茶多酚对冈田酸诱导大鼠海马神经元Tau蛋白过度磷酸化的作用及其对学习记忆的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:阿尔茨海默病(Alzheimer’s disease, AD)目前是老年人群痴呆的主要原因,随着人口老龄化的加剧,全球发病人数日益增多。由于AD严重影响患者的生活质量并给社会和家庭带来沉重的负担,因此对于该病的防治显得尤为重要。AD的临床表现主要为进行性智能减退,病理特征为老年斑(SP)、神经元纤维缠结(NFTs)、海马锥体细胞颗粒空泡变性和神经元的缺失。SP的形成与β-样淀粉蛋白(Aβ)过量产生和沉积有关。到目前为止,它们与神经细胞退行性变性之间的关系尚不十分清楚。NFT的主要成分是过度磷酸化的Tau蛋白,它聚积在退行性变性神经元的胞体并与AD患者临床痴呆程度正相关[1],且Tau蛋白的病理改变出现在痴呆症状之前并独立于Aβ异常[2]。Tau蛋白是一种微管相关蛋白,主要存在于神经元,具有促进微管组装和维持微管稳定的功能。在AD患者脑中Tau蛋白丧失了正常生理功能,从而缠结形成NFTs。已知有多种蛋白磷酸酯酶,如PP-2A,PP-l参与Tau蛋白的AD样异常磷酸化。
     茶多酚(tea polyphenol, TP)是从绿茶中提取出来的一种多酚类化合物,其在B-环和C-环上的酸性羟基有很强的供氢能力,是天然的抗氧化剂。其抗氧化能力明显优于强氧化剂维生素C、维生素E[3]。大量研究已证实,TP在抑菌、抗病毒、抑制肿瘤、防治心血管疾病等方面具有良好功效,同时还具有益肝保肾作用。且有文献证实,TP在体外培养的海马神经元中能够减轻Aβ诱导的神经毒性[4],而长期给小鼠EGCG(表没食子儿茶素没食子酸酯,茶多酚的主要成分)可以诱导海马APP水平的下降[5],此外TP还能够抑制Aβ原纤维的形成、延长和脱稳定性[6]。但是TP是否对于AD中Tau蛋白的过度磷酸化具有保护作用,目前尚无文献报道。本实验通过冈田酸(okadaic acid, OA)诱导大鼠海马神经元Tau蛋白过度磷酸化实验模型,研究茶多酚对OA致海马神经元Tau蛋白过度磷酸化的作用及其大鼠学习记忆的影响。
     方法:选用冈田酸(okadaid acid, OA)来诱导Tau蛋白过度磷酸化。健康雄性SD大鼠共60只,体重250-300g。将大鼠随机分为6组,每组10只。包括正常对照组(normal),溶媒对照组(vehicle-control),OA损伤组(OA model)和100 mg/kg、250 mg/kg和625mg/kg不同浓度茶多酚预处理组(TP)。除正常对照组大鼠外,其它各组大鼠分别灌胃给予等量生理盐水或不同浓度TP。灌胃至第21天时对各组大鼠进行空间学习与记忆能力训练和行为学测试。至第27天时,向右海马背侧(前囟后3.8mm,中线旁开2.5mm,深度3mm)定向注射OA 1.5μL(0.473μg,10% DMSO),于10min内缓慢注射,留针5min。溶媒对照组施以等体积10%DMSO。OA注射后第二天即第28天时,进行水迷宫考试,考试后处死大鼠,收集标本。制作大鼠右侧脑组织石蜡切片,免疫组织化学染色观察脑组织中海马处磷酸化的Tau蛋白表达分布情况。Western blot方法检测脑海马内磷酸化的Tau蛋白的表达并进行定量分析。结果:
     1.TP降低OA致海马神经元过度磷酸化Tau蛋白的表达免疫组化结果显示, OA损伤组大鼠海马神经元胞体和突起的Tau-pSer396表达较正常对照组和溶媒对照组大鼠海马区显著增多,呈现棕黄色染色,TP预处理组的Tau-pSer396阳性表达较OA损伤组减少,其中以250mg/kg和625mg/kg剂量组的作用较明显。Western blot实验进一步证实免疫组化的结果,定量分析表明,OA损伤组Tau-pSer396的表达量比正常组和溶媒对照组增加,而TP预处理各组则比OA损伤组降低,且250 mg/kg和625 mg/kg剂量组降低明显,具有统计学意义(p<0.01)。
     2.TP改善OA致大鼠空间记忆障碍
     随着训练次数的增加,各组大鼠逃避潜伏期逐渐缩短,在给予OA注射前TP预处理的三个组大鼠与OA损伤组大鼠相比其逃避潜伏期差异有显著性(p<0.01)。TP预处理的三个组和OA损伤组大鼠在给予OA前后穿越平台的次数经Kruskal-Wallis H检验有显著性差异(p<0.05)。在总时间一定的情况下,OA损伤组大鼠给予OA后,在目的象限停留时间及在目的象限游泳距离占总游泳距离的百分比显著降低(p<0.01),而TP预处理的三个组大鼠在OA注射后在目的象限停留时间及在目的象限游泳距离占总游泳距离的百分比无显著变化。此外,OA注射后,TP预处理的三个组大鼠较OA损伤组大鼠,在目的象限停留时间及在目的象限游泳距离占总游泳距离的百分比显著增加(p<0.01)。上述结果表明,冈田酸(OA)使得大鼠空间记忆出现障碍,表现为穿越平台次数减少,目的象限停留时间缩短,在目的象限游泳距离占总游泳距离的百分比减少;而茶多酚(TP)预处理能够改善大鼠记忆障碍,增强学习能力,即缩短逃避潜伏期,增加大鼠穿越平台的次数及在目的象限停留的时间,增加在目的象限游泳距离占总游泳距离的百分比并表现出一定的搜索策略。
     结论:
     冈田酸能够诱导大鼠海马神经元Tau蛋白过度磷酸化并引起大鼠空间记忆损伤,茶多酚能够减轻Tau蛋白的过度磷酸化,改善大鼠记忆损伤状况。
Objectives:Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population. With the increasing of the population aging and incidence of AD, heavy burden was brought to society and family due to poor life quality in AD patients. The clinical manifestations of AD is a smart diminish and AD is characterized by the presence of two histo- pathological hallmark brain lesions, extracellular deposits ofβ-amyloid in neuritic plaques and intracellular neurofibrillary tangles (NFTs). The latter is composed of