放线菌L74溶藻物质的分离纯化及溶藻机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化问题的加剧,藻类水华所带起的危害已经引起了全社会的广泛关注。尽管物理化学方法在水华治理中有一定的应用,但其效果不尽如人意,且带来二次污染等问题。微生物法具有快速、高效、绿色环保等优点。因此,利用微生物进行水华防治逐渐成为一个新研究热点。
     本实验室已经从环境中筛选得到一株快速稳定溶解铜绿微囊藻细胞的放线菌,并将其命名为L74,经分类鉴定,确定为一株弗氏链霉菌属的亚种。本实验课题分离纯化该菌产生溶藻物质及对溶藻机理进行初步的研究,主要结果如下:
     (1)放线菌菌株L74的培养条件进行了单因素和L9(3~4)正交实验优化。研究结果表明:最佳培养条件为可溶性淀粉20g/L,黄豆粉10g,K_2PO_4 0.5g/L,MgSO_4 0.5g/L,NaCl 0.9g/L,FeSO_4 0.01g/L,pH7.2。
     (2)采同不同温度梯度和pH值对溶藻物质处理,研究结果表明:溶藻物质具酸碱稳定性但对温度敏感,随着处理温度的升高,溶藻效果下降,当温度超过90℃处理1h后,溶藻物质的溶藻效果几乎完全丧失。
     (3)采用乙醇沉淀、有机溶剂萃取、透析、薄层层析、正相硅胶柱层析、凝胶过滤层析以及反相硅胶(C18)柱层析对溶藻物质进行了分离纯化,并得到其中一个较纯溶藻物质。通过生化试验、红外光谱、扫描电子显微镜、液质联用及核磁共振对纯的溶藻物质进行了鉴定。研究结果表明,该物质为白色无定形粉末,其形状不规则、大小不一致;具有三萜皂苷类物质6个特征红外吸收峰中的5个;分子量可能为799.7,且其结构中含有两个六碳糖;具三萜皂苷类物质的特征反应。故推测该溶藻物质为一个三萜皂苷类物质。
     (4)将铜绿微囊藻与溶藻物质共同培养,且对藻类抗氧化系统酶类的进行了跟踪研究。研究结果显示,随着共同培养时间的延长,铜绿微囊藻的叶绿素a含量一直呈下降趋势直至为零,与此同时,其体内SOD、POD和CAT活性均有一个先剧烈上升后显著下降的过程,而MDA含量则一直上升且最后维持在高水平,表明溶藻物质的溶藻机理可能与破坏藻类抗氧化系统有关。
In the present, eutrophication becomes a worldwide water problem, and goes worse as industrializational development. The harm of algal blooms has been concerned by the society. However, the effects of physical and chemical methods for the elimination of algal blooms are not satisfied in recent years. Therefore, microbial methods by algicidal microorganisms as alternative approaches are applied for preventing and controlling of algal blooms.
     The algicidal actinomycetes strain L74 screened from water of aquaculture, and identified as a species of Streptomyces fradiae. And in the present work, we studied on the algicidal components and their algicidal mechanism. The main results are as follows: The single factor experiments and orthogonal experiment have been used to investigate the composition of the culture medium in this paper. The results suggested that the best composition of the culture medium is: soluble starch 20g / L, soybean meal 10g/L, K_2PO_4 0.5g / L, MgSO_4 0.5g / L, NaCl 0.9g / L, FeSO_4 0.01g / L, pH7.2.
     To identify their algicidal characterization, the algicidal components were treated by different temperatures and different pH. The results showed that: the algicidal components are stable to pH, but sensitive to temperature. After being treated at 90℃for one hour, the activity of algicidal components nearly lost.
     To obtain the algicidal components from actinomycete strain L74, a series of techniques including ethanol precipitation, organic solvents extraction, dialysis, TLC, silica gel adsorption chromatography, gel filtration chromatography and RP silica gel (C18) column chromatography were used. And one of these algicidal components was obtained. A series of techniques including biochemical tests, infrared spectroscopy, scanning electron microscopy, liquid chromatography-mass spectrometry and nuclear magnetic resonance were used to identify the algicidal component. The result of scanning electron microscopy showed that the algicidal component is a white amorphous powder with irregular shape and size. Triterpenoid saponin components have six characteristic infrared peaks, and the algicidal component includes five of these six characteristic infrared peaked. The results of liquid chromatography-mass spectrometry and nuclear magnetic resonance indicated that the molecular weight may be 799.7, and its structure may contain two units of sugar. And the biochemical tests showed that the algicidal component has the characteristic reaction of triterpenoid saponins. All of the results showed that the algicidal component is one kind of triterprnoid saponins substances.
