丹酚酸B与银杏叶提取物EGb761的药理作用比较及其相关的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Comparison of Pharmacological Effects of Salvianolic Acid B with Those of Ginkgo Biloba Extract (EGb761) & Studies on Associated Mechanisms of Action
  • 作者:刘长锁
  • 论文级别:博士
  • 学科专业名称:药理学
  • 学位年度:2006
  • 导师:陈乃宏 ; 张均田
  • 学科代码:100706
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2006-05-01
摘要
随着人们生活水平的提高和医疗条件的改善,世界上许多国家的人均寿命有所延长,因而老龄人群的比例逐渐增大,随之而来的就是神经退行性疾病的发病率逐年上升。神经退行性疾病分为慢性和急性两类,由于其发病机制复杂,发病原因至今尚不清楚。阿尔茨海默病(AD)是一种最常见的慢性神经退行性疾病,以渐进性的记忆力和认知功能障碍为主要特征;而脑缺血为急性神经退行性疾病,常见的临床表现为神经功能缺损。这两种疾病的病理改变虽然不同,但存在某些共同的神经损伤机制,如氧化应激、钙稳态失调、兴奋性氨基酸毒性等。
     丹参水溶性提取物总丹酚酸和银杏叶提取物EGb761都是从天然植物中提取的有效成分,从上世纪开始,国内外学者对这这两种提取物的活性成分和药理作用进行了多年的研究,并得到了许多单体化合物。药理学研究表明,两种提取物的药理作用存在许多类似之处,其中最突出的就是抗氧化作用。近20年来,EGb761已成为国际上防治心脑血管疾病首选的天然药物,在欧洲一些国家已被批准用于AD的治疗。研发神经保护新药被列为我国科技攻关的重点项目,也越来越受到国际科学界和医药界的重视。但由于技术相对落后,缺乏量化指标和较完善的实验模型等,我国目前尚无国际上公认的明确有神经保护作用的中药。
     丹酚酸B(SalB)是总丹酚酸中含量最高的单体组分(化学结构见下图),本研究组对其进行了多年的研究,发现它有多方面的药理活性,并且对缺血缺氧引起的神经细胞损伤有明确的保护作用。因此,本研究工作利用多种神经损伤模型,对SalB和EGb761的药理作用进行比较,以评价SalB的神经保护作用,并对SalB可能的作用机制进行了初步的探讨。
The average age of our population continues to increase as the result of advances in diagnosis and treatment of cardiovascular disease, diabetes and cancers. Unfortunately, a progressive increase in the numbers of persons with age-related neurodegenerative diseases has accompanied the increase in lifespan. Neurodegenerative diseases can be divided into two general categories: acute and chronic. Alzheimer's disease (AD) is a chronic neurodegenerative disorder of the central nervous system associated with progressive cognitive and memory loss. Molecular hallmarks of the disease are characterized by extracellular deposition of the amyloid β peptide (Aβ) in senile plaques, the appearance of intracellular neurofibrillary tangles (NFTs), cholinergic deficit, extensive neuronal loss and synaptic changes in the cerebral cortex and hippocampus and other areas of brain essential for cognitive and memory functions. Ischemic stroke, an acute neurodegenerative disorder, manifests a range of neurological deficits that are related to death of neurons supplied by the affected blood vessels; stroke kills approximately 200,000 Americans each year, is the third leading cause of death worldwide, and is a major cause of disability in the elderly. Although the histopathological features observed in the two diseases mentioned above are different, and different populations of neurons in the brain die in each disorder, many aspects of the biochemical cascades that result in neuronal death are shared, such as oxidative stress, calcium dysregulation, excitotoxicity, and
引文
1. Stohs SJ. The role of free radicals in toxicity and disease. J Basic Clin Physiol Pharmacol, 1995; 6: 205-28.
    2. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature, 2000; 408: 239-47.
    3. Block G. The data support a role for antioxidants in reducing cancer risk. Nutr Rev, 1992; 50: 207-13.
    4. Li J, He LY, Song WZ. Separation and quantitative determination of seven aqueous depsides in Salvia miltiorrhiza by HPTLC scanning. Acta Pharm Sin, 1993; 28: 543-7.