bundles of paired helical filaments (PHF), the major protein subunit of which is the microtubule-associated protein Tau. Tau in PHF is different from that in normal neurons. It is abnormally hyperphosphorylated, aggregated into filaments, and does not bind to microtubules or stimulate microtubule assembly. Evidence from several studies has indicated that the hyperphosphorylation of Tau is responsible for its loss of biological activity and its resistance to proteolytic degradation, and probably plays a key role in neurofibrillary degeneration in AD. Many studies have suggested that the number of NFTs is correlated with the degree of dementia in AD.
     Green tea is a drink made from the steamed and dried leaves of the Camellia sinesis plant, a natural oxidation inhibitor, a shrub native to Asia. It is a beverage that is widely consumed in China, Japan, and other Asian nations and that is becoming more popular in Western countries. Recently, green tea has attracted attention for its healthy benefits, particularly with respect to its potential for preventing and treating cancer, cardiovascular diseases, inflammatory diseases, and neurodegenerative diseases in humans. Some references suggest that TP can inhibition of amyloid fibril formation in vitro and protect neurons againstβ-amyloid-induced toxicity in vitro. However, it is still unclear whether the TP has a protective effect in the hyperphosphorylation of Tau protein of AD. The aim of this study is to explore the function of tea polyphenols (TP) on the Tau protein hyperphosphorylation in hippocampal neurons in rats, which is induced by okadaic acid (OA).
     Methods: We chose OA as the inducer of Tau protein hyper- phosphorylation. Healthy male SD rats were divided randomly into six groups (n=10): normal group, vehicle-control group, model group treated with OA, and three TP groups, pretreated with TP in 100 mg/kg、250 mg/kg and 625mg/kg. At the 21st day of the rats of TP-pretreated groups intragastric administration, we operated ethology (water maze) test. At the 27th day, the rats were anesthetized with 2% of sodium pentobarbital (40 mg / kg, ip), according to rat brain stereotactic map, restrained in a stereotaxis apparatus and microinjected OA (soluble in 10% DMSO) 1.5μL (0.473μg) into the right dorsal hippocampus (A: -3.8 mm, L: 2.5 mm from bregma, and V: 3mm) within 10min, staying for 5min. The vehicle-control group was microinjected 10%DMSO 1.5μL in the same position. At the 28th day, we made the exzamination of water maze, then sacrificed the rats and collected the samples. Paraffin slides were used for immunohistochemistry analysis of hyperphosphorylation of Tau protein. Hippocamp were prepared for western blot analysis of hyperphosphorylation of Tau protein. Quantified analysis of Western blot was performed later.
