催化裂化催化剂新材料的合成、表征及其裂化反应性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要内容是合成了流化催化裂化(FCC)催化剂新材料,并通过深入表征催化裂化催化剂新材料的孔结构参数,开展了催化裂化催化剂新材料的分析及其孔结构与反应性能的关联研究;建立X射线荧光光谱法测定催化裂化催化剂新材料磷、铁、镧和稀土元素的分析方法,获得了满意的结果。本论文的工作目的在于从分析理论水平上对催化剂的形态、孔径和结构的影响进行研究,从而指导催化反应工艺的设计以及新型催化裂化催化剂材料的研究。
     论文包括三个部分。
     第一部分催化裂化催化剂新材料的合成、表征及其裂化反应性能的研究进展
     第一章催化裂化催化剂新材料的研究进展
     介绍了流化催化裂化(FCC)反应及其催化裂化催化剂技术进展,对FCC催化剂新材料及其工艺进行了归纳和总结,展望了设计开发具有高裂化活性和低结焦性能的催化裂化催化剂新材料的发展趋势和应用前景。
     第二章催化裂化催化剂的孔结构与反应性能关系的研究进展
     催化裂化催化剂在制备过程中,存在着孔隙结构与表面积的变化,孔隙结构变化特征的准确分析是高效研发FCC催化剂的基础。本章从FCC催化剂的孔隙结构的表征分析、反应过程中孔隙结构变化以及孔隙结构模型三方面总结了FCC催化剂孔结构分析方法的研究现状,并且对各种方法的特点进行了评述;同时对FCC催化剂分析方法的研究重点催化剂制备过程中孔隙结构的变化影响,孔隙结构与反应性能的关系等几个方面进行了展望,。
     第三章X射线荧光光谱分析的研究应用进展
     介绍了X射线荧光光谱分析的基本原理和仪器装置,对X射线荧光光谱法分析在催化剂分析领域的应用研究进行了归纳和总结,展望了X射线荧光光谱法在催化裂化催化剂新材料领域分析研究的发展趋势和应用前景。
     第四章论文选题意义及主要研究内容
     介绍了本论文的研究目的意义、研究内容和实验中的表征手段。
     第二部分催化裂化催化剂新材料及其孔结构与反应性能的研究
     在实验室进行了山西金洋土的性质及其原位晶化工艺所制催化剂的研究。结果表明,山西金洋土的基本性质符合全白土型原位晶化催化剂的要求,该高岭土在原位晶化体系中具有适度活性硅和较快活性铝的碱溶速度,以及良好的晶化性能和裂化性能。与现用的苏州高岭土采用相同工艺制备的对比剂相比,山西金洋土的比表面积和孔体积更大。以新疆减压宽馏分和减压渣油的混合油为原料,进行了裂化性能的考察。结果表明,高岭土经过热和化学改性,形成了一定活性的中孔结构,所设计的新型重油催化剂具有较好的重质油转化能力和良好的裂化产物选择性。
     第三部分X射线荧光光谱法测定催化剂新材料的分析应用
     第一章X射线荧光光谱法测定助催化剂中磷和铁的研究
     使用X射线荧光光谱仪,采用人工合成标样,设计合成了一套磷和铁总含量分别为0.15%-2.30%、0.20%-2.40%的标准样品;采用数学校正法中的经验系数法校正元素间的互相干扰,样品不经任何处理,粉末直接压片,经验系数法校正基体效应,建立了分析测定助催化剂中磷和铁含量的方法。讨论了样品制作方法,合适的测量条件,探讨了试样中元素间的相互影响。实验结果表明,该方法重现性好,准确度和精密度较高,测定磷和铁的相对标准偏差分别为:0.34%和0.59 %;测定范围磷为0.01-2.50%,铁为0.01-2.50%。分析结果与化学法、等离子发射光谱法测定结果吻合。本方法操作简便、样品处理简单,不用分解试样,结果准确,分析速度远快于其它分析方法,单次测量一个样品只需要5分钟,适用范围广,满足了科研和工业生产的需要。
     第二章X射线荧光光谱法测定分子筛中镧含量的研究
     根据准确快速测定分子筛中改性元素镧含量的需求,本论文采用粉末样品压片制样,用X射线荧光光谱仪对分子筛中稀土元素镧进行测定。以离子交换法制备标准样品,通过充分地研磨,来克服粒度效应和矿物效应。论文主要讨论了吸收-增强效应对镧元素分析的影响;使用经验系数法校正基体效应,本方法得到的分析结果与化学方法一致;同时该方法测定范围宽,满足了科研和工业生产的需求。
The main contents of this paper describe how to synthesize the new materials of the fluid catalytic cracking (FCC) catalysts.By analyzing the pore structure parameters of the new materials FCC catalyst, the associated study on analysis of the new catalytic cracking catalyst and their pore structure and reaction properties are carried out. As a result, the satisfactory analytical methods of phosphorus, iron, lanthanum and rare earth elements contained in the new materials FCC catalyst were determined by using X-ray fluorescence spectrometry. The objective of this paper is to guide the design of catalytic reaction process and enhance the further research of the new FCC catalyst materials through studying the catalyst shape, size and structure in the view of analytical theories.
