子洲地区洲3井—榆80井井区山_2~3段储层特征与气水分布关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子洲气田是鄂尔多斯盆地的主力气藏之一,其山2气藏截止2005年底已探明天然气储量922.6×108m3,随着勘探开发的深入,在大面积开发天然气的同时,也在该区出现了大量的产水井,子洲地区共出产水井31口,这些井产水量差别悬殊,最小产水井产水0.3m3/d,最大产水井产水46.6m3/d。这些产水井严重地影响了该地区的开发进程和开发效果。特别是对开发井的部署带来极大的风险,这就要求找出研究区的气水分布规律,预测研究区的气水相对分布区,为提高布井成功率、高效建产提供必要的前提条件。因此,及时开展该地区储层特征及气水分布规律的研究就显得尤为重要。
     本文从山23段砂体分布和储层特征入手;以高分辨率层序地层分析为手段研究山23段小层对比及连通情况;在应用测井数据交汇图法和正态分布法对单井储层流体识别的基础上;对气水分布剖面进行研究;并结合地层水的水化学资料;分析得出了工区的气水分布规律和控制因素,指出了有利勘探区块。主要取得了以下认识和成果:
     1.山23段底部有稳定的砂体发育,欠发育中上部砂体,在平行河道走向上砂体连通性较好。山23段储层孔隙度和渗透率低,属低孔低渗的致密砂岩储层,孔隙类型以粒间孔、粒间溶孔为主,孔隙结构较好。以Ⅱ类和Ⅲ类储层为主,在层间、层内和平面上表现出强烈的储层非均质性。
     2.山23段划分为一个中期基准面旋回层序,包含了3个短期旋回层序。其中SSC2和SSC3在研究区内普遍发育,个别井缺失SSC1短期旋回层序,SSC1短期旋回层序的地层岩性主要以太原组顶部的黑色海相泥岩或灰岩为主,主要起到海陆相过渡时期的填平补齐作用。山23段共包括两种层序结构类型,分别是向上“变深”非对称型旋回层序(A型)和对称型旋回层序(C型),并细分为4种亚类型。从层序地层格架中发现山23段存在两套砂体,分别发育在SSC2和SSC3短期旋回中,研究区北部SSC3短期旋回欠发育,两套砂体在中部洲35-28井-榆64井区叠置在一起。
     3.山23段地层水为CaCl2型,属于地层古残留水,并识别出了两类地层水:边(底)水(矿化度>100g/L)、透镜体水(矿化度<80g/L)。产边(底)水的井主要位于构造低部位,产水量大,产微气;产透镜体水的井主要位于含气区内部及构造相对高部位或主砂体带的边部,产水量小,并伴随气产出。
     4.受构造特征和沉积相带展布的影响,研究区山23段砂体呈南北向的条带状分布,北部砂体较厚,南部相对较薄;主砂体带内存在南北两个较大的天然气富集区;每个天然气富集区的南部、西南部构造低部位均存在边水区,导致研究区内存在两个气水界面;主砂体东侧受储层物性影响,为高含水的致密砂层,测试一般不产流体或产流体极少,主要为干层。
     5.经研究确定榆48井区附近砂体较厚、有较好的储层物性,远离气水界面,是有利的勘探区域。
Zi-Zhou gas field is a main gas-production zone in the Ordos Basin and the S2 gas field has a proven gas reserve of 922.6×108m3 by 2005. With the exploratory development, as the gas production developed in large area, a great many water production wells appeared in this field. There were totally 31 water production wells and their production varied from 0.3m3/d to 46.6m3/d. These wells had badly influenced the development effects and development process of this area, especially increased the risk of the disposition of exploitation wells. So we should find the gas-water distribution pattern and forecast the gas-water distribution in the researching area as to enhance the deployment success ratio and to build up higher deliverability. So it is very important to study the reservoir characteristics and gas-water distribution pattern of this area immediately.
     The paper researches the distribution of the sand-body and the characteristics of reservoir in Shan-2 member. Member comparisons and connectivity is studied based on the high resolution sequence stratigraphy methods; the fluid recognition in single well is studied by the methods of cross plot and normal distribution using well log data; we have also studied the gas-water distribution in profile; with data of hydrochemical water information, we have acknowledged the pattern and controlling factors of gas-water distribution and we have pointed out the favorable exploration targets. The results are:
     1. The basal sand body of S23 is steady, middle–head of the sand body is understable and the sand body along the river channel is well connected. The S23 reservoir belongs to low porosity and permeability reservoir; its pore types are mainly intergranular pore and intergranular dissolved pores and the pore structure is good. The reservoir are mainly composed of typeⅡ,typeⅢ. The reservoir conduct intensely leterogeneity in plane and internal.