    5. Li LN. Water soluble active components of Salvia Miltiorrhiza and related plants. J Chin Pharm Sci, 1997; 6: 57-64.
    6. Du GH, Oiu Y, Zhang JT. Salvianolic acid B protects the memory functions??against transient cerebral ischemia in mice. J Asian Nat Prod Res, 2000; 2: 145-52.
    7. Chen YH, Du GH, Zhang JT. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin, 2000; 21: 463-6.
    8. Tang MK, Zhang JT. Salvianolic acid B inhibits fibril formation and neurotoxicity of amyloid beta-protein in vitro. Acta Pharmacol Sin, 2001; 22: 380-4.
    9. Kleijnen J, Knipschild P. Ginkgo biloba. Lancet, 1992; 340: 1136-9.
    10. Smith JV, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol, 2004; 64: 465-72.
    11. Pincemail J, Dupuis M, Nasr C, Hans P, Haag-Berrurier M, Anton R, et al. Superoxide anion scavenging effect and superoxide dismutase activity of Ginkgo biloba extract. Experientia, 1989; 45: 708-12.
    12. Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardes-Albert M. Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol, 1994; 234: 462-75.
    13. Floyd RA, Lewis CA, Wong PK. High-pressure liquid chromatography-electrochemical detection of oxygen free radicals. Methods Enzymol, 1984; 105: 231-7.
    14. Zang LY, Cosma G, Gardner H, Vallyathan V. Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta, 1998; 1425: 469-77.
    15. Zang LY, Stone K, Pryor WA. Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radic Biol Med, 1995; 19: 161-7.
    16. Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun, 1972; 46: 849-54.
    17. Liu Y, Zhang JT. Direct measurement of oxy-radicals using HPLC-ECD. Acta Pharm Sin, 1993; 28: 416-21.
    18. Gnojkowski J, Baer-Dubowska W, Klimek D, Chmiel J. Effect of toluidines on drug metabolizing enzymes in rat liver, kidney and lung. Toxicology, 1984; 32: 335-42.19. Huang YS, Zhang JT. Antioxidative effect of three water-soluble components isolated from Salvia miltiorrhiza in vitro. Acta Pharm Sin, 1992; 27: 96-100.
    20. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 1979; 95: 351-8.
    21. Mattson MP, Barger SW, Begley JG, Mark RJ. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol, 1995; 46: 187-216.
    22. McCord JM, Day ED Jr. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett, 1978; 86: 139-42.
    23. Wills ED. Lipid peroxide formation in microsomes. General considerations. Biochem J, 1969; 113: 315-24.
    24. Barth SA, Inselmann G, Engemann R, Heidemann HT. Influences of Ginkgo biloba on cyclosporin A induced lipid peroxidation in human liver microsomes in comparison to vitamin E, glutathione and N-acetylcysteine. Biochem Pharmacol, 1991; 41: 1521-6.
    25. Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H. Free radical-independent protection by nerve growth factor and Bcl-2 of PC12 cells from hydrogen peroxide-triggered apoptosis. J Biochem, 1996; 120: 540-6.
    26. Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell, 1994; 77: 817-27.
    27. Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology, 1995; 104: 129-40.
    28. Wei T, Ni Y, Hou J, Chen C, Zhao B, Xin W. Hydrogen peroxide-induced oxidative damage and apoptosis in cerebellar granule cells: protection by Ginkgo biloba extract. Pharmacol Res, 2000; 41: 427-33.
    29. Seif-El-Nasr M, El-Fattah AA. Lipid peroxide, phospholipids, glutathione levels and superoxide dismutase activity in rat brain after ischaemia: effect of ginkgo biloba extract. Pharmacol Res, 1995; 32: 273-8.
    30. Kose K, Dogan P. Lipoperoxidation induced by hydrogen peroxide in human??erythrocyte membranes. 2. Comparison of the antioxidant effect of Ginkgo biloba extract (EGb 761) with those of water-soluble and lipid-soluble antioxidants. J Int Med Res, 1995; 23: 9-18.1. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev, 2001; 81: 741-766.
