基于双频变换器的单相光伏发电系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着作为能源主流的一次能源的日渐减少和能源需求的日益增长,新能源发电将在未来能源结构中占据越来越高的比例,新能源发电技术的研究和应用具有重要的战略地位,其中光伏发电是最具潜力的战略替代发电技术。
     高频化是变换器的发展趋势,能提高系统响应速度和功率密度,但高频化所造成的开关损耗加剧,致使变换器效率严重下降,电磁干扰增大。双频变换理念兼顾“高频”和“效率”,目前已发展设计出多种双频变换器,而且拓扑结构灵活,可控性高,特别适合中型、大型功率场合的应用。
     本文对双频变换器在光伏发电系统中的应用进行理论分析和仿真,提高光伏并网发电系统的功率密度、转换效率、动态响应速度和稳态精度。
     首先确定双频单相光伏发电系统的两级式系统结构,前级为Boost升压变换器保证稳定的直流链输出,后级为三桥臂双频Buck逆变器将光伏阵列输出电能并入电网,然后对光伏发电系统各环节进行分析研究。选用工程用单指数模型对光伏阵列建模,模型输出随光照强度和温度变化,能够模拟实际光伏阵列的输出情况。对Boost变换器的工作状态进行分析,确定参数设计各原则,并建立Boost变换器小信号模型,对该非最小相位系统采用电压反馈外环和峰值电流内环的双环控制策略,能够确保稳定的直流链电压输出。根据光伏并网发电系统要求,采用三桥臂双频Buck逆变器,分析其工作模式,并设计逆变器参数,针对高频单元和低频单元的不同职能,区别性的分别采用瞬时电流反馈控制和电流滞环控制策略。
     基于双频光伏发电系统,针对光伏发电系统输出变化范围较大的特殊性,设计可实现变拓扑的光伏发电系统。前级采用四开关新型Buck-Boost变换器,针对不同的光伏阵列输出电压实现升压、降压、直接输出三种模式的灵活控制;后级采用基于双频逆变器的变拓扑逆变器,根据输送功率的大小变化,改变工作单元、工作频率和滤波电感值,提高系统控制和功率转换的灵活性。
Accompany with reduction and growing desire of first energy which is the main power currently, new energy power generation will stand a more important way in the future energy structure, which make its research and application more strategically vital. In all kinds of new energies, photovoltaic (PV) power generation is the most potential substitute.
     High-frequency operation could improve system responding speed and power density, so it is a trend of converter development. In the same while, it brings more switch wastage that takes down efficiency and increase electromagnetic interference. Double-frequency converting theory gives attention to both high-frequency and efficiency, and derives series of double-frequency converters which have flexible topology and high control performance, suitable in application for middle and high power transform.
     The thesis researches on application of double-frequency converter in PV power generation system, analyses double-frequency theory and do simulation for test, finally proves it could improve the system power density, converting efficiency, dynamic responding speed and steady precision.
     Firstly, the double-frequency single-phase PV system construction is confirmed and designed as two-stage system. The front stage applies Boost converter to make a steady DC voltage output; while the latter stage design a three-bridge double-frequency Buck inverter to transform power to the grid. Then, the paper researches on every part of the PV generation system. Simulation of PV cells are based on engineering model, which is capable to simulate real PV cell output under changing light intensity and temperature. The paper analyses the working state of Boost converter, supplies the design method of parameters, founds small-signal model, design double-circle control strategy to maintain a steady DC voltage output. According to requirement of PV grid-connected generation system, three-bridge double-frequency Buck inverter is chosen. After operating mode analysis and parameters design, controlling strategies are respectively run on high-frequency unit and low-frequency unit, instantaneous current feedback for former, hysteresis current control for latter.
     PV power generation system outputs energy in a huge variable range caused by environment change, the paper designs variable topology of PV system based on the designed double-frequency PV grid-connected generation system. For front stage, a new Buck-Boost converter with four switches is designed to implement voltage increase, decrease or direct transmission due to different PV cell output voltage, which makes the control more flexible. For the latter stage, variable inverter topology is developed based on double-frequency inverter, which could change working unit, switch frequency and filter inductance to fulfill transformed power variety, that also improve flexibility of system control and power transform.