     Result:
     1. TP attenuates the expression of hyperphosphorylation of Tau induced by OA.
     Immunohistochemistry staining indicated that there is strong positive hyperphosphorylation of Tau granules in the OA group and abundant brown positive hyperphosphorylation of Tau granules were detected in the hipocamp of TP pretreated-groups, but weaker than OA group, especially in 250 and 625mg/kg TP groups.
     Furthermore, Western blot analysis showed that the average relative photodensity was obviously increased in the OA group compared with the normal group. With TP pretreated, hyperphosphorylation of Tau expression was decreased, and a significant difference between TP and OA group still could be seen (P < 0.01).
     2. TP improves OA-induced spatial memory impairment in rats
     With the increasing of training number of time, the escape latency of each group shortened gradually. And there was a significant difference between the TP pre-treared groups and OA model group before the microinjection (P<0.01). There was a significant difference on the number of crossing platform among each group before and after OA microinjection. The total time was the same and there was a significant difference about the time that the rats stayed in the target quadrant of OA model group between before and after OA microinjection (P<0.01). After OA microinjection, there was a significant difference between the TP pre-treared groups and OA model group about the time that the rats stayed in the target quadrant (P<0.01). After OA microinjection, the percentage of swimming distance in target quadrant in total time of each group was smaller than that before OA microinjection, and there was a significant decreasingof OA model group (P<0.01). After OA microinjection, there was a significant difference between the TP pre-treared groups and OA model group about the percentage of swimming distance in target quadrant (P<0.01). These results suggested that OA can make rats space and memory impairment, in the manifestation of the reduction in the number of cross platform, shorten the time and swimming distance of staying in the target quadrant. But pretreated with TP can improve this impairment, showing that shortening the escape latency, increasing the number of rats across the platform and the time staying in the target quadrant and the swimming distance. The rats reasched the plat, according to some strategy.
     Conclusions: Our data suggested that OA can make Tau hyperphosphorylation and memory impairment, and TP can decrease the hyperphosphorylation and improve the impairment.
引文
1. Lee J, Hong H, Im J, Byun H, Kim D. The formation of PHF1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett 2000; 282 (1-2): 49-52.
    2. TIAN Q,LIN ZQ,WANG Xc,et a1.Injection of Okadaic Acid into the Meynert Necleus Basalis of Rat Brain Induces Decreased Acetyleholine Level and Spatial Memory Deficit [J]. Neurosci (S0736-5748), 2004, l26 (2): 277-284.
    3.杨贤强,呈炳辉,沈生荣,等.茶多酚对脑缺血再灌注损伤的保护作用研究[J].浙江农业大学学报,1992,5:63.
    4. Choi YT, Jung CH, Lee SR, et al. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001 Dec 21; 70(5): 603-14.
    5. Levits Y, Amit T, Youdim MBH, et al. Neuroprotection and neurorescue against amyloid beta toxicity and PKC-dependent release of non-amyloidogenic soluble recusor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J, 2003,17: 952-954.
    6. Ono K, Youshiike Y, Takashima A, et al. Potent anti-amyloidogenic and fibril- destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer`s disease. J Neurochem, 2003,87: 172-181.
    7. Dodart JC, Mathis C, Saura J, et al. Neuroanatomical abnormalities in behaviorally characterized APP (V717F) transgenic mice. Neurobiol Dis,2000, 7(2):71-85.
    8. Arlene M, Manelli, Pamela S, Puttfarcken. B-Amyloid-induced toxicity in rat hipp- ocampal cells: in vitro evidence for the involvement of free radieals. Brain Res Bullet, 1995, 38(6): 569-576.
    9. Filley CM. Alzheimer`s Disease: It`s Irreversible but not Untreatable.Geriatrics 1995, 50(7): 18-23.
    10.吴琪。Alzheimer病神经原纤维缠结Tau蛋白研究[J]。中国神经精神疾病杂志,2000,26(1): 63-641.
