRs and AFLPs dataset was 0.5269. Moreover, the landraces from Guangdong were most distantly related to the breeding lines in 6 provinces. Thus, the utilization and protection of the landraces from Guangdong should be emphasized in sweetpotato breeding.
引文
[1] 曹永国,王国英,王守才.玉米RFLP遗传图谱的构建及矮生基因定位.科学通报,1999,44(20):2178~2182
    [2] 陈洪,钱前,朱立煌,等.杂交水稻汕优63杂种纯度的RAPD鉴定.科学通报,1996,41(9):833~836
    [3] 戴起伟,张必泰.甘薯数量形状遗传距离在亲本选配中的初步应用.遗传,1988,10(3):1~3
    [4] 董玉琛.作物种质资源学科的发展和展望.中国工程科学,2001,3(1):1~5
    [5] 段玉玺,吴刚主编.植物线虫病危害防治.北京:中国农业科技出版社,2002
    [6] 樊叶杨,庄杰云,李强,等.水稻株高QTL分析及其与产量QTL的关系.作物学报,2001,27(6):915-922
    [7] 干滟,曾凡亚,赵云,等.甘蓝型油菜“79.7”细胞核雄性不育基因RAPD分子标记初步研究.西南农业学报,1999,12:111~115
    [8] 葛颂.酶电泳资料和系统与进化植物学研究综述.武汉植物学研究,1994,12(1):71~84
    [9] 葛永奇,邱英雄,丁炳扬,等.孑遗植物银杏群体遗传多样性的ISSR分析.生物多样性,2003,11(4):276~287
    [10] 顾兴芳,杨庆文.AFLP技术在黄瓜种质资源鉴定及分类上的应用初探.中国蔬菜,2000,1:30~32
    [11] 郭金子,潘大仁.甘薯线虫病品种抗性的PCR检测.作物学报,2002,28(2):167~169
    [12] 何平.真核生物中的微卫星及其应用.遗传,1998,20(4):42~47
    [13] 何祯祥,施季森,王明麻.杉木杂种群体分子框架连锁图初报.南京林业大学学报,2000,24(6):22~26
    [14] 洪德元.植物细胞分类学.北京:科学出版社,1990
    [15] 黄坚钦,章滨森,王正加,等.中国山核桃属植物种间亲缘关系RAPD分析.西南林学院学报,2003,23(4):2-11
    [16] Merrell DJ(黄瑞复).生态遗传学.北京:科学出版社,1991
    [17] 贾继增,Gale M D.小麦染色体第六部分同源群RFLP连锁图绘制.中国科学(B辑),1998,24(12):1281~1289
    [18] 贾继增,张正斌,Devos K,等.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学(C辑),2001,31(1):13~21
    [19] 江苏省徐淮地区徐州农业科学研究所主编.全国甘薯品种资源目录,1984
    [20] 林鸿宣,黄宁.二张籼稻分子连锁图谱的构建.浙江农业大学学报,1995,7(4):254~258
    [21] 刘峰,陈受宜,庄柄吕.大豆基因组F连锁群较高密度图谱的构建和基因定位.自然科学进展,2000,10(11):1012~1017
    [22] 刘万消,贺林.SNP—为人类基因组描绘新的蓝图.遗传,1998.20(6):38~40
    [23] 陆国权.中国甘薯育成品种系谱.中国甘薯,1990,4:26~28
    
    
    [24] 陆漱韵,刘庆昌,李惟基.甘薯育种学.北京:中国农业大学出版社,1998
    [25] 钮福祥,丁成伟,马艳,等.甘薯种质资源抗早鉴定.作物品种资源,1997,2:34~37
    [26] 阮成江,何祯祥,钦佩.中国植物遗传连锁图谱构建研究进展.西北植物学报,2002,22(6):1526~1536
    [27] 孙近友,邬景禹,郭小丁,等.全国甘薯品种资源对茎线虫病的抗性鉴定.中国甘薯,1993,5-6:8~13
    [28] 王春明,安井秀,吉村醇,等.水稻叶蝉抗性基因回交转育和CAPS标记辅助选择.中国农业科学,2003,36(3):237~241
    [29] 王永军,东方阳,王修强,等.大豆5个花叶病毒株系抗性基因的定位.遗传学报,2004.31(1):87~90
    [30] 王跃进,Lam I O,卢江,等.葡萄无核基因的RAPD遗传标记.西南农业大学学报,1996,24(5):1~9
    [31] 魏群主编.分子生物学实验指导.北京:高等教育出版社,1999
    [32] 吴敏生,戴景瑞,王守才.RAPD在玉米品种鉴定和纯度分析中的应用.作物学报,1999,25(4):489~493
    [33] 谢世清,冯毅武.云南甘薯耐旱地方品种资源特性分析.中国农学通报,2000.16(2):33~34
    [34] 谢世勇,卢同,李本金,等.苯丙氨酸解氨酶、过氧化物酶与甘薯抗青枯病的关系.福建农业学报,2003,18(4):236~238
    [35] 熊立仲,王石平,刘克德,等.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布.植物学报,1998,40(7):605~614
    [36] 徐建龙,薛庆中,罗利军.水稻单株有效穗数和每穗粒数的QTL剖析.遗传学报,2001,28(8):752~759
    [37] 徐立安,李新军,潘惠新,等.用SSR研究栲树群体遗传结构.植物学报,2001,43(4):409~412
    [38] 许占友,常汝镇,邱丽娟,等.不同DNA分子遗传标记信息量比较.植物遗传资源科学,2000,4(1):41~46
    [39] 尹佟明,黄敏仁,王明麻.利用RAPD标记和单株树大配子体构建马尾松的分子标记连锁图谱.植物学报,1997,39(7):607~612
    [40] 尹佟明,黄敏仁,王明麻.利用RAPD标记构建响叶杨和银白杨分子标记连锁图谱.植物学报,1999,41(9):963~969
    [41] 余金龙.甘薯块根产量及相关性状的典型相关分析.西南农业学报,2001,14(2):107~110
    [42] 朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑),1994,24(10):1048~1052
    [43] 左开井,孙济中,张献龙.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图.华中农业大学学报,2000,19(3):190~193