     The algae Microcstis aeruginosa were cultured with algicidal components, and their antioxidants system were studies instantly. As the reducing of the content of chlorophyll a in the algae, the activities of SOD, POD and CAT are dramatically increase at first, and decrease significantly in the last period. On the other side, the content of MDA firstly increases quickly, and maintains at a high level. The results showed that the algicidal mechanism of algicidal components may relate to the antioxidant system damage of the algae.
引文
[1] OECD. Eutrophication of Waters. Monitoring, Assessment and Control. Final Report, OECD Cooperative Program on Monitoring of Inland Waters (Eutrophication Control) [M], Environment Directorate, OECD, Paris, 1982: 154
    [2] Huang Y P. Contamination and control of aquatic environment in Lake Taihu [M]. Beijing, Science Press, 2001
    [3] Shapiro J. Blue-green algae: why they become dominant [J]. Science, 1972, 179:382-384
    [4]谢平.论蓝藻水华的发生机制[M].北京:科学出版社,2007:1-2
    [5] Paerl W, Fulton R S, Moisander P H, et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria [J] Science, 2001,1: 76-113
    [6]谢平.论蓝藻水华的发生机制[M].北京:科学出版社,2007:156-177
    [7] Chen Y W, Gao X Y. Study on variations in spatial and temporal distribution of Microcystis in Northwest Taihu. Lake and its relations with light and temperature[M]. Beijing, China Meteorological Press, 1998: 142-148
    [8] Oliver R L and Ganf G G.. The Ecology of Cyanobacteria [M]. Environment Directorate 2000:149-194
    [9]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005(03):589-595
    [10]刘永梅,刘永定,李敦海,沈银武.氮磷对水华束比藻生长及生理特性的影响[J].水生生物学报,2007, 16(06): 127-133
    [11]刘春光,鑫相灿,孙凌等.水体pH和曝气方式对藻类生长的影响[J].环境污染与防治,2006,28(3):161-163
    [12]李威,杨健,刘洪波等。微量元素对水华发生、发展的影响[J].淡水渔业,2008, 32(05): 153-168
    [13]汤仲恩,种云霄,朱文玲等.几种观赏型沉水植物对富营养化蓝绿藻类的抑制作用[J].生态环境,2007, 16(06): 1637-1642
    [14] Vanni M J and Temte J. Seasonal patternof grazing and nutrient limitation of phytoplankton in a eutrophic lake. [J] Limnol. Oceanogr, 1990, 35:697-709
    [15] Burns C W. The relationship between body size of filter feeding cladocera and themaximum size of particle ingested.[J] Limnology Oceanography, 1968, 13: 675-678
    [16] Lynch M and Shapiro J. Predation, enrichment, and phytoplankton community structure. Limnology Oceanography, 1981, 38: 798-817
    [17] Ling Zhengtian. Studies on the role of marine bacteria biomass in the up welling ecosystem [J]. Acta Sinica Oceanologica, 1993(2):261-272
    [18]冯胜,李定龙,秦伯强.太湖水华过程中微生物群落的动态变化[J].宁波大学学报.2010, 23(01): 7-12
    [19] Lamber T W,Holmes C F B,Hrudey S E.Microcystin class oftoxins:health effects and safety of drinking water supplies[J].Environment Review, 1994, 16(2):167-186
    [20] Jan Landsberg, Fran Van Dolah,Gregory Doucette.Marine and Estuarine Harmful Algal Blooms:Impacts on Human and Animal Health[J].Oceans and Health:Pathogens in the Marine Environment.2005,4:165-166
    [21] Svrcek C,Smith D W.Cyanobacteria toxins and the current state of knowledge on water treatment options:a review[J].Environment Engineering Science,2004,3:155-185
    [22]谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁[M].北京:科学出版社,2006
    [23] Carrick H J, GL Fahnenstiel,W D Taylor.Growth and Production of Planktonic Protozoa intake Michigan:In situ versus in vitro Comparisons and Importance to Food Web Dynamics[J].Limnology Ocean,1992,37:1229-1235