     This paper consists of the following three parts:
     Part One A review on study progress of new fluid catalytic cracking catalyst in synthesis, analysis, characterization and reaction properties
     Chapter One A review on study progress of the new material of fluid catalytic cracking catalyst
     The fluid catalytic cracking (FCC) reaction and its catalytic cracking catalysts are introduced when the new materials for FCC catalyst and its process are summarized and categorized. Then, the potential development and application prospects of FCC catalysts and new materials with the high cracking activity and low coking properties are predicted.
     Chapter Two Study progress of the fluid catalytic cracking catalyst in relation between reaction capability and pore structure
     In the preparation process of FCC catalyst, there is the existence of pore structure and surface area changes. Therefore, the accurate analysis of high-performance research on changes of pore structure characteristics will become the basis of FCC catalyst synthesis. In this paper, the characterization of pore structure analysis, reaction course of changes in pore structure and pore structure model are summarized on the three aspects of FCC catalyst pore structure analysis method, and the characteristics of various methods are compared too. In meantime, the FCC catalyst analysis methods focusing on the prosperous development are discussed. A particular study on the relations between the change of pore structure and reaction properties in the catalyst preparation process is introduced referring to literatures.
     Chapter Three A review on the X-ray Fluorescence Spectrometry analysis
     This chapter introduces the basic principles and the instrumentation of the X-ray fluorescence spectrometry analysis. It mainly summarizes and categorizes the applications of X-ray Fluorescence Spectrometry, and vistas the newly developing techniques and further trends of the X-ray Fluorescence Spectrometry method to analyze the elements used in the new material catalyst based on the published references.
     Chapter Four Significance and the main research contents of the thesis
     Significance and objectives of this research, main contents, innovative points, experiments and the characterization approaches in this thesis are introduced.
     Part Two Study on the reaction capability and the pore structure of new material with FCC catalyst
     The properties of Jinyang soil taken from Shanxi Province and the catalyst from its in-situ crystallization were studied in the laboratory. The result showed that the essential properties of Jinyang soil met with the requirement for making catalyst by in-situ crystallization, which possessed the stronger and appropriate alkaline dissolvable rates for active alumina and active silica respectively, as well as good performance of crystallization and cracking. After the thermal treatment and chemical modification of kaolin, the certain reactive mesoporous structure was formed in CLS material, and the novel FCC catalyst containing CLS exhibited the excellent heavy oil cracking capability and superior selectivity to desired products.