    11. Ahlijanian MK, Barrezueta NX, Williams RD, et al. Hyperphosphory- lated Tau and neurofilament and cytoskeletal disruptions in mice over- expressing human P25,an activator of cdk5 [J]. Proc Natl Acad Sci USA, 2000, 97(6): 2910-2915.
    12. Alafuzoff L, Iqbal K, Friden H, et al. Histopathological criteria for progressivedementian disorders: clinieal-pathological correlation and classification by multivarite data analysis. Acta NeuroPathol. (Berl), 1987, 74:209.
    13.魏建设,张玲妹,黄娅琳,朱粹青,孙凤艳.岗田酸诱导大鼠脑神经细胞表达谷氨酸转运体EAAT1.生理学报,Aug.2002,54(4):287~293.
    14. Puschel AW, O'Connor V, Betz H. The N-ethylmaleimide-sensitive fusion protein (NSF) is preferentially expressed in the nervous system. FEBS Lett. 1994, 20:55 ~58.
    15. Levites Y, Amit T, Youdim MBH, et al. Involvement of protein kinase C activa- tion and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocate- chin 3-gallate neuroprotective action. J Biol Chem, 2002, 277: 30574-30580.
    16. Reznichenko L, Amit T, Youdim MBH, et al. Green tea polyphenol (-)-epigallo- catechin 3-gallate induces neurorescue of longterm serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem, 2005, 93: 1157-1167.
    17. Kim HK, Effects of green tea polyphenol on cognitive and acetylcholinesterase activites. Biosci Biotechnol Biochem, 2004,68: 1977-1979.
    18. Pan T, Fei J, Zhou X, et al. Effects of green tea polyphenols on dopamine uptake and on MPP+- induced dopamine neuron injury. Life Sci, 2003, 7: 1073-1083.
    19. Morishima-Kawashima M,Hasegawa M,Takio K,etal. Hyperphosphorylation of Tau in PHF. Neurobiol Aging,1995,16(3):365-380.
    20. ThomasF, JoehenE,RolandB. Tau mediated cytotoxieity in a pseudo hyper- phosphorylation model of Alzheimer`s disease[J].NJeuroseience,2002,22(22): 9733-41.
    21. GongCX, WegielJ,LidskyT,etal. Regulation of Phosphorylation of neuronal microtubule associated proteins MAP1b and MAP2 by protein phosphatase2A and 2B in rat brain [J]. BrainRes, 2000, 853:299-309.
    22. Alonso AD,Grundke Iqbal l, Barra HS,etal. Abnormal phosphorylation of Tau and the mechanism of Alzheimer neurofibrllary degeneration: sequestration of microtubule assoeiated Proteinsl and 2 the disassembly of microtubules by the abnormal Tau. Proc NATL Acad Sci USA,1997, 94:298-303.
    23. MosrsehR,SimonW,ColemanPD. Neurons may live for decades with neuro- fibrillary tangles [J]. Neuropathol and ExpNeurol,1999,58:188一97.
    24. Iqbal K,Grundke-IqbalⅠ.Metabalic Hypothesis mechanism and therapeutic targets of Alzheimer neurofibrillary degeneration. Neurosci. News, 2000, 3:14
    25. Pei JJ,Tanaka T,Tung YC,etal. Distribution,levels,and activity of glycoensynthase kinase-3 in the Alzheimer disease brain[J]. Neuropathol ExP Neurol 1997, 56(l): 70-78.
    26. Pei JJ,Braak E,Braak H,etal. Distribution of active glycogen synthase kinase-3 beta (GSK- 3beta) in brains staged for Alzheimer disease neurofibrillary changes [J]. NeuroPathol ExP Neurol, 1999, 58(9): 1010-1019.
    27. NuydensR,Van Den Kieboom G,Nolten C,etal. ExPression of GSK3 corrects phenotypic aberrations of dorsal root ganglion cells,cultured from adult trans- genic mice overexpressing human protein Tau. Neuxobiol Dis,2002, 9(l):38-48.
    28. Baum L,Seger R,Woodgett JR,etal. Overexpressed Tau protein in cultured cells is phosphory- lated without formation of PHF: implication of phosphoprotein phosphatase involvement. Brain Res. Mol Brain Res,1995, 34(l): 1-17.
    29. Liu F,Iqbal K,Grundke-Iqbal I,etal. Involvement of aberrant glycosylation in phosphylation of Tau by cdk5 and GSK-3beta. FEBS Lett, 2002, 530 (1-3): 209- 214.