    2. Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc NatIAcad Sci USA, 1994; 91(25): 12243-12247.
    3. Pike CJ, Burdick D, Walencewicz AJ, et al. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci, 1993; 13(4): 1676-1687.
    4. Hensley K, Carney JM, Mattson MP, et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc NatlAcad Sci USA, 1994; 91(8): 3270-3274.
    5. Goodman Y, Steiner MR, Steiner SM, et al. Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res, 1994; 654(1): 171-176.
    6. Subramaniam R, Koppal T, Green M, et al. The free radical antioxidant vitamin E protects cortical synaptosomal membranes from amyloid beta-peptide(25-35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer's disease. Neurochem Res, 1998; 23(11): 1403-1410.
    7. Pappolla MA, Sos M, Omar RA, et al. Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci, 1997; 17(5): 1683-1690.
    8. Zeng H, Chen Q, Zhao B. Genistein ameliorates beta-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med, 2004; 36(2): 180-188.
    9. Li J, He LY, Song WZ. Separation and quantitative determination of seven??aqueous depsides in Salvia miltiorrhiza by HPTLC scanning. Acta Pharm Sin (药 学学报), 1993; 28(7): 543-547.
    10. Du GH, Qiu Y, Zhang JT. Salvianolic acid B protects the memory functions against transient cerebral ischemia in mice. J Asian Nat Prod Res, 2000; 2(2): 145-152.
    11. Chen YH, Du GH, Zhang JT. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin, 2000; 21(5): 463-466.
    12. Yao Z, Drieu K, Papadopoulos V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid-derived diffusible neurotoxic ligands. Brain Res, 2001; 889(1-2): 181-190.
    13. Luo Y, Smith JV, Paramasivam V, et al. Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA, 2002; 99(19): 12197-12202.
    14. Pappolla M, Bozner P, Soto C, et al. Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem, 1998; 273(13): 7185-7188.
    15. Ding Y, He LR, Cao KJ, et al. Apoptosis of human carcinoma of mouth floor KB cells and multidrug resistant KBv200 cells induced by azide methyl anthraquinone derivative. Acta Pharm Sin (药学学报), 2005; 40(1): 22-26.
    16. LeBel CP, Ali SF, McKee M, Bondy SC. Organometal-induced increases in oxygen reactive species: the potential of 2',7'-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol. 1990; 104:17-24.
    17. Zhang ZX, Zahner GE, Roman GC, et al. Studies on the prevalence of subtype of dementia in Beijing, Xi'an, Shanghai and Chengdu. Chin J Contemp Neurol Neurosurg (中国现代神经疾病杂志), 2005; 5(3): 156-157.
    18. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002; 297(5580): 353-356.
    19. Howlett DR, Perry AE, Godfrey F, et al. Inhibition of fibril formation in beta-amyloid peptide by a novel series of benzofurans. Biochem J. 1999; 340 ( Pt??1): 283-9.
    20. Ono K, Hasegawa K, Naiki H, et al. Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. J Neurosci Res, 2004; 75(6): 742-750.
    21. Tomiyama T, Shoji A, Kataoka K, et al. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J Biol Chem, 1996; 271(12): 6839-6844.
    22. Pincemail J, Dupuis M, Nasr C, Hans P, Haag-Berrurier M, Anton R, et al. Superoxide anion scavenging effect and superoxide dismutase activity of Ginkgo biloba extract. Experientia. 1989; 45: 708-712.
    23. Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardes-Albert M. Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol. 1994; 234: 462-475.
    24. Li LN. Water soluble active components of Salvia Miltiorrhiza and related plants. J Chin Pharm Sci, 1997; 6(2): 57-64.
    25. Luo Y. Ginkgo biloba neuroprotection: Therapeutic implications in Alzheimer's disease. J Alzheimers Dis. 2001; 3(4): 401-407.1. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997; 278(5337): 412-9.
    2. Cummings JL, Vinters HV, Cole GM, Khachaturian ZS. Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology. 1998; 51(1 Suppl 1): S2-17
    3. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991; 251(4994): 675-8.
    4. Haystead TA, Sim AT, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG.. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature. 1989; 337(6202): 78-81.