     Part Three Determination of the new material catalyst by X-ray Fluorescence Spectrometry
     Chapter One Determination of Phosphorus and Iron in Co-catalyst by X-ray Fluorescence Spectrometry
     The aim of this work was to develop a new technique for quantitative analysis of phosphorus and iron contents in co-catalyst by X-ray fluorescence spectrometry (XRFS). A set of synthesized standard samples were prepared for the experiments with this purpose when the interferences of inter-elements were corrected by the Empirical Coefficient Method. The standard samples were manually synthesized, and the powder pellets were used for sample preparation while and the matrix effects were corrected by the experience coefficients. The characteristic X-rays of phosphorus and iron elements could selectively be determined with the enhanced accuracy and reduced time consumption within a range without signal interference from main-component elements. Manufacturing sample and measurement conditions of the new method were brought up; The matrix effects of Co-catalyst samples were verified by Empirical Coefficient Method. The results of experiment showed that the accuracy and precision of this method satisfactorily had the high repeatability. The measuring ranges of elements were w 0.01-2.50% for phosphorus and w 0.01-2.50% for Iron with the relative deviations of 0.34% for Phosphorus and 0.59% for Iron, respectively. This method showed the satisfactory accordant results in comparison with the chemical method and inductively coupled plasma (ICP). It also has provided the analytical values for phosphorus and iron in co-catalyst. This new method has the advantages of satisfactory accuracy, high precision, less interference, easy sample handling and high efficiency. In addition, the samples are not decomposed during the analysis process when each sample only requires 5 minutes to be taken for measurement. This new method will be able to meet the growing demands of quantitative analysis of phosphorus and iron content in co-catalysts. This method had the satisfactory accuracy and precision, so the analytical range was large, and had been successfully applied to the determine phosphorus and iron in co-catalyst.
     Chapter Two Determining the content of La on modified zeolite by X-ray Fluorescence Spectrometry
     After eliminating particle size effects and mineral effects by sufficiently grinding and using proper preparation methods of standards, absorption-enhancement effects of the XRFS to determine the content of La2O3 on modified zeolite were mainly discussed in this paper. If the absorption-enhancement effects were corrected by the experience coefficients, the results appeared to be in good agreement with the classical chemical method, and can meet the requirements of scientific research analysis and industrial analysis.
引文
[1]中国石油天然气股份有限公司石油化工研究院炼制所,催化裂化领域“十一五”发展规划,2007, 1-11。
    [2]张建明。低结焦渣油催化裂化催化剂研究。大连理工大学硕士学位论文,2005,3-21。
    [3]肖金凯,荣天君。粘土矿物在催化裂化催化剂中的应用。高校地质学报,2000,(6)2:282-286。
    [4]王宁生,闫伟建,孙书红。高岭土改性及其在FCC催化剂中的应用。工业催化,2007,(15)4:14-16。
    [5] Grim, R. E. , Mimeralogy, 1968.
    [6]王雪静,张甲敏,李晓波,方克明。高岭土和煅烧高岭土的微观结构研究。中国非金属矿工业导刊,2007,5:18-20。
    [7] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710-712.
    [8] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu CT-W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chen. Soc., 1992, 114(27): 10834-10843.
    [9] Aufdembrink B A, Chester A W, Herbst J A, Kresge C T. Ultra Large Pore Cracking Catalyst and Process for Catalytic Cracking. U.S. P. 5258114. 1993.
    [10] Corma A, Grande M S, Gonzalez-Alfaro V, Orchilles A V. Cracking Activity and Hydrothermal Stability of MCM-41 and Its Comparison with Amorphous Silica-Alumina and a USY Zeolite. J. Catal. 1996, 159(2): 375-382.
    [11] Kloetstra K R, Zandbergen H W, Jansen J C, van Bekkum H. Overgrowth of mesoporous MCM-41 on faujasite. Microporous Materials, 1996, 6(5-6): 287-293.
    [12] Liu Y, Zhang W Z, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds. J. Am. Chem. Soc., 2000, 122(36): 8791-8792.
    [13] Triantafyllidis K S, Lappas A A, Vasalos I A, Liu Y, Pinnavaia T J. Gas-oil cracking activity and product selectivity of the hydrothermally-stable mesoporous aluminosilicates (MSU-S) assembled from Zeolite seeds. In: 14th International Zeolite Conference. CapeTown: 2004. 2853-2860.
    [14]陈洪林,申宝剑,潘惠芳。ZSM-5/Y复合分子筛的酸性及其重油催化裂化性能。催化学报,2004,25(9):7I5-720。
    [15] Biswas J, Maxwell I E. Octane enhancement in fluid catalytic cracking: I. Role of ZSM-5 addition and reactor temperature. Appl. Catal., 1990, 58(1): 1-18.