    [24]孔祥海.水华发生与危害机理及其防治措施的研究[J].龙岩师专学报,2003(3): 85-88
    [25]李效宇.微囊藻毒素的产生、检测和毒理学研究[J].水生生物学报,1999,23(5): 517-519
    [26]王志红,陈华.福建水华微囊藻的急性毒性及肝脏损伤作用[J].海峡药学,2002, 14(1): 12-13
    [27]屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程[J].湖泊科学,2004,16(1):62-67
    [28] Ichiro Imai,Satoshi Kimura.Resistance of the fish-killing dinoflagellate Cochl- odinium polykrikoides against algicidal bacteria isolated from the coastal sea of Japan[J]. Harmful Algae, 2008, 56(7):360-367
    [29]李建宏,邵子厚.Cu2+对蓝藻Spirulinamaxima光合作用的抑制机理[[J].植物生理学报,1997,23(1):77-82
    [30]陈静,谷慧光.滇池草海蓝藻清除应急药剂筛选现场试验研究[[J].云南环境研究,1996,18(2):30-33
    [31]谢平.鲢、鳙与藻类水华控制[M].北京:科学出版社,2003
    [32] Planas D,Sarhan F,Dube L,Godmaire H and Cadieux C.Ecological significance of phenolic compounds of Myriophyllum spicatum[J], Verhandlungen Limnology, 1981,21: 1492-1496
    [33]叶居新,何池全,陈少风.石葛蒲的克藻效应[J].植物生态学报,1999,23 (4): 379-384
    [34] D.C. Sigee, R. Glenn, M.J. Andrews, E.G,et al. Biological control of cyanobacteria: principles and possibilities[J]. Hydrobiologia,1999,395/396: 161-172[34] Daft M. J,S. B. McCord,W. D. Stewart.Ecological studies on algal lysing bacteria in fresh waters[J]. Freshwater Biology,1975,5:577-596
    [35]喻融.溶藻微生物的分离及溶藻特性的初步研究[D].武汉:华中师范大学,2006
    [36] Canter H M,Heaney S I,Lund J W.The ecological significance of grazing on planktonic populations of cyanobacteria by the ciliate Nassula[J].New Plttology,1990, 144:247-263
    [37] Daft M. J,S. B. McCord,W. D. Stewart.Ecological studies on algal lysing bacteria in fresh waters[J]. Freshwater Biology,1975, 5:577-596
    [38] Sherman, L. A, R. M. Brown. Cyanophage and virus of eukaryotic algae, in H. Fraenkel-Conrat et al eds. Comprehensive virology [M]. New York: Plenum press, 1978, 3:145-245.
    [39]喻融,周瑞,刘芳遐等.一种筛选溶藻放线菌的新方法[J].华中师范大学研究生报,2005,12(4): 142-144.
    [40]崔妍,李建宏,汪艳等.高效抑藻放线菌的筛选和活性[J].生态学报,2008,28(11):5691-5696.
    [41]肖慈琼,姜红,程凯等.溶藻放线菌AN02的筛选及其培养条件的优化[J].微生物学杂志,2007,27(4): 11-14.
    [42] Lee S, Kato J, Takiguchi N, et al. Involvement of an extracellular protease in algicidal activity of the marine Bacterium Pseudoalteromonas sp Strain A28[J]. Applied and Environmental Microbiology, 2000, 66(10): 4334-4339
    [43] Mitsutani A, Takesue K, Kirita M. Lysis of Skeletonemacostatum by Cytophaga sp,isolated from the coastal water of the Ariake sea [J]. Nippon Suisan Gakkaishi, 1992, 58(2): 2158-2167
    [44] Iamura N, I Motoike, N Noda, et al. Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium[J]. Antibiotics, 2000, 53(11): 1317-1319
    [45]刘新尧,石苗,廖永红等.食藻原生动物及其在治理蓝藻水华中的应用前景[J].水生生物学报,2005, 29(14): 456-461
    [46] Jeong S Y, Ishida K, Ito Y. Bacillamide , a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium palykrikoides[J]. Tetrahedron letters, 2003, 51(4):8005-8007
    [47] Yoshikawa K, Adachi K, Nishijima M, et al. Beta-cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria[J]. Applied and Environmental Microbiology, 2000, 66(2): 718-722
    [48] Dakhama A, Noue J, Lavoie M C. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa[J]. Applied Phycology, 1993, 5(9): 297-306
    [49] Kawano Y, Nagawa Y, Nakanishi H. Production of thiotropocin by a marine bacterium, Caulobacter sp. and its anti-microalgalactivities[J]. Mar Biotechnology, 1997, 34(5): 225-229
    [50] Paul S B. Jinnque R, Haim B G. Bacterial suppression of Qhlorella by hydrozylamine production[J]. Water Research, 1979, 13(1): 267-273