引文
[1] Zobaa A F, cecati C. A comprehensive review on distributed Power generation[C]. International Symposium on SPEEDAM, Taormina, Italy, 2006: 514 -518.
    [2]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005:1-8.
    [3]宗文春.我国太阳能发电现状分析及存在问题[EB/01]. http://photics.net/bbs/ thread-81427-1-1.html, 2009.
    [4]邝少平. 2009年光伏产业发展报告[EB/01]. http://www.ceh.com.cn/ceh/yjbg/ 20091026797.doc, 2009.
    [5]国家发展和改革委员会,可再生能源发展“十一五“规划[EB/01]. http://www.sdpc.gov.cn/ nyjt/nyzywx/W020080318390887398136.pdf , 2007.
    [6]赵朝会.光伏发电技术的研究现状和应用前景[J].上海电机学院学报, 2008, 02: 104-109.
    [7] H M S Hussein, G E Ahmad, H H El-Ghetany. Performance evaluation of photovoltaic modules at different tilt angles and orientations [J]. Energy conversion and management, 2004, 45:2441-2452.
    [8]岑长岸,张淼,王丽琼.光伏阵列的组态优化控制[J].控制理论与应用, 2008, 02: 364-366.
    [9]周雒维,杜雄,付志红,罗全明.双频Buck变换器[J].中国电机工程学报, 2006, 06: 68- 72.
    [10]杨水涛,丁新平,张帆,钱照明. Z-源逆变器在光伏发电系统中的应用[J].中国电机工程学报, 2008, 17: 112-118.
    [11] Peng F Z.Z-Source Inverter [J]. IEEE Transactions on Industry Application. 2003, 39:504-516.
    [12] Hisaichi Irie, Shoshi Takashita.Utility interactive inverter using immittance converter [J]. T.IEE Japan, 2000, 03: 410-416.
    [13]屈克庆,侯继红,沈骏,陈国呈. LCL导抗变换器在并网逆变中的应用研究[J].电气传动自动化, 2005, 06: 34-28.
    [14]日本太阳光发电协会.太阳能光伏发电系统的设计与施工[M].北京:科学出版社, 2006.
    [15] Soeren Baekhoej Kjaer, John K. Pedersen, Frede Blaabjerg. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2005, 41: 1292-1306.
    [16]陈维,沈辉,邓幼俊,舒杰.光伏发电系统中逆变器技术应用及展望[J].电力电子技术, 2006, 40: 130-133.
    [17]赵为.太阳能光伏并网发电系统的研究[D].合肥工业大学, 2003优秀硕士论文.
    [18]张超,王章权,蒋燕君,何湘宁.无差拍控制在光伏并网发电系统中的应用[J].电力电子技术, 2007, 41: 3-5.
    [19]张强,刘建政,李国杰.单相光伏并网逆变器瞬时电流检测与补偿控制[J].电力系统自动化, 2007, 31: 50-54.
    [20] Meza C, Biel D, Martinez J, Guinjoan F. Boost-buck inverter variable structure control for grid-connected photovoltaic systems [C]. IEEE International Symposium on Circuits and Systems, 2005: 723-728.
    [21] Premrudeepreechacharn S, Poapornsawan T. Fuzzy logic control of predictive current control for grid-connected single phase inverter [C]. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000: 1715-1718.
    [22]董密,罗安.光伏并网发电系统中逆变器的设计与控制方法[J].电力系统自动化, 2006, 30: 97-102.
    [23] Phani Kiranmai K S, Veerachary M. Single-stage power conversion system for the PV MPPT application[C]. IEEE international conference on industrial technology, Mumbai, India, 2006: 2125-2130.
    [24]张超,何湘宁.短路电流结合扰动观测法在光伏发电最大功率点跟踪控制中的应用[J].中国电机工程学报, 2006, 26: 98-102.
    [25] Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observe maximum power point tracking method [J]. IEEE Transactions on Power Electronics, 2005, 20: 963-973.
    [26] Trishan Esram, Patrick L. Chapman. Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22: 439-449.
    [27]陈照章,张新亮,王秦伟.基于Fibonacci算法的最大功率追踪法研究[J].电力电子技术, 2008, 05: 53-55.
    [28]张淼,吴捷,侯聪玲,李金鹏.自适应算法在光伏发电系统最大功率追踪中的应用[J].电力电子技术, 2005, 02: 50-52.