    30. Liu SJ,Wang JZ. Alzheimer-like Tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin,2002,23(2): 183-187.
    31. Cong CX,Shaikh S,Wang JZ, etal. Phosphatase activity towards abnormally phosphorylated Tau: decrease in Alzheimer disease brain [J]. Neuroehem,1995, 65: 732-738.
    32. Cong CX,Lidsky T,Wegiel J,etal. Phosphorylation of microtubule-associated protein Tau is regulated by proteinphosphatase 2A in mammalian brain implica- tions for neurofibrillary degeneration in Alzheimer`s disease [J]. Biol Chem,2000, 275: 5535-5544.
    33. Wang JZ,Grundke-Iqbal I,Iqbal K,etal. Restoration of biologicalactivity of Alzheimer abnomally phosphorylated Tau by dephosphorylation with protein phosphatase-1,-2A and-2B. Mol Brain Res,1996, 38: 200-208.
    34. Malehiodi-Albedi F,Petrucci TC,Picconi B,etal. Protein phosphatase inhibitor induces modification of synapsesstructure and Tau hyperphosphorylation in cultured rat hippcampal neurons [J]. Neurosci Res, 1997,48:425-438.
    35. Fernandez JJ, Candenas ML, Souto ML, Trujillo MM, Norte M. Okadaic acid, useful tool for studying cellular processes. Curr Med Chem 2002; 9(2): 229-262.
    36. Kim DH, Hong HN, Lee JH,etal. Okadaic acid induced cycloheximide and caspase sensitive apoptosis in immature neurons [J]. Mol Cell, 2000, 10(1): 83- 89.
    37. Kim DH,Su J,Cotman CW. Sequence of neurodegeneration and accumulation of phosphory- lated Tau in cultured neurons afer okadaic acid treatment [J]. Brain Res, 1999, 839: 253-262.
    38. Tanaka T, Zhong J, Iqbal K, et al. The regulation of phosphorylation of Tau in SY 5Y neuro- blastoma cells: the role of protein phosphatases [J]. FEBS Letters, 1998, 426: 248-254.
    39. Giasson BI,Cromlish JA. et al. Activation of cyclic AMP-dependent protein kinase in okadaic acid treated neurons potentiates neurofilament fragmentation and stimulates phosphorylation of ser2 in the low-molecular-mass neurofilament subunit [J]. J Neurochem.1996. 66(3): 1207-1213.
    40. Arendt T-Holzer M,Fruth R-et a1.Paired helical filament—like phosphorylation of Tau- deposition ofβ/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A[J]. Neuroscience. 1995.69:691-698.
    41. Seung Yong Yoon, Jung Eun Choi, Ju Hee Yoon, et al. BACE inhibitor reduces APP-beta-C-terminal fragment accumulation in axonal swellings of okadaic acid induced neurodegeneration. Neurobiol Dis. 2006. 22 (2): 435-44.
    1. Hong M. et al. Mutation-specific functionalimpairments in distinct Tau isoforms of hereditary FTDP-17. Science 1998, 282, 1914–1917.
    2. Amos L. A. Microtubule structure and its stabilisation. Org. Biomol. Chem. 2004. 2, 2153–2160.
    3. Kar, S., Fan, J., Smith, M. J., Goedert, M. & Amos, L. A. Repeat motifs of Tau bind to the insides of microtubules in the absence of taxol. EMBO J. 2003, 22, 70–77.
    4. Kampers, T., Pangalos, M., Geerts, H., Wiech, H. & Mandelkow, E. Assembly of paired helical filaments from mouse Tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett. 1999, 451, 39–44.
    5. Takashima, A. et al. Presenilin 1 associates with glycogen synthase kinase-3βand its substrate Tau. Proc. Natl Acad. Sci. USA 1998, 95, 9637–9641.
    6. Kuret J. et al. Evaluating triggers and enhancers of Tau fibrillization. Microsc. Res. Tech. 2005, 67, 141–155.
    7. Mazanetz M. P. & Fischer, P. M. Untangling Tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Rev. Drug Discov. 2007. 6, 464– 479.
    8. Arnold, C. S. et al. The microtubule-associated protein Tau is extensively mo- dified with O-linked N-acetylglucosamine. J. Biol. Chem. 1996, 271, 28741– 28744.