     2. The S23 is divided into a middle base-level cycle which contains three short-term base-level cycles. All of the short-term base-level cycles, the SSC2 and SSC3 cycles are widespread in the area and the SSC1 cycle is lost in several wells. The lithology of the SSC1 cycle is mainly black marine mudstone or marine limestone of the top of Taiyuan formation, these stones were used to fill and level up during the period of continental oceanic facies varied. The 3rd member of Shan-2 formation contained two types of sequence structures which are asymmetrical cycle sequences (Type A) and symmetrical cycles sequences (Type C). The sequence structures are divided into 4 sub-types. From the study of the high resolution stratigraphy frameworks we know that there are two sand bodies in the S23. The sand bodies grow in the SSC2 and SSC3 short-term cycles separately. The SSC3 short-term cycle is under-developed in the north of the research area. The sand bodies superposes from Zhou 35-28 to Yu64 well fields in the middle of the research area.
     3. S23 water is CaCl2 and belongs to residual water in the formation. We have identified two types of formation water: edge and bottom water (salinity>100g/L) and lenticular water (salinity<80g/L). The wells that produce edge and bottom water are mainly in the downstructure location and yield much water and little gas; the wells that produce lenticular water are in the relatively higher location or at the edge of the main sand-body and they yield a little water with some incidental gas.
     4. Affected by the structural feature and the distribution of sedimentary facies, the sand body of S23 in the research area ranges from north to south in a banded shape, the northern part of the sand body is thicker while the southern part is thinner; two gas-rich zones are located in the southern and northern part of the main sand body; in each of the gas-rich zones, edge water zones exist in the south and southwest downstructure location, which forms two gas-water interfaces in the research area; the east part of the main sand body is affected by the reservoir characteristics, it is tight sand with high water-cut and usually produces little or no fluid when testing, it is mainly dry bed.
     5. Research results demonstrate that the sand body near Y48 is thicker、with good reservoir properties and far away gas-water surface , and it is the advantageous exploration area.
引文
[1]张福礼等.鄂尔多斯盆地天然气地质[M].北京:地质出版社,1994.
    [2]吴崇筠等.中国含油气盆地沉积学[M].石油工业出版社,1992.
    [3]杨俊杰等.中国天然气地质学(卷4) [M].北京:石油工业出版社,1996.
    [4]邓礼正.鄂尔多斯盆地上古生界储层物性影响因素[J].成都理工大学学报:自然科学版, 2003,30(3):270-272.
    [5]包洪平,刘宝宪,白海峰,等.鄂尔多斯盆地上古生界石英砂岩的储集特性及地层分布特征[J].西北大学学报:自然科学版,2006,36(增刊):43-47.
    [6]长庆油田分公司勘探开发研究院,张明禄、孙小平等.榆林-神木气田沉积相及储层评价研究(内部科研报告),2003.
    [7]庞军刚,李文厚等.陕北子洲地区二叠纪山西组沉积环境[J].煤田地质与勘探,2006,34(5):5-8.
    [8]郭英海,刘焕杰,权彪,等.鄂尔多斯盆地晚古生代沉积体系及古地理演化[J].沉积学报, 1998,16(3):44-51.
    [9]庞军刚,李文厚,郭艳琴,等.陕北子洲地区二叠纪山西组沉积环境[J].煤田地质与勘探, 2006,34 (5):5-8.
    [10]李士祥,胡明毅,李霞.榆林气田山西组2段砂岩成岩作用及孔隙演化[J].天然气地球科学, 2005,16(2):200-205.
    [11]魏新善,张清,刘新社,等.鄂尔多斯盆地东部山西组山23亚段海相浅水三角洲沉积特征及其意义[J].西北大学学报:自然科学版,2006,36(增刊):38-42.
    [12]龙建勋.鄂尔多斯盆地子洲地区下二叠统山西组二段地层水成因及气水分布规律研究[D].成都:成都理工大学能源学院,2008.
    [13] Galloway W. E. & Hobday D. K., 1983, Terrigenous clastic depositional systems[J], Springer-Verlag New York
    [14] Galeazzi J S. Structural and stratigraphic evolution of the westernMalvinas basin, Argentina[ J ]. AAPG Bulletin, 1998, 82 ( 4) :596– 636.
    [15] Marion G G. Generation and expulsion of petroleum and gas form Almond formation coal, Greater Green River Basin, Wyoming[ J ]. AAPG Bulletin, 1997, 81 (1) : 62– 81
    [16] Miall A. D., 1985, Architectural-element analysis: applied to fluvial deposits. In: Recognition of fluvial depositional systems and their resource potential (ed by Flores) [J], R. S. P. M. short course No. 9. Copyright, SEPM
    [17]王允诚.油层物理学[M],石油工业出版社,1993.