    [16]李丽,潘惠芳,李文兵。β沸石在烃类裂化催化剂中的应用。催化学报,2002,23(1):65-68。
    [17] Corma A. Martinez-Triguero J. The Use of MCM-22 as a Cracking Zeolitic Additive for FCC. J. Catal., 1997, 165(1): 102-120.
    [18] He M Y. The development of catalytic catalysts: acidic property related catalytic performance. Catal. Today, 2002, 73(1-2):49-55.
    [19] Scherzer J, Bass J. L. Ion exchanged ultrastable Y zeolites: I. Formation and structural characterization of lanthanum-hydrogen exchanged zeolites. J. Catal., 1977, 46(2):100-108.
    [20] Scherzer J, Ritter R E. Ion-Exchanged Ultrastable Y Zeolites. 3. Gas Oil Cracking over Rare Earth-Exchanged Ultrastable Y Zeolites. Ind. Eng. Chem. Prod. Res. Dev., 1978, 17(3): 219-223.
    [21] Magee J S, Cormier W E, Woltermann G M. Octane catalysts contain special sieves.Oil&Gas J., 1985, 83(21): 59-64.
    [22]刘从华,邓友全,高雄厚,孙书红,丁伟。稀土和磷改性对裂化催化剂反应性能的影响,分子催化,2004,18(2):115-120。
    [23] Puente de la G, Sedran U. Chem E ng S ci. 2000, 55 (4):759-765.
    [24]路勇,何鸣元,宋家庆,舒兴田。氢转移反应与催化裂化汽油质量。炼油设计,1999, 29 (6) :5-12。
    [25]张剑秋,田辉平,达志坚,范中碧,汪燮卿。磷改性Y型分子筛的氢转移性能考察。石油学报(石油加工) ,2002,18 (3) :70-74。
    [26]孙书红,庞新梅,郑淑琴,张忠东。稀土超稳Y性分子筛催化裂化催化剂的研究,石油炼制与化工,2001,32(6):25-27。
    [27]甘俊,丁泳,于向真,罗一斌。含磷的骨架富硅超稳Y分子筛(PSRY)的研究。工业催化,2000,8(3):27-29。
    [28]沈志虹,潘惠芳,徐春生,赵业文,邬晓凤。磷对烃类催化裂化催化剂表面酸性及抗炭性能的影响.石油大学学报,1994,18(2):86-89。
    [29] Ward J W. The nature of active sites on zeolites: XII. The acidity and catalytic activity of transition metal Y zeolites. J. Catal., 1971, 22(2): 237-244.
    [30] Chen B Y ,He M Y, Da Z J. The role of manganese contained zeolite catalysts in tuning bi /mono-molecular reaction pathway selectivity in FCC process. In 14th lnternational Zeolite Conference. Cape Town: 2004. 2302-2308.
    [31]刘从华,丁伟,庞新梅,张忠东,高雄厚。新型催化裂化催化剂的开发及工业应用。石化技术与应用,2007,25(5):435-441。
    [32]胡荣泽。评多孔体的表征。粉体技术,1995,1(4):26-33。
    [33]张占涛,王黎,张睿,张丽。煤的孔隙结构与反应性关系的研究进展。煤炭转化,2005,28(4):62-68。
    [34] Sing K. S. W., Everett D. H.,Haul R. A. W. et al., Pure & Appl. Chem. , 1985, 57(4): 603.
    [35] Rouquerol J.,Avnir D.,Fairbridge C. W.,et al., Pure & Appl. Chem. [J], 1994, 66(8): 1739.