    [44] Allphin L, Michae I D, Harper K T. Genetic diversity and gene flow in the endangered dwarf bearpoppy, Arctomeconhumilis (Papaveraceae). Am J Bot, 1998, 85 (9): 1251~1261
    [45] Arthur Q V, LaBorite D R. Variation in randomly amplified DNA markers and storage root yield
    
    in 'Jewel' sweetpotato clones. J Amer Sco Hort Sci, 1995, 120 (5) : 734~740
    [46] Arthur Q V, LaBonte D R. Genetic variation among sweetpotatoes propagated through nodal and adventitious sprouts. J Amer Sco Hort Sci, 1996, 121 (2): 170~174
    [47] Ashkenazi V, Chani E, Lavi U, et al. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome, 2001,44 (1): 50~63
    [48] Austin D F.The taxonomy evolution and genetic diversity of sweetpotatoes and related wild species. In: Gregory P, eds. Exploration, maintenance and utilization of sweetpotato genetic resources, Peru: International Potato Center, 1988
    [49] Barker J H A, Matthes M, Arnol G M, et al. Characterisation of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analysis. Genome, 1999, 42(2): 173~184
    [50] Basu A, Ghosh M, Meyer R, et al. Analysis of genetic diversity in cultivated Jute determined by means of SSR markers and AFLP profiling. Crop Sci, 2004, 44(2):678~686
    [51] Berenyi M, GichUki S T, Schmidt J, et al. Tyl-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweetpotato. Theor Appl Genet, 2002, 105:862~869
    [52] Berke T G, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35 (6) : 1542~1549
    [53] Bond C, LaForge K S, Tian M, et al. Single~nucleotide polymorphism in the human muopioid receptor gene alters beta~endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA, 1998, 95 (16): 9608~9613
    [54] Bornet B, Goraguer F, Joly G, et al. Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. Tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome, 2002, 45:481~484
    [55] Bostein D R, White R L. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet, 1980, 32:314~331
    [56] Brown A H D. The core collection at the crossroadsin Core collections of plant genetic resources. In: Hodgkin T, Brown A H D, Van Hintum T J L, Morales E A V, eds. Core collections of plant genetic resources. Chichester: John Wiley & Sons, 1995
    [57] Bushakra J M, Hodges S A, Cooper J B, et al. The extent of clonality and genetic diversity in the Santa Cruz Island ironwood Lyonothamnus floribundus. Mol Ecol, 1999, 8:471~475
    [58] Callow J A, Ford-Lloyd B V, Newbury H J. Biotechnology and Plant Genetic Resources. CAB Intenational Wallingford, 1997
    [59] Carcia-Mas J, Oliver M, Gmez-Paniagua H. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet, 2000, 101:860~864
    [60] Charters Y M, Robertson A, Wilkinson M J, et al. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. Oleifera) using 5'-anchored simple sequence repeat (SSR) palmers. Theor Appl Genet,1996, 92 (3-4): 442~447
    [61] Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays.