    [18]庞宏磊.苏里格气田盒8气藏储层特征及地层水的地质成因研究[D].成都:成都理工大学能源学院,2008.
    [19]邓宏文.美国层序地层研究中的新学派-高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [20]郑荣才,柯光明,文华国,高红灿.高分辨率层序分析在河流相砂体等时对比中的应用[J].成都理工大学学报,2004,31(6):641-647.
    [21] Cross T A , Lessenger M A. Sediment Volume Partitioning:Rationale for Stratigraphic Model Evaluation and High2Resolution Stratigraphic Correlation[R].Accepted for Publication in Norwegian
    [22] Cross T A. Stratigraphic controls on reservoir attributes in continental strata[J ] . EarthScience Frontier , 2000 ,7 (4) :322~350
    [23] Vail P R. Seismic Stratigraphy Interpretation Using Sequence Stratigraphy. Part 1 : Seismic Stratigraphy Interpretation Procedure[A].In:Bally A W, ed. Atlas of Seismic Stratigraphy[C] . American Association of Petroleum Geologists , Studies in Geology , 1987 , 27 :1~10
    [24]王秀艳,周凤鸣,王文先.浅谈利用正态分布法识别水淹层[J].测井技术,1999,23(1):29-32.
    [25]李鹏翔,张萌物.正态分布法判断油水层方法的改进及软件设计[J].江汉石油学院学报,1995,17(1):41-44.
    [26]马宏宇.塔河油田碳酸盐岩流体性质识别研究[D].长春:吉林大学地球探测与信息技术学院,2005.
    [27]付金华,魏新善,任军峰,周焕顺.鄂尔多斯盆地天然气勘探形势与发展前景[J],石油学报,2006.27(6):1-4.
    [28]赵林,夏新宇,戴金星,等.鄂尔多斯盆地上古生界天然气富集的主要控制因素[J].石油试验地质, 2000,22(2):136-139.
    [29]张文昭.鄂尔多斯盆地大油气田形成的主要地质规律[J].中国海上油气,1999,13(6): 391-395.
    [30]杨满平等.佳县-子洲地区山西组沉积相研究[J].西南石油学院学报,2000,22(2):477-479.
    [31]何义中,陈洪德.鄂尔多斯盆地中部石炭-二叠系两类三角洲沉积机制探讨[J].石油与天然气地质,2001,(1):24-35.
    [32]邓宏文,王洪亮,李熙喆.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-184.
    [33]郑荣才.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理工学院学报,2000,27(3):241-244.
    [34]郑荣才.陕北志丹三角洲长6油层组高分辨率层序分析与等时对比[J].沉积学报,2002,20(1):92-100.
    [35]郑荣才,彭军,吴朝荣.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001,19(2):249-245.
    [36]梁积伟,李文厚.鄂尔多斯盆地东北部山西组高分辨层序地层学研究[J].沉积学报2006,24(2):251-258.
    [37]刘锐娥,李文厚,张春林,等.鄂尔多斯盆地东部山2高产储层特征及主控因素[J].西北大学学报:自然科学版,2006,36(增刊):38-42.
    [38]毕林锐,毛志强,肖承文,等.正态分布法在油(气)水层判别上的应用[J].石油天然气学报,2006,28(3):76-78.
    [39]李明成编著.石油与天然气运移[M].石油工业出版社,1994.
    [40] Magara K.Compaction and fluid migration,Practical petroleum geology[M].Ameterdam: Elsevier Scientific Publishing Company[M].1978.1~319.
    [41] Magoon L B and Dow W G.The petroleum system:from source rock to trap[A].AAPG Memoir,1994,60.
    [42] Michele M T. Scaled physical model of secondary oil migration[ J ]. AAPG Bulletin, 1995, 79 (1) : 19– 29
    [43] Hunt J M.Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments.AAPG Bulletin,1990,74(1):1~l2
    [44]李良,袁志样,惠宽洋等.鄂尔多斯盆地北部上古生界天然气聚集规律[J].石油与天然气地质,2000,21(3):268-271.
    [45]袁志祥,陈洪德,陈英毅.鄂尔多斯盆地塔巴庙地区上古生界天然气富集高产特征[J].成都理工大学学报(自然科学版),2005,32(6):604-608.
    [46]刘方槐,等.油气田水文地质学原理[M].石油工业出版社,1991.
    [47] A. G.柯林斯著.油田水地球化学,林文庄,王秉忱译[M] .北京:石油工业出版社,1984.
    [48]李贤庆,侯读杰等.地层流体化学成分与天然气藏的关系初探-以鄂尔多斯盆地中部大气田为例[J].断块油气田,2002,9(5):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700