    [29]张淼,吴捷.滑模技术在PV最大功率追踪系统中的应用[J].电工技术学报, 2005, 03: 90-93.
    [30]张超,何湘宁.非对称模糊PID控制在光伏发电MPPT中的应用[J].电工技术学报, 2005, 10: 72-75.
    [31] Bury W E, Czarkowski D, Dzieza J. Variable output bidirectional dc–dc converter[C]. Proc.of 9th EPE, Austria, 2001: 4-12.
    [32] Sanjaya Maniktala,开关电源设计与优化[M],电子工业出版社, 2006.
    [33]为您的电源选择正确的工作频率[EB/01]. http://tech.dianyuan.com/index.php?action= tech_article_show&id=1695, 2008.
    [34]张占松,蔡宣三.开关电源的原理与设计(修订版)[M].北京:电子工业出版社, 2004.
    [35]蒋燕君.单相两级式光伏并网功率变换器的研究[D].浙江大学, 2006优秀硕士论文.
    [36]蔡宣三.开关电源的频域分析与综合(Ⅱ)[J].电源世界, 2002, 10: 56-63.
    [37]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社, 2001.
    [38]杜雄.电力谐波有源补偿新方法的研究[D].重庆大学, 2005优秀博士论文.
    [39]蔡宣三,龚绍文.高频功率电子学[M].北京:中国水利水电出版社, 2009.
    [40] Mitter, C.S Device considerations for high current, low voltage synchronous buck regulators [C]. WESCON/97. Conference Proceeding, 1997, 10: 281-288.
    [41]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报, 2005, 17: 1248-1251.
    [42]苏建徽,余世杰等.硅太阳电池工程用数学模型[J].太阳能学报, 2001, 04: 409-412.
    [43]徐林,崔容强等.对太阳电池I-V曲线进行拟合的数论方法[J].太阳能学报, 2000, 02: 160-164.
    [44]江小涛,吴麟章等.硅太阳电池数学模型[J].武汉科技学院学报. 2005, 08: 5-8.
    [45]李炜,朱新坚,曹广益.基于一种改进BP神经网络光伏电池建模[J].计算机仿真, 2006, 07: 228-231.
    [46]张卫平.开关变换器的建模与控制[M].中国电力出版社. 2006.
    [47] Luowei Zhou, Xiong Du, Quanming Luo. A novel buck converter topology with double frequency[C]. Industrial Technology, IEEE International Conference. 2005, 12: 1069- 1074.
    [48]杜雄,周雒维,侯世英等.一类基本双频DC-DC变换器[J].电工技术学报, 2006, 21: 24-28.
    [49]罗全明,周雒维,卢伟国等.双频BUCK变换器的性能分析及设计[J].电工技术学报, 2008, 05: 56-61.
    [50]杜雄,周雒维,罗全明等.双频Buck变换器参数对系统性能的影响[J].电工技术学报, 2005, 11: 49-55.
    [51]罗全明,杜雄,周雒维等.双频Buck变换器工作模式[J].中国工技术学报, 2008, 11: 72-78.
    [52]钟顺洪.双频控制开关功率放大器[D].重庆大学, 2005优秀硕士论文.
    [53]王娟,周雒维,杜雄.双频双Buck换流器有功无功调节的控制算法及仿真[J].重庆大学学报(自然科学版), 2006, 12: 45-47.
    [54]杜雄,周雒维,侯世英等.双频三相功率因数校正[J].中国电机工程学报, 2006, 11:109-114.
    [55]向涛峰.双频逆变器供电的异步电机调速系统研究[D].重庆大学, 2007优秀硕士论文.
    [56] Kang B J, Liaw C M, Robust hysteresis current-controlled PWM scheme with fixed switching frequency [J]. IEE Proeeedings-Electri Power Applications, 200l, 148: 503 -512.
    [57]任小永,阮新波,李明秋,钱海,陈乾宏.双沿调制的四开关Buck-Boost变换器[J].中国电机工程学报, 2009, 29: 16-23.
    [58] Kerim A, Ferrieux J.P, Roudet J, et al. An improved design of a dc-dc converter using an integrated magnetic component [J]. Applied Power Electronics Conference and Exposition, Twenty-Third Annual IEEE. 2008, 02: 614-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700