    
    Science, 1996, 274 : 610~614
    [62] Chert L Z. Present status of biodiversity conservation and related issues. In: Biodiversity Committee of Chinese Academy of Sciences, eds. Principles and Methodologies of Biodiversity Studies. Beijing: Chinese Science and Technology Press, 1994
    [63] Cheng F S, Weeden N F, Brown S K. Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet, 1996, 93 (1~2) : 222~227
    [64] Chowdhury M A, Vandenberg B, Warkentin T. Cultivar identification and genetic relationship among selected Breeding line and cultivars in chickpea (Cicer arietinum L. ). Euphytica, 2002, 127:317~325
    [65] Chops G, Boer B D, Gerats A, et al. Chromosome landing at the Arabidopsis tomadol locus using an AFLP-based strategy. Mol Gen Genet, 1996, 253 (1-2) : 32~41
    [66] Concibido V C, Denny R L, Lange D A, et al. RFLP mapping and marker-assisted selection of soybean Cyst nematode resistance in PI209332. Crop Sci, 1996, 36 (6): 1643~1650
    [67] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485~488
    [68] Duble C, Quint M, Melchinger A, et al. Saturation of two chromosome regions conferring resistance to SCMV with SSR and AFLP markers by targeted BSA. Theor Appl Genet, 2003, 106 (3) : 485~493
    [69] Dweikat I, Zhang W, Ohm H. Development of STS markers linked to Hessian fly resistance gene H6 in wheat. Theor Appl Genet, 2002, 105 (5) : 766~770
    [70] Ellis T H N, Poyser S J, Knox M R, et al. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet, 1998, 260 (1) :9~19
    [71] Eshed, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield~associated QTL. Genetics, 1995, 141(3) : 1147~1162
    [72] Esselman E J, Li J Q, Crawford D J, et al. Clonai diversity in the rare Calamagrostis porteri ssp Insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Mol Ecol, 1999, 8:443~451
    [73] Eyre W A, Gaut R L, Hilton H. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA, 1998, 95:4441~4446
    [74] Fernndez M E, Figueiras A M, Benito C. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley culticars with known origin. Theor Appl Genet, 2002, 104:845~851
    [75] Ferriol M, Pico B, Cordova P F D, et al. Molecular diversity of a germpla.sm collection of squash (Cueurbita moschata)determined by SRAP and AFLP markers. Crop Sci, 2004, 44(2): 653~665
    [76] Food and Agriculture Organization. Production yearbook 2000, vol. 54. Rome: Food and Agriculture Organization of the United Nations, 2002
    
    
    [77] Frankel O H, Brown A H D. Current plant genetic resources critical appraisal. Genetics, New Frontiers Vol. Ⅳ. Oxford and IBH, 1984
    [78] Fulton T M, Beck-Bunn T, Emmatty D, et al. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet, 1997, 95 (5/6): 881~894
    [79] Ge S, Hong D Y. Genetic diversity and its detection. In: Biodiversity Committee of Chinese Academy of Sciences, eds. Principles and Methodologies of Biodiversity Studies. Beijing: Chinese Science and Technology Press, 1994
    [80] Ghebru B, Schmidt R, Bennetzen J. Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet, 2002, 105 (2-3) : 229~236
    [81] Gianfranceschi L, Seglias N, Tarchini R, et al. Simple sequence repeats for genetic analysis of apple. Theor Appl Genet, 1998, 96 (8): 1069~1076
    [82] Gichuki S T, Berenyi M, Zhang D P, et al. Genetic diversity in sweetpotato [Ipomoea batatas (L.) Lam.] in relationship to geographic sources as assessed with RAPD markers. Genet Resour Crop Evol,, 2003, 50:429~437
    [83] Giraudat J, Hauge B M, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4:1251~1261
    [84] Goldman I L, Rocheford T R, Dudley J W, et al. Molecular markers associated with maize kernel oil concentration in an Illinois High Protein Illinois Low Protein cross. Crop Sci, 1994, 34 (4): 908~915
    [85] Halushka M K, Fan J B, Bendey K, et al. Patterns of single nueleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet, 1999, 22 (3): 239~247
    [86] Hamalainen J H, Watanabe K N, Valkonen J P T, et al. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus. Theor Appl Genet, 1997, 94 (2): 192~197