    [36]何余生,李忠,奚红霞,郭建光,夏启斌。气固吸附等温线的研究进展。离子交换与吸附,2004,20(4):376– 384。
    [37]崔举庆,侯庆锋,陆现彩。吸附聚丙烯酸对纳米碳管表面特征影响的研究。化学学报,2004(15):1447-1450。
    [38]严继民,张启元。吸附与凝聚固体的表面与孔。北京:科学出版社,1978。
    [39]董卫国,徐静,黄俊鹏。氮气吸附法表征棉纤维的孔结构。纺织学报,2007,28(6):5-7。
    [40]苗建国,李小斌,龚辉辉。多品种氧化铝的研究进展。轻金属,1997,8:12-16。
    [41]刘昌华,廖海达,龙翔云。So-Gel水热偶合法制备纳米AlOOH的晶相转变。中南民族大学学报(自然科学版),2004,23 (1) :18-20。
    [42]王秀峰,王永兰,金志浩。水热法制备陶瓷材料研究进展。硅酸盐通报,1995,3:25-30。
    [43]陈悦,李东旭。压汞法测定材料孔结构的误差分析。硅酸盐通报,2006,(25)4:198-207。
    [44]刘玉新。颗粒材料孔结构形态的测量和表征,2000,(6)10:186-189。
    [45]靳春玲,张志海,刘应杰,胡典明,孔渝华。应用于工业催化剂表征中的几种表面分析技术。山西化工,26(6):34-36。
    [46]李金芝。分子筛催化新进展。石油化工。1995,25 (4) :229-305。
    [47]闵恩泽。工业催化剂的研制与开发。北京:中国石化出版社,1997. 295。
    [48]李大东。炼油催化剂发展趋势。石油炼制与化工,1994,25 (2) :7-14。
    [49]陈祖庇。裂化催化剂发展新趋势。石油炼制与化工,1995,26 (5) :14-21。
    [50] Blackmond D q Goodwin J q Jr, Lester J E. In Situ Fourier Transform Infrared Spectroscopy Study of HY Cracking Catalysts: Coke Formation and The Nature of the Active Sites. J. Catal., 1982, 78(1): 34-43.
    [51] Rajagopalan K, Peters A W. Effect of Exchange Cations and Silica to Alumina Ratio of Faujasite on Coke Selectivity During Fluid Catalytic Cracking. J. Catal., 1987, 106(2): 410-416.
    [52] den Hollander M A, Makkee M, Moulijn J A. Coke formation in fluid catalytic cracking studied with the microriser. Catal. Today, 1998, 46(1): 27-35.
    [53] Corma A, Wojciechowski B W. The Chemistry of Catalytic Cracking. Catal. Rev.-Sci. Eng., 1985, 27(1): 29-150.
    [54] Gumming K A, Wojciechowski B W. Hydrogen Transfer, Coke Formation, and Catalyst Decay and Their Role in the Chain Mechanism of Catalytic Cracking. Catal. Rev.-Sci. Eng., 1996, 38(1): 101-157.
    [55] Groenenboom C J. Zeolite and Matrix Structures and Their Role in Catalytic Cracking Stud. Surf. Sci. Catal., 1989, 46: 99-113.
    [56] Corma A, Orchilles A V Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 2000, 35-36: 21-30.
    [57] Scherzer J. Octane-Enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Catal. Rev.-Sci. Eng., 1989, 31(3): 215-354.
    [58] harding R H, Peters A W, Nee J R D. New developments in FCC catalyst technology.Appl. Catal. A: Gen., 2001, 221(1-2): 389-396.
    [59] Nace D M. Catalytic Cracking over Crystalline Aluminosilicates. Ind. Eng. Chem. Prod. Res. Dev., 1970, 9(2): 203-209.
    [60] O'Connor P, Imhof P, Yanik S J. Catalyst assembly technology in FCC. Part I: A review of the concept, history and developments. Stud. Surf. Sci. Catal., 2001, 134:299-310.
    [61] Kuehler C W, Jonker R, Imhof P, Yanik S J, O'Connor P. Catalyst assembly technology in FCC. Part II:The influence of fresh and contaminant-affected catalyst structure on FCCperformance. Stud. Surf. Sci. Catal., 2001,134: 311-332.
    [62] Donk S V, Janssen A H, Bitter J H, de Jong K P. Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catal. Rev., 2003, 45(2): 297-319.
    [63] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use inCatalysis. Chem. Rev., 1997, 97(6): 2373-2419.
    [64] Corma A. Application of zeolites in fluid catalytic cracking and related processes. Stud. Surf. Sci. Catal., 1989, 49: 49-67.
    [65] Sato K, Nishimura Y, Shimada H. Preparation and activity evaluation of Y zeolites with or without mesoporosity. Catal. Lett., 1999, 60(1-2): 83-87.
    [66] Habib E T, JR, Zhao X, Yaluris G, Cheng W C, Boock L T. Advance in Fluid Catalytic Cracking. Catalytic Science Series, 2002, 3: 105-130.