    5. Arendt T, Holzer M, Bruckner MK, Janke C, Gartner U. The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer's disease. Neuroscience. 1998; 85(4): 1337-40.6. Traore A, Ruiz S, Baudrimont I, Sanni A, Dano SD, Guarigues P, Narbonne JF, Creppy EE. Combined effects of okadaic acid and cadmium on lipid peroxidation and DNA bases modifications (m5dC and 8-(OH)-dG) in Caco-2 cells. Arch Toxicol. 2000; 74(2): 79-84.
    7. Chen KD, Lai MT, Cho JH, Chen LY, Lai YK. Activation of p38 mitogen-activated protein kinase and mitochondrial Ca(2+)-mediated oxidative stress are essential for the enhanced expression of grp78 induced by the protein phosphatase inhibitors okadaic acid and calyculin A. J Cell Biochem. 2000; 76(4): 585-95.
    8. Du GH, Qiu Y, Zhang JT. Salvianolic acid B protects the memory functions against transient cerebral ischemia in mice. J Asian Nat Prod Res. 2000; 2(2): 145-52.
    9. Smith JV, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol. 2004; 64(4): 465-72.
    10. Wang YP, Li XT, Liu SJ, Zhou XW, Wang XC, Wang JZ. Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions. Acta Pharmacol Sin. 2004; 25(3): 276-80.
    11. Benitez-King G, Tunez I, Bellon A, Ortiz GG, Anton-Tay F. Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Exp Neurol. 2003; 182(1): 151-9.
    12. Zeng H, Chen Q, Zhao B. Genistein ameliorates beta-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med. 2004; 36(2): 180-8.
    13. LeBel CP, Ali SF, McKee M, Bondy SC. Organometal-induced increases in oxygen reactive species: the potential of 2',7'-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol. 1990; 104:17-24.
    14. Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem. 1993; 268(32): 24374-84.15. Khatoon S, Grundke-Iqbal I, Iqbal K. Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem. 1992; 59(2): 750-3.
    16. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem. 1995; 270(2): 823-9.
    17. Wang JZ, Grundke-Iqbal I, Iqbal K. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer's disease. Nat Med. 1996; 2(8): 850-2.
    18. Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA. 1994; 91(12): 5710-4.
    19. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y. Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron. 1993; 10(6): 1151-60.
    20. Lilius L, Froelich Fabre S, Basun H, Forsell C, Axelman K, Mattila K, Andreadis A, Viitanen M, Winblad B, Fratiglioni L, Lannfelt L. Tau gene polymorphisms and apolipoprotein E epsilon4 may interact to increase risk for Alzheimer's disease. Neurosci Lett. 1999; 277(1): 29-32.
    21. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001; 24: 1121-59.
    22. Peng Y, Wang Xl. Tau 蛋白与阿尔采末病.中国药理学通报. 2004; 20(6): 601-5.
    23. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999; 402(6762): 615-22.
    24. Yamamoto H, Hasegawa M, Ono T, Tashima K, Ihara Y, Miyamoto E. Dephosphorylation of fetal-tau and paired helical filaments-tau by protein phosphatases 1 and 2A and calcineurin. J Biochem (Tokyo). 1995; 118(6):??1224-31.
    25. Wang JZ, Gong CX, Grundke Iqbal I. Dissociantion of Alzheimer paired helical filaments by protein phosphatases生物化学与分子生物学报. 1999; 15(1): 123-7.
    26. Li YK, Chen XC, Zhu YG, Peng XS, Zeng YQ, Sheng J, Huang TW. Ginsenoside Rb1 attenuates okadaic acid-induced Tau protein hyperphosphorylation in rat hippocampal neurons. Sheng Li Xue Bao. 2005; 57(2): 154-60.
    27. Leira F, Cabado AG, Vieytes MR, Roman Y, Alfonso A, Botana LM, Yasumoto T, Malaguti C, Rossini GP. Characterization of F-actin depolymerization as a major toxic event induced by pectenotoxin-6 in neuroblastoma cells. Biochem Pharmacol. 2002; 63(11): 1979-88.1. Rukenstein A, Rydel RE, Greene LA. Multiple agents rescue PC12 cells from serum-free cell death by translation-and transcription-independent mechanisms. J Neurosci. 1991; 11(8): 2552-63.