    [87] Hu X Y, Ohm H W, Dweikat I. Identification of RAPD markers linked to the gene PM1 for resistance to powdery mildew in wheat. Theor Appl Genet, 1997, 94 (6-7) : 832~840
    [88] Huamn Z, Aguilar C, Ortiz R. Selecting a Peruvian sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data. Theor Appl Genet, 1999, 98 (5): 840~844
    [89] Huang J C, Sun M. Genetic diversity and relationships of sweetpotato and its relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet, 2000, 100:1050~1060
    [90] Hulya I. RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. Scientia Horticulturae, 2003, 97:211~218
    [91] Jarret R L, Gawel N. A Whittemore, Phyiogenetic relationships of the sweetpotato[lporaoea batatas (L.) Lain.]. J Am Sco Hortic Sci, 1992, 117(4) :633~637
    [92] Janet R L, Austin D F. Genetic diversity and systematic relationships in sweetpotato (Ipomoea batatas ( L. ) Lam. ) and related species as revealed by RAPD analysis. Genet Resour Crop Evol,
    
    1994, 41:165~173
    [93] Jones A, Deonier M T. Interspecific crosses among Ipomoea lacunose, I.ramoni, I.trichocarpa and I.triloba. Bot Gaz, 1965, 126(3): 226~232
    [94] Jones A. Cytological observations and fertility measurements of sweetpotato (Ipomoea batatas (L.) Lain.) . Proc Amer Soc Hort Sci, 1965, 86:527~537
    [95] Jordi L P, Maria B, Joan S, et al. Allozyme diversity in the tetraploid endemic Thymus Loscosii (Lamiaceae) . Ann Bot, 2004, 93 (3): 323
    [96] Kalendar R, Grob T, Regina M, et al. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet, 1999, 98:704~711
    [97] Kaundun S, Matsumoto S. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O.Kuntze, and differentiation between assamica and sinensis varieties. Theor Appl Genet, 2003, 106(3): 375~383
    [98] Kong L R, Dong Y T, Jia J Z. Random amplified polymorphism of DNA analysis in Aegilopstauschii. Acta Bot Sin, 1998, 40 (3): 223~227
    [99] Kriegner A, Cervantes J C, Burg K, et al. A genetic linkage map of sweetpotato[Ipornoea batatas (L.) Lam.]based on AFLP markers. Mol Breed, 2003, 11: 169~185
    [100] La Bonte D R. Molecular biology in sweetpotato genetics: a means of progress. In: Ames T, eds. Proceedings of the first international conference on sweetpotato. Brugge: ISHS, 2001
    [101] Lefebvre V, Goffinet B, Chauvet J C, et al. Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD and phenotypic data. Theor Appl Genet, 2001, 102:741~750
    [102] Li J, Tao Y, Zhen S Z. Isozymatic differentiation in local population of Glycinesoja Sieb. & Zucc. Acta Bot Sin, 1995, 37(9): 669~676
    [103] LI J X, YU S B, XU C C, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F_2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet, 2000, 101(1): 248~254
    [104] Li X Q, Zhang D P. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweetpotato. Plant Cell Physiol, 2003, 44 (6): 630~646
    [105] Li X Y, Qian Q, Fu Z M, et al. Control oftillering in rice. Nature, 2003, 422:618~621
    [106] Liang C Z, Gu M H, Pan X B, et al. RFLP tagging of a new semidwarfing gene in rice. Theor Appl Genet, 1994, 88:898~900
    [107] Ma K P, Qian Y Q, Wang C. Trendence biodiversity studies. In: Biodiversity Committee of Chinese Academy of Sciences, eds. Principles and Methodologies of Biodiversity Studies. Beijing: Chinese Science and Technology Press, 1994
    [108] Maguire T L, Peakall R, Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet, 2002, 104 (2-3): 388~398
    [109] Marth G T, Koff I, Yandell M D, et a.l. A general approach to single nucleotide polymorphism
    
    discovery. Nat Genet, 1999, 23 (4): 452~456
    [110] Martin F W, Jones A. The species of Ipomoea closely related to the sweetpotato. Econ Bot, 1972, 28:287~292
    [111] Martin F W, Jones A, Ruberte R M. A wild Ipomoea species closely related to the sweetpotato. Econ Bot, 1974, 28:287~292
    [112] Martins M, Tenreiro R, Oliveira M M. Genetic relatedness of Protuguese almond cultivars assessed by RAPD and ISSR markers. Plant Cell Rep, 2003, 22 (1): 71~78