    [67] Mann R. Fluid catalytic cracking: some recent developments in catalyst particle design and unit hardware. Catal. Today, 1993, 1 (4):509-528.
    [68] Cheng W C, Kim C} Peters A W , Zhao X, Rajagopalan K. Environnnental Fluid Catalytic Cracking Technology. Catal.Rev.-Sci. Eng., 1998, 40(1-2): 39-79.
    [69] Ritter, R.E., et al., Davison Catalagram, 1984, 68:1.
    [70]祁彦平,陈胜利,董鹏,徐克琪,申宝剑。新型孔结构渣油催化裂化催化剂,燃料化学学报。2006,34(6):685-689。
    [71] LUSSIER J. Acid2reacted metakaolin catalyst and catalyst support compositions [P]. U S : 4843052, 1989206227.
    [72] LAU Lam Yiu, DA ANSELMO Silva Santos, EUGEN IO Roncolatto Rodolfo, ANDRE Torem Marcelo, ED ISSON Morgado , PAUL O’Connor, Cracking catalyst composition[ P ]. U. S. Patent: 165083, 2002206229.
    [73]刘从华,潘仲良,唐荣荣,张永明,原所良。含有改性高岭土的烃类裂化催化剂。CN: 1186105,1998207201。
    [74]杨建,许明德,范中碧。高岭土的改性方法。CN: 1195014, 1998210207。
    [75]庞新梅,孙书红,赵连鸿,丁伟。一种催化裂化催化剂及其制备方法。CN: 1436835, 2003208220。
    [76]王玉红,姚桂莲。X射线荧光分析法在地质分析领域应用新进展。西部探矿工程,2008 ,6 :128-131。
    [77]赵晨。X射线荧光光谱仪原理与应用探讨。电子质量,2007,2:4-7。
    [78]刘玉兵,赵鹰立,游良俭。X射线荧光分析技术及相关标准介绍。水泥,2004,12:43-46。
    [79]吉昂,卓尚军。X射线荧光光谱分析。分析试验室,2001,20(4):3-8。
    [80]卓尚军,吉昂。X射线荧光光谱分析。分析试验室,2003,22(3):2-8。
    [81]陶光仪。X射线荧光光谱分析。分析试验室,1997,16(3):94-100。
    [82]刁桂年。X射线荧光光谱分析的新进展。分析仪器,2003,3:1-5。
    [83]楼蔓藤。X射线荧光光谱分析方法标准化的进展。岩矿测试,2002,121(11):2-8。
    [84]赵合琴,郑先君,魏丽芳,魏明宝。X射线荧光光谱分析中样品制备方法评述,河南化工,2006,23(10):8-11。
    [85]吴秀珍,佟瑶彩,周树侠,王秀萍。X-射线荧光光谱法测定催化剂中硫含量。化工科技,2002,10(3):35-37。
    [86]高萍,顾若晶。X-射线荧光光谱法测定加氢催化剂中钼和钴。理化检验-化学分册,2004,40(2):86-88。
    [87]高萍,顾若晶。X-射线荧光光谱法测定重整催化剂中铂、铕、铈。理化检验-化学分册,2002,21(6):80-82。
    [88]高萍,顾若晶。加氢催化剂中稀土及钼、钴含量的X-射线荧光光谱测定方法的研究。光谱学与光谱分析, 2003,23(13):579-582。
    [89]刘树文。X射线荧光光谱法测定催化剂中的铁、镍、铜、钒。化学分析计量,2004,13(2):31-33。
    [90]刘树文,文玲,严方。X荧光光谱法测定催化剂中的镍和钼,分析科学学报,2003, 19(5):466-467。
    [91]姜永基,董松林,王亚红。X射线荧光法测定裂化催化剂中MgO含量。石化技术与应用,2002,20(5):349-351。
    [92]王斯晗,包世星,李文杰。X射线荧光光谱测定裂化平衡催化剂中污染金属含量。黑龙江石油化工,1996,2:39-41。
    [93]陈锁志,纪建芬,李建栋。用X射线荧光光谱法测定硅铝催化剂中6种金属含量。黑龙江石油化工,1994,4:34-38。
    [94]阎晓辉。X射线荧光光谱法分析精对苯二甲酸装置钴、锰催化剂混合液中的钴和锰。河南化工,2002,5:35-36。
    [95]张月平。X射线荧光光谱法快速半定量分析催化剂中的稀土总量。分析仪器,2005,1:33-35。
    [96]张月平。X射线荧光光谱法测定催化剂中轻稀土氧化物的含量。石油化工,2003,32(2):156-160
    [97]王刚。XRF法测定高岭土中的主次量元素。石化技术与应用,2003,21 (6):441-443。
    [98]包生祥,王志红,荣丽梅。催化剂原料高岭土的XRF分析。光谱学与光谱分析,1998,118(16):739-741。
    [99]包生祥。高岭土精矿的X-射线荧光分析。分析化学,1996,24(5):619-620。
    [1] Haden W L, Microspherical zeolitic cracking catalyst. USP at Appl. US 3657154. 1972.