    9. Li, X., Lu, F., Wang, J-Z. & Gong, C-X. Concurrent alterations of O-GlcNAcyla- tion and phosphorylation of Tau in mouse brains during fasting. Eur. J. Neurosci. 2006, 23, 2078–2086.
    10. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. & Gong, C-X. O-GlcNAcylation regulates phosphorylation of Tau: a mechanism involved in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 2004, 101, 10804–10809.
    11. Münch, G., Deuther-Conrad, W. & Gasic-Milenkovic, J. Glycoxidative stress creates a vicious cycle of neurodegeneration in Alzheimer’s disease– a target for neuroprotective treatment strategies? J. Neural Transm. 2002, 62 (Suppl.), 303– 307.
    12. Cripps, D. et al. Alzheimer disease-specific conformation of hyperphosphory-lated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conju- gation. J. Biol. Chem. 2006, 281, 10825–10838.
    13. Mailliot, C., Trojanowski, J. Q. & Lee, V. M. Impaired Tau protein function following nitration -induced oxidative stress in vitro and in vivo. Neurobiol. Aging 2002, 23 (Suppl. 1), 415.
    14. Johnson, G. Tau phosphorylation and proteolysis: insights and perspectives. J. Alzheimers Dis. 2006, 9, 243–250.
    15. Roy, S., Zhang, B., Lee, V. M.Y. & Trojanowski, J. Q. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol. 2005, 109, 5– 13.
    16. Kuret J. et al. Pathways of Tau fibrillization. Biochim. Biophys. Acta 2005,1739, 167–178.
    17. Ross C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 2004, 10, S10–S17.
    18. Galvan, M., David, J. P., Delacourte, A., Luna, J. & Mena, R. Sequence of neuro- fibrillary changes in aging and Alzheimer’s disease: a confocal study with phospho-Tau antibody, AD2. J. Alzheimers Dis. 2001, 3, 417–425.
    19. Maeda S. et al. Granular Tau oligomers as intermediates of Tau filaments. Biochemistry. 2007, 46, 3856–3861.
    20. Maeda, S. et al. Increased levels of granular Tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci. Res. 2006, 54, 197–201.
    21. Goedert, M. & Jakes, R. Mutations causing neurodegenerative Tauopathies. Biochim. Biophys. Acta 2005, 1739, 240–250.
    22. von Bergen, M. et al. Mutations of Tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing localβ-structure. J. Biol. Chem. 2001, 276, 48165–48174.
    23. Nacharaju P. et al. Accelerated filament formation from Tau protein with specific FTDP-17 missense mutations. FEBS Lett. 1999, 447, 195–199.
    24. Alonso Adel C., Mederlyova, A., Novak, M., Grundke-Iqbal, I. & Iqbal, K. Promotion of hyperphosphorylation by frontotemporal dementia Tau mutations. J. Biol. Chem. 2004, 279, 34873–34881.
    25. Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. & Hof, P. R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 2000, 33, 95–130.
    26. Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced Tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA 2005, 102, 6990–6995.
    27. Phiel, C. J., Wilson, C. A., Lee, V. M. Y. & Klein, P. S. GSK-3αregulates pro- duction of Alzheimer’s disease amyloid-βpeptides. Nature. 2003,423, 435–439.
    28. Tian, Q. & Wang, J. Role of serine/threonine protein phosphatase in Alzheimer’s disease. Neurosignals 2002, 11, 262–269.
    29. Andersen, J. K. Oxidative stress in neurodegeneration: cause or consequence Nature Med. 2004, 5, S18–S25.
    30. Moreira P. I. et al. Oxidative stress and neurodegeneration. Ann. NY Acad. Sci. 2005, 1043, 545–552.
    31. King M. E. et al. Tau-dependent microtubule disassembly initiated by prefibrillarβ-amyloid. J. Cell Biol. 2006, 175, 541–546.
    32. Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. & Ferreira, A. Tau is essential toβ- amyloid-induced neurotoxicity. Proc. Natl Acad. Sci. USA 2002, 99, 6364–6369.
    33. Liu, Q. et al. Tau modifiers as therapeutic targets for Alzheimer’s disease. Biochim. Biophys. Acta 2005, 1739, 211–215.
    34. David, D. C. et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L Tau transgenic mice. J. Biol. Chem. 2005, 280, 23802– 23814.
    35. Blurton-Jones, M. & LaFerla, F. M. Pathways by which Aβfacilitates