    [113] McCouch S R, Chen X, Panaud O, et al. Microsatellite marker development, mapping and application in rice genetics and breeding. Plant Mol Biol, 1997, 35:89~99
    [114] Mcleod M J. An electrophoretic study of evolution in Capsicum (Solanaceae) Evolution. 1983, 37 (3): 562~564
    [115] Michelmore R W, Paran L, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA, 1991, 88:9828~9832
    [116] Moran G F, Butcher P A, Glaubiz J C. Application of genetic markers in the domestication and utilization of genetic resources of Australasian tree species. Aust J Bot, 2000, 48:313~320
    [117] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269~5273
    [118] Nishiyama T, Miyazaki T, Sakamoto S. Evolutionary Autopolyploidy in the sweetpotato (Ipomoea batatas (L.) Lam.) and its progenitors. Euphytica, 1975, 2 (1): 197~208
    [119] Nishiyama I, Miyazaki T, Sakamoto S. Evolutionary autopolyploidy in the sweetpotato (Iporaoea batatas (L.) Lam. ) and its progenitors. Euphytiea, 1975, 2 (1): 304~314
    [120] Nickerson M L, Weirich G, Zbar B, et al. Signature-based analysis of MET proto-oneogene mutations using DHPLC. Hun Mutat, 2000, 16 (1): 68~76
    [121] Olsen K M, Schaal B A. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proe Natl Acad Sci USA, 1999, 96:5586~5591
    [122] Olson M, Hood L, Cantor C. A common language for physical mapping of the human genome. Science, 1989, 254:1434~1435
    [123] Oracion M Z, Niwa K, Shiotani I. Cytological analysis of tetraploid hybrids between sweetpotato and diploid Ipomoea trifida (H. B.K. ) Don. Theor Appl Genet, 1990, 80:617~624
    [124] Paran I R K, Michelmore R. Identification of RFLP and RAPD markers linked to downy mildew resistance genes in lettuce using near-isogenic lines. Genome, 1991, 34:1021~1027
    [125] Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721~726
    [126] Pros J P, Berger G. Diversity within natural progenies of the grapevine diebaek fungus. Curr Genet, 1999, 36 (5) : 301~309
    [127] Pillay M, Ogundiwin E, Nwakanma D C, et al. Analysis of genetic diversity and relationships in
    
    East African banana germplasm. TheorAppl Genet, 2001,102 (6-7): 965~970
    [128] Prakash C S, He G H. DNA marker~based study of genetic relatedness in United States sweetpotato cultivars. J Amer Sco Hort Sci, 1996, 121(6): 1059~1062
    [129] Queen R A, Gribbon B M, James C, et al. Retrotranspon~based molecular markers for linkage ang genetic diversity analysis in wheat. Mol Gen Genomics, 2004, 271(1): 91~97
    [130] Raina S N, Rani V, Kojima T, et al. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 2001, 44 (5) : 763~772
    [131] Rajapakse S, Nilmalgoda S D, Molnar M, et al. Phylogenetic relationships of the sweetpotato in Ipomoea series Batatas (Convolvulaceae) based on nuclear β~amylase gene sequences. Mol Phylogenet Evol, 2004, 30(3): 623~632
    [132] Roy J K, Balyan H S, Prasad M, et al. Use of SAMPL for a study of DNA polymorphism, genetic diversity and possible gene tagging in bread wheat. Theor Appl Genet, 2002, 104 (2-3) : 465~472
    [133] Schaal S A, Levedch W J, Rogstad S H. Comparison of methods for assessing genetic variation in plant conservation biology. In: Falk D A, Holsinger K E, eds. Genetics and Conservation of Rare Plants. New York: Oxford University Press, 1991
    [134] Schafer-Pregl R, Ritter E, Concilio L, et al. Analysis of quantitative trait loci (QTLs) and quantitative trait alleles(QTAs) for potato tuber yield and starch content. Theor Appl Genet, 1998, 97(5/6): 834~846
    [135] Schoen D J, Brown A H D. Maximising genetic diversity in core collections of wild relatives of crop species. In: Hodgkin T, Brown A H D,Van Hintum T J L, Morales E A V, eds. Core collections genetic resources. Chichester: John Wiley & Sons, 1995
    [136] Schon C C, Melchinger A E, Boppenmaier J, et al. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 34(2): 378~389
    [137] Soltis D E, Soltis P S. lsoezyme evidence for ancient polyploid in primitive angiosperms,. Syst Bot, 1990, 15 (2): 328~337