    [2] Haden W L, Method for making a faujasite-type crystalline zeolite. USP at Appl, US 3338672. 1967.
    [3] Haden W L. Method for producing faujasite-type zeolites. USP at Appl, US 3391994. 1968 .
    [4] Dight L B. High zeolite content FCC catalysts and method for Making them. Eur P at Appl, EP 369629.1990.
    [5]刘从华,邓友全,庞新梅等。含碱改性高岭土裂化催化剂的表征和反应性能。工业催化,2003:11(7):42-45。
    [6]刘从华,高雄厚,邓友全等。石嘴山高岭土制备裂化催化剂应用研究。石化技术与应用,2002:20(3):157-161。
    [7]刘从华,高雄厚,张忠东等。改性高岭土性能研究(I -酸性和催化活性)。石油炼制与化工,1999:30(4) :32.-34。
    [8]刘从华,马燕青,张忠东等。酸碱改性高岭土性能的研究(II比表面积和孔结构)。石油炼制与化工,1994:30(5):30-34。
    [9] Brindley etal., Journal of The American Ceranic Society , 1959:42(7).
    [10]高沸石含量原位晶化催化材料的合成及应用,兰州石化公司石油化工研究院内部资料。
    [11]陈锁志,李文杰,王斯晗。催化剂孔结构参数的测定。黑龙江石油化工,1,43-45。
    [12]张和平,黄南贵。微孔材料的吸附分析方法研究。中国粉体技术,2005,11(4):89-95。
    [13]郑淑琴,豆祥辉,段长艳,徐贤伦。高岭土原位晶化复合催化材料的合成和表征。中国非金属矿工业导刊,2004,4:32-33。
    [14]郑淑琴,高雄厚,张海涛,徐贤伦。磷对高岭土微球原位晶化的影响。中国非金属矿工业导刊,2005,2:26-27。
    [15]郑淑琴,蒋文庆,索继栓。高岭土型FCC催化剂的特性研究。工业催化,2003,11(5):49-53。
    [16]豆祥辉,张玉丽,郑淑琴。裂化催化剂专用高岭土开发和改性。江苏化工,2005,33(4):3-6。
    [17]张永明。高岭土晶体结构与裂化催化剂性能关系研究。石油炼制与化工,1997, 28 (5) : 51-56。
    [18]郑淑琴,常小平。高岭土原位晶化体系中焙烧微球特性研究。非金属矿,2002,25 (6) :5-7。
    [19]郑淑琴,张玉丽,谭争国,孙书红,高雄厚,徐贤伦。贵州高岭土的组成和性质与其FCC催化剂性能的研究。精细石油化工,2006, 23 (2) :41-45。
    [20]郑淑琴,羊建国,高雄厚。贵州高岭土原位晶化制备全白土型FCC催化剂的探索性研究。中国非金属矿工业导刊,2003,(2) ;27-29。
    [21]郑淑琴,蒋文庆,索继栓。高岭土FCC催化剂的特性研究。工业催化,2003,11 (5) : 49-52。
    [22]王雪静,张甲敏,李晓波,方克明。高岭土和煅烧高岭土的微观结构研究。中国非金属矿工业导刊,2007,5:18-20。
    [23]曹德光,苏达根,杨占印。偏高岭石的微观结构与键合反应能力。矿物学报,2004,24(4):366-368。
    [24] Gregg S J , Sing K SW著.吸附、比表面与孔隙率.高敬宗等译.北京:化学工业出版社, 1989:118-161。
    [25]徐如人等。沸石分子筛的结构与合成。吉林:吉林大学出版社,1987。
    [26] Brown, et al. Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making [P]. USP: 4493902, 1985-01-15.