    [51] Kodani S, Imoto A, Mitsutani A, et al. Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1[J]. Applied Phycology, 2002, 14(2): 109-114
    [52] Volk R B. Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostocinsulare and Nodularid harveyana [J]. Journal of Applied Phycology, 2005, 17(4): 339-347
    [53] Nobuyuki N, Kazunori N. A novel cyanobacteriolytic bacterium, bacillus isolated from a eutrophic lake cereus [J]. Journal of Bioscience and Bioengineering, 2003, 95(2): 179-184
    [54] Connie L, John P B, Gustaaf M H. Algicidal effect of a novel marine Pseudoalteromon as isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the Genera Chattonella, Gymnodinium, and Heterosigma [J]. Applied and EnvironmentalMicrobiology, 1998, 64(8): 2806-2813
    [55] Barker K H, Herson D S. Interactions between the diatom Thallasiosira Pseudonana and an associated Pseudomonad in a mariculture system [J]. Applied and Environmental Microbiology, 1978, 35(6): 791-796
    [56] Wang X L, Gong L Y, Liang S K. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa [J]. Harmful Algae, 2005, 4(2): 433-443
    [57]彭超.3株溶藻细菌的分离鉴定及其溶藻效应[J].环境科学研究, 2003, 16(1): 37-40
    [58]李燕,潘伟斌,杨丽丽.三株溶藻细菌胞外溶藻活性物质若干分离特性的研究[J].微生物学通报,2008, 35(2): 171-177
    [59] Yamamoto Y, Kouchiwa T, Hodoki Y, et al. Distribution and identification of ancinomycetes lysing cyanobacteria in a eutrophic lake[J]. Journal of Applied Phycology, 1998, 10(2): 391-397
    [60]关英红,马军,雷国元等.一株溶藻菌株的分离鉴定及溶藻特性[J].环境科学学报, 2008, 28(7): 1288-1293
    [61]傅丽君,安新丽,郑天凌.环境中放线菌及其抑藻活性物质研究的若干进展[J].地球科学进展,2010, 25(9): 960-965
    [62]梁锏文,林炜铁.溶藻放线菌的分离鉴定及其溶藻特性[J].环境科学与技术,2009, 32(09): 68-72
    [63] Keller M, Zengler K. Tapping into microbial diversity [J]. Nature Reviews, 2004,6( 2): 141-150
    [64] Choi HJ. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters [J]. Biological Control, 2005, 3(2): 335-343
    [65] Zhao WY, Zhu TJ, Gu JY. Studies on the chemical constituents and antitumor activity of secondary metabolites of marinederived Streptomyces sp. 3275 [J]. Natural Product Research and Development, 2006, 18(3): 405-407
    [66] Yeo Woon-Hyung. Antiviral, antimicrobial and cytotoxin properties of peptavirins A and B produced by Apiocrea sp. 14T [J]. The Plant Pathology Journal, 2002, 18(1): 18-22
    [67]曾湘,郑天凌.海洋活性肽研究的回顾与展望[J].世界科技研究与发展,2009,31(6): 1012-1016
    [68] Zheng Tianling, Su Jianqiang, Maskaoui K, et al. Microbial modulation in the biomass and toxin production of a red-tide causing alga [J]. Marine Pollution Bulletin, 2005, 5(1): 1018-1025.
    [69] Su Jianqiang, Yang Xiaoru, Zheng Tianling, et al. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense [J]. Harmful Algae, 2007, 6(6): 799-810.
    [70] Wang Xin, Li Zhijiang, Su Jiangqiang, et al. Lysis of a red-tide causing alga, Alexandrium tamarense, Caused by bacteria from its phycosphere [J]. Biological Control, 2010, 5(2): 123-130
    [71]杨小茹,苏建强,郑小伟等.基于分子技术的1株产毒藻藻际细菌多样性分析[J].环境科学, 2009,30(1): 259-267.
    [72]戴荣继,佟斌,黄春,等.HPLC测定饮用水中藻类叶绿素含量[J].北京理工大学学报,2006,26(1): 87-89
    [73]余甜甜,张炳火,李汉全等.一株放线菌对铜绿微囊藻的溶藻活性[J].生态与农村环境学报,2010,27(2): 58-63
    [74]于凤娟,徐玲玲,程凯等.2株高效溶赤潮异湾藻放线菌的鉴定及溶藻特性[J].中国环境科学,2011,31(1): 111-115
    [75] Nakashima T,Miyazaki Y,Matsuyama Y,et al. Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacteriumγ-proteobacterium. Appl Microbiology Biotechnology, 2006, 73(3):684-690.