    2. Navas P, Fernandez-Ayala DM, Martin SF, Lopez-Lluch G, De Caboa R, Rodriguez-Aguilera JC, Villalba JM. Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells. Free Radic Res. 2002; 36(4): 369-74.
    3. Andoh T, Lee SY, Chiueh CC. Preconditioning regulation of bcl-2 and p66shc by human NOS1 enhances tolerance to oxidative stress. FASEB J. 2000; 14(14): 2144-6.
    4. Smith JV, Burdick AJ, Golik P, Khan I, Wallace D, Luo Y. Anti-apoptotic properties of Ginkgo biloba extract EGb 761 in differentiated PC12 cells. Cell Mol Biol (Noisy-le-grand). 2002; 48(6): 699-707.
    5. Andoh T, Chock PB, Chiueh CC. The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells. J Biol Chem. 2002; 277(12): 9655-60.
    6. Pandey S, Lopez C, Jammu A. Oxidative stress and activation of proteasome protease during serum deprivation-induced apoptosis in rat hepatoma cells; inhibition of cell death by melatonin. Apoptosis. 2003; 8(5): 497-508.
    7. Shimazawa M, Chikamatsu S, Morimoto N, Mishima S, Nagai H, Hara H. Neuroprotection by Brazilian Green Propolis against In vitro and In vivo Ischemic Neuronal Damage. Evid Based Complement Alternat Med. 2005; 2(2): 201-207.1.郭静,蒲咏梅,张东才.钙离子信号与细胞凋亡.生物物埋学锻.2005;21(1):1-18
    2. Zhivotovsky B, Cedervall B, Jiang S, Nicotera P, Orrenius S. Involvement of Ca2+ in the formation of high molecular weight DNA fragments in thymocyte apoptosis. Biochem Biophys Res Commun. 1994; 202(1): 120-7.
    3. Kobayashi N, Hiromatsu K, Matsuzaki G, Harada M, Matsumoto Y, Nomoto K, Yoshikai Y. A sustained increase of cytosolic Ca2+ in gammadelta T cells triggered by co-stimulation via TCR/CD3 and LFA-1. Cell Calcium. 1997; 22(6): 421-30.
    4.朱琦,陈国强,沈志祥.活性氧和细胞凋亡.癌症1999;18:增刊
    5. Ren de C, Du GH, Zhang JT. Protective effect of ginkgo biloba extract on??endothelial cell against damage induced by oxidative stress. J Cardiovasc Pharmacol. 2002; 40(6): 809-14.
    6. Szabo. ME, Droy-Lefaix MT, Doly M, Braquet P. Ischaemia-and reperfusion-induced Na+, K+, Ca2+ and Mg2+ shifts in rat retina: effects of two free radical scavengers, SOD and EGB 761. Exp Eye Res. 1992; 55(1): 39-45.
    7.张均田.老年痴呆的发病机制及治疗策略。见:张均田,主编.神经药理学研究进展.北京:人民卫生出版社,2002.16-29.
    8. Mark R J, Hensley K, Butterfield DA, Mattson MP. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. JNeurosci. 1995; 15(9): 6239-49.
    9. Ray SK, Fidan M, Nowak MW, Wilford GG, Hogan EL, Banik NL. Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res. 2000; 852(2): 326-34.
    10. Das A, Garner DP, Del Re AM, Woodward J J, Kumar DM, Agarwal N, Banik NL, Ray SK. Calpeptin provides functional neuroprotection to rat retinal ganglion cells following Ca(2+) influx. Brain Res. 2006; 1084(1): 146-57.1. Chong ZZ, Kang JQ, Maiese K. Essential cellular regulatory elements of oxidative stress in early and late phases of apoptosis in the central nervous system. Antioxid Redox Signal. 2004; 6(2): 277-87.
    2. Behl C, Moosmann B. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol Chem. 2002; 383(3-4): 521-36.
    3. Oyama Y, Chikahisa L, Ueha T, Kanemaru K, Noda K. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Res. 1996; 712(2): 349-52.