    [27]刘希尧等著,工业催化剂分析测试表征,烃加工出版社。
    [28] J.R.安德森等著,工业催化剂表征与测试,烃加工出版社。
    [1]于冀勇,陆善祥,陈辉。磷铝铁改性HZSM-5分子筛用于增产丙烯助剂的试验。炼油技术与工程,2007,37(12):24-26。
    [2]车延超,刘春岩,李丹东,曹祖宾,赵德智。催化裂化汽油在磷改性Ni/ZSM-5催化剂上的降烯烃工艺研究。工业催化,2004,12(4):13-17.
    [3]谢传欣,宁顺康。磷改性β沸石作为活性组分对FCC催化剂性能的影响.石油化工,2002,31(9):691-695.
    [4]沈志虹,付玉梅,蒋明,李淑云。化学改性对催化裂化催化剂氢转移性能的影响,催化学报,2004,25(3) :227-230.
    [5]郑淑琴,王志峰,孙书红,高雄厚,徐贤伦。磷改性高岭土型流化催化裂化催化剂的表面酸性及裂化性能的研究,现代化工,2005,25(10):33-36。
    [6]谢荣厚,高新华,邬时海。X射线荧光光谱分析进展。冶金分析,1997,17 (2) :34-38。
    [7]马光祖,袁汉章。X射线荧光光谱分析。分析试验室,1989,8 (4) :62-74。
    [8]陈锁志。用X射线荧光光谱法测定润滑油和添加剂中钡、钙、磷、硅、锌。中国理学XRF用户。
    [9]高萍,顾若晶。X-射线荧光光谱法测定加氢催化剂中钼和钴。理化检验-化学分册,2004,40(2):86-88。
    [10]高萍,顾若晶。X-射线荧光光谱法测定重整催化剂中铂、铕、铈。理化检验-化学分册,2002,21(6):80-82。
    [11]高萍,顾若晶。加氢催化剂中稀土及钼、钴含量的X-射线荧光光谱测定方法的研究,光谱学与光谱分析, 2 0 0 3,23(13):579-582。
    [12]刘树文。X射线荧光光谱法测定催化剂中的铁、镍、铜、钒。化学分析计量,2004,13(2):31-33。
    [13]刘从华,邓友全,高雄厚,等.稀土和磷改性对裂化催化剂反应性能的影响,分子催化,2004,18(2):115-120
    [14]张长庚. JY38S型ICP光谱仪在混合稀土分析中的应用,湖南冶金,1996,1(1):1-4。
    [15]谷胜,杨芃远,李冰等.稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究Ⅱ.钐基体对其他稀土元素的光谱干扰,光谱学与光谱分析,1997,17(2):88-94。
    [16]吕海涛,尹西竹,丁采真,牟世芬。离子色谱法测定球墨铸铁中的稀土含量。冶金分析,2001,21(1):14-16。
    [17]张淑英,卜赛斌,崔凤辉。XRF光谱法测定混合稀土中15个稀土分量。冶金分析,2000,20(5):22-25。
    [18]张乔,童晓旻。铬铁矿砂中主要成分的X射线荧光光谱法测定。铸造,2002,51(7):442-445。
    [19]苗国玉,董中华,胡树戈。硅铝铁合金粉末直接压片法X荧光分析研究。理化检验-化学分册,2000,36(10):447-448。
    [20] Buemi A, Pompilio M. Effects of ginding during sample preparation on the XRF analysis of a basaltic rock. Ann Chim(Rome), 1993,83(7/8): 285.
    [21]吉昂,卓尚军。X射线荧光光谱分析。分析试验室,2001,20(4):3-8。
    [22]卓尚军,吉昂。X射线荧光光谱分析。分析试验室,2003,22(3):2-8。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700