    [76]姜怡,唐蜀昆,张玉琴,等.放线菌产生的生物活性物质[J].微生物学通报,2007,34(01): 188-190
    [77] Nathan A. Magarvey, Jessica M. Keller, Valerie Bernan, et al, Isolation and Characterization of Novel Marine-Derived Actinomycete Taxa Rich in Bioactive Metabolites [J]. Applied and Environmental Microbiology, 2004, 12: 7520-7529.
    [78]郭勇.现代生化技术[M].第二版.北京:科学出版社,2006:36-101
    [79]蔡宝昌,罗兴洪.中药制剂前处理新技术与新设备[M].北京:中国医药科技出版社,2005:264-265
    [80]曹洪玉.薄层层析法对药物成分的剖析[J].赤峰学院学报(自然科学版),2009,25(12):31-34
    [81]唐晨,赵以军.放线菌AN02溶藻活性物质的初探及其改性制剂对铜绿微囊藻的控藻能力研究[D].华中师范大学,2009
    [82]李小彩,裴海燕,胡文容.溶藻细菌及溶藻物质研究进展[J].工业水处理,2007, 27(06): 10-12
    [83]董振生,程天印,李丹等.山莓叶化学成分分析及其生物碱的抗菌作用[J].畜牧兽医杂志,2008,27(06):25-27, 30
    [84]张贵君.常用中药液相与气相色谱鉴定[M].北京:化学工业出版社,2005,68-69
    [85]卢艳花.中药有效成分提取分离技术(第2版)[M].北京:化学工业出版社,2008,246-247
    [86]张涵之,潘伟斌,马超.溶藻细菌L7溶藻活性代谢产物的分离鉴定[J].中国环境科学, 2010,30(S1):19-23
    [87]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社, 2001: 403.
    [88]刘智,李赛君,田洪波,等.三七不同部位成分的谱学性质研究[J].光谱学与光谱分析, 2005, 25 (4): 579-582.
    [89]周湘萍,刘刚,时有明,等.普洱茶的傅里叶变化红外光谱鉴别研究[J]., 2008, 28(3): 594-599.
    [90]吴建华,罗宗铭,郑建国.傅立叶变换红外光谱鉴定人参的研究[D].广东工业大学,2003
    [91] Xiao Mingwang. Quantitative determination of six major triterpenoids in Ganoderma lucidum and related species by high performance liquid chromatography [M]. Journal of Pharmaceutical and Biomedical Analysis, 2006:838-844
    [92] Jie Liu. Anti-androgenic activities of the triterpenoids fraction of Ganoderma lucideu [M]. Food Chemistry, 2006:585-587
    [93] McCordet al, 1969--McCord J M, Fridovich I, 1969. Superoxide dismutase. Anenzymic function for erythrocuprein (hemocuprein)[J]. Biological Chemistry, 244: 6049—6055
    [94]朱枫,钱晨,卢彦.微囊藻毒素诱导细胞氧化胁迫的研究进展[J].生态毒理学报,2010,5(06): 769-775
    [95]罗固源,刘静,王金霞等.一株溶藻细菌对铜绿微囊藻的溶藻机理初探[J].生态环境学报,2010, 19(11): 2647-2651
    [96]史顺玉.溶藻细菌对藻类的生理生态效应及作用机理研究[D].武汉:中国科学院水生生物研究所,2006
    [97] Droillard M J, Paulin A, Massot J C, Free radical production, calatase and superoxide dimutase activities and membranes integrit during senescence of petals of cut carnations (Dianthus caryophyllus) [J]. Physiologia Plantarum, 1987, 71:179-202.
    [98]李合生.植物生理生化实验原理和技术(第2版).[M]北京:高等教育出版社, 2000, 134-137; 195-197
    [99]张志良.植物生理学实验指导(第3版) [M].北京:高等教育出版社, 2003, 121-124
    [100]张志良.植物生理学实验指导(第3版) [M].北京:高等教育出版社, 2003, 274-277
    [101]沈盎绿,沈新强.柴油对斑马鱼超氧化物歧化酶和过氧化氢酶的影响[J].海洋渔业, 2005, 27(04): 314-318
    [102] Mathew S, Ashok Kumar K, Anandan R, et al. Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon [J]. Comparative Biochemistry and Physiology C, 2007, 145(3): 315-320
    [103]褚妍,任菲,赵贵林等.渗透胁迫对植物抗氧化酶影响的研究进展[J].安徽农业科学,2011,39(03):1300-1302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700