    [138] Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa2I. Science, 1995, 270:1804~1806
    [139] Swanson T. Global values of biological diversity: the public interest in the conservation of plant genetic resources for agriculture. Plant Genet Res Newsl, 1996, 105:1~3
    [140] Tanksley S B, Mccouch S R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 1997, 277 (22): 1063~1066
    [141] Tian T, Yang Z, Jian S G, et al. Genetic diversity of Hibiscus tiliaceus (Malvaceae) in China assessed using AFLP markers. Ann Bat, 2003, 92 (3): 409~414
    [142] Ting Y C, Kehr A E, Miller J C. A cytological study of the sweetpotato plant Ipomoea batatas (L.) Lam. and its related species. Amer Naturalist, 1957, 91:197~202
    [143] Tosti N, Negri V. Efficiency of three PCR-based markers in assessing genetic variation among
    
    cowpea (Vigna unguiculta subsp, unguiculata) landraces. Genome, 2002, 45 (2): 268~276
    [144] Tyson M, Vaillancourt R E, Reid J B. Determination of clone size and age in a Malice Eucalypt using RAPDs. Aust J Bot, 1998, 87:161~172
    [145] Ukoskit K, Thompson P Ca, Watson C E, et al. Identifying a randomly amplified polymorphic DNA (RAPD) markers linked to a gene for rootknot nematode resistance in sweetpotato. J Amer Sco Hort Sci., 1997, 122 (6): 818~821
    [146] Van Hintum T J L. Comparison of marker systems and construction of a core collection in a pedigree of European spring barley. Theor Appl Genet, 1994, 89:991~997
    [147] Van Hintum T J L. Core collections in germplasm conservation. In: Scloes G, Rossnagel B, eds. Evaluation and use in Proc. Ⅴ Intern. Oat Conference and Ⅶ Intern. Barley Genet. Symp. Saskatoon: Univ. of Saskatchewan, 1996
    [148] Vos P, Hogers M, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23:4407~4414
    [149] Wang J, He G, Prakash C S, et al. Analysis of genetic diversity in Chinese sweetpotato[Ipomoea batatas (L.)Lam.] germplasm using DNA amplification fingerprinting. Plant Genet Res Newsl, 1998, 113:13~16
    [150] Waugh R, McLean K, Flavell A J, et al. Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet, 1997, 253:687~694
    [151] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res, 1990, 18 (24):7213~7218
    [152] Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res, 1990, 18:6531~6535
    [153] Witsenbers H, Vogel J, Michelmore R W. Identification genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactae aspp.). Genome, 1997, 40(6): 923~936
    [154] Wolf A T, Howe R W, Hamrick J L. Genetic diversity and population structure of the serpentine endemic Calyste-giacoilina (Convolvulaceae) in northern California. Am J Bot, 2000, 87(8): 1138~1146
    [155] Wyman A R, White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci USA, 1980, 77(11): 6754~6758
    [156] Xu G W, Magili C W, Schert Z K F, et al. A RFLP linkage map of Sorghum bicolour (L.) Moench. Theor Appl Genet, 1994, 89 (2): 139~145
    [157] Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12:2473~2483
    [158] Yen D E. Evolution of the sweetpotato (Ipomoea batatas ( L. ) Lam.). Nature, 1961, 191: 93~94
    [159] You M K, Hur C G, Ahn Y S, et al. Identification of genes possibly related to storage root
    
    induction in sweetpotato. FEBS Letters, 2003, 536: 101~105
    [160] Zhang D P, Ghislain M, Huamn Z, et al. RAPD variation in sweetpotato (Ipomoea batatas (L.) Lam.) cultivars from South America and Papua New Guinea. Genet Resour Crop Evol, 1998, 45:271~277
    [161] Zhang D P, Cervantes J, Huamn Z, et al. Assessment genetic diversity of sweetpotato (Ipornoea batatas (L.) Lain.) cultivars from tropical America using AFLP. Genet Resour Crop Evol, 2000, 47:659~665
    [162] Zhang D P, Rossel G, Kriegner A, et al. AFLP assessment of diversity in sweetpotato from Latin America and the Pacific region: Its implications on the dispersal of the crop. Genet Resour Crop Evol, 2004, 51: 115~120
    [163] Ziekiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics, 1994, 20:178~183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700