    4. Calapai G, Crupi A, Firenzuoli F, Marciano MC, Squadrito F, Inferrera G, Parisi A, Rizzo A, Crisafulli C, Fiore A, Caputi AP. Neuroprotective effects of Ginkgo biloba extract in brain ischemia are mediated by inhibition of nitric oxide synthesis. Life Sci. 2000; 67(22): 2673-83.5. Chen YH, Du GH, Zhang JT. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin 2000; 21: 463-6.
    6. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1): 84-91.
    7. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986; 17(3): 472-6.
    8. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986; 17(6): 1304-8.
    9.吴俊芳,王洁,张均田.总丹酚酸对局灶性脑缺血损伤及抗氧化酶活性的影响.中国新药杂志,2000;9 (7):452—454.
    10. Emaus RK, Grunwald R, Lemasters JJ. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986; 850(3): 436-48.
    11. Xu Z, Xu RX, Liu BS, et al. Time window characteristics of cultured rat hippocampal rat hippocampal neurons subjected to ischemia and reperfusion. Chin J Traumatol, 2005, 8(3): 179-182.
    12. Honde HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann NYAcad Sci, 2005, 1047: 248-258.
    13. Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis, 1999, 42(3): 209-216.
    14. Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, Epstein CA. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci. 1998; 18(20): 8292-9.
    15. Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of??superoxide radicals. Stroke. 2002; 33(3): 809-15.
    16. Shimizu S, Nagayama T, Jin KL, Zhu L, Loeffert JE, Watkins SC, Graham SH, Simon RP. bcl-2 Antisense treatment prevents induction of tolerance to focal ischemia in the rat brain. J Cereb Blood Flow Metab. 2001; 21(3): 233-43.
    17.季凤清,岳旭,郭艳茹,等.缺氧复氧时体外培养的神经细胞一氧化氮合酶的动态表达及银杏叶提取物的调节作用.神经解剖杂志,2001:17(4):315.
    18. Eckert A, Keil U, Kressmann S, Schindowski K, Leutner S, Leutz S, Muller WE. Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry. 2003; 36 Suppl 1: S15-23.
    19. Eckert A, Keil U, Scherping I, Hauptmann S, Muller WE. Stabilization of Mitochondrial Membrane Potential and Improvement of Neuronal Energy Metabolism by Ginkgo Biloba Extract EGb 761. Ann N YAcad Sci. 2005; 1056: 474-85.
    20. Du GH, Qiu Y, Zhang JT. Salvianolic acid B protects the memory functions against transient cerebral ischemia in mice. J Asian Nat Prod Res 2000; 2: 145-52.1. Xiong W, Pestell R, Rosner MR. Role of cyclins in neuronal differentiation of immortalized hippocampal cells. Mol Cell Biol. 1997; 17(11): 6585-97.
    2. Nguyen MD, Mushynski WE, Julien JP. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 2002; 9(12): 1294-306.
    3. Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E. p35 is a neural-specific??regulatory subunit of cyclin-dependent kinase 5. Nature. 1994; 371(6496): 419-23.
    4. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000; 405(6784): 360-4.
    5. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999; 402(6762): 615-22.
    6.王英鹏,宋俊峰,饶志仁.CDK5与神经退行性疾病.生理科学进展.2004,35(1):45-48.
    7. MacManus A, Ramsden M, Murray M, Henderson Z, Pearson HA, Campbell VA. Enhancement of (45)Ca(2+) influx and voltage-dependent Ca(2+) channel activity by beta-amyloid-(1-40) in rat cortical synaptosomes and cultured cortical neurons. Modulation by the proinflammatory cytokine interleukin-lbeta. J Biol Chem. 2000; 275(7): 4713-8.
    8. Rashidian J, Iyirhiaro G, Aleyasin H, Rios M, Vincent I, Callaghan S, Bland R J, Slack RS, During M J, Park DS. Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc Natl Acad Sci USA. 2005; 102(39): 14080-5.
    9. Town T, Zolton J, Shaffner R, Schnell B, Crescentini R, Wu Y, Zeng J, DelleDonne A, Obregon D, Tan J, Mullan M. p35/Cdk5 pathway mediates soluble amyloid-beta peptide-induced tau phosphorylation in vitro. J Neurosci Res. 2002; 69(3): 362-72.
    10. Markgraf CG, Velayo NL, Johnson MP, McCarty DR, Medhi S, Koehl JR, Chmielewski PA, Linnik MD. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke. 1998; 29(1): 152-8
    11.董高翔 冯亦璞.丁基苯酞对大鼠局部脑缺血再灌注损伤皮层钙凋磷酸酶和钙蛋白酶活性的影响.药学学报.2000;35(10):790-792.1.杜冠华,张均田。丹参水溶性有效成分—丹酚酸研究进展。基础医学与临床,2000;20:10—14
    2. Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol. 2005; 75(3): 207-46.
    3. Bozner P, Grishko V, LeDoux SP, Wilson GL, Chyan YC, Pappolla MA. The amyloid beta protein induces oxidative damage of mitochondrial DNA. J Neuropathol Exp NeuroL 1997; 56(12): 1356-62.
    4. Akama KT, Albanese C, Pestell RG, Van Eldik LJ. Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci USA. 1998; 95(10): 5795-800.
    5. Palmer AM, Burns MA. Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer's disease. Brain Res. 1994; 645(1-2): 338-42.
    6.夏茜 孙雨华 马卫东 卫俊峰,自由基与脑缺血再灌流损伤,临床荟萃,2000;(15)24.1139-1140
    7.张均田.老年痴呆的发病机制及治疗策略.见:张均田,主编.神经药理学研究进展.北京:人民卫生出版社,2002.16-29.
    8.李莉,刘耕陶。丹酚酸A对大鼠脑突触体和线粒体氧应激损伤的体外保护作用。中国药理学与毒理学杂志,1998;12 (4):275—279
    9.李莉,刘耕陶。五味子酚和丹酚酸A对过氧化氢引起大鼠脑神经细胞凋亡的保护作用。中国药理学与毒理学杂志,1996;10(2):92。
    10. Tang MK, Zhang JT. Salvianolic acid B inhibits fibril formation and neurotoxicity of amyloid beta-protein in vitro. Acta Pharmacol Sin, 2001; 22:??380-4.
    11.冯征,张均田.丹酚酸B对β-淀粉蛋白介导原代培养皮层神经元毒性的保护作用.药学学报,2000,35(12):881-884.
    12. Tang M, Zhang J. Prostate apoptosis response-4 involved in the protective effect of salvianolic acid B against amyloid beta peptide-induced damage in PC12 cells. Jpn J Pharmacol. 2002; 88(4): 422-7.
    13.任德成,杜冠华,张均田。总丹酚酸对脑缺血再灌注损伤的保护作用。中国药理学通报,2002,18(3):275-277。
    14.吴俊芳,王洁,张均田。总丹酚酸对局灶性脑缺血损伤及抗氧化酶活性的影响。中国新药杂志,2000,9 (7):452—454。
    15. Tang MK, Ren DC, Zhang JT, Du GH. Effect of salvianolic acids from Radix Salviae miltiorrhizae on regional cerebral blood flow and platelet aggregation in rats. Phytomedicine. 2002; 9(5): 405-9.
    16. Du GH, Qiu Y, Zhang JT. Salvianolic acid B protects the memory functions against transient cerebral ischemia in mice. J Asian Nat Prod Res, 2000; 2(2): 145-152.
    17.杜冠华,张均田。丹酚酸A对小鼠脑缺血再灌注致学习记忆功能障碍的改善作用及作用机制。药学学报,1995;30(3):184—190。
    18. Chen YH, Du GH, Zhang JT. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin, 2000; 21(5): 463-466.
    19.邱彦 芮耀诚 张黎 李铁军 张卫东。血管内皮生长因子对大鼠脑血管通透性的影响及丹酚酸B对其抑制作用。解放军药学学报,2002;18(1):17-18
    20. Wang XJ, Xu JX. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci Res. 2005; 51(2): 129-38.
    21.李治淮,杜冠华,张均田等。丹酚酸A对高血压大鼠钠钾ATP酶活性的作用。滨州医学院学报,1996;19 (4):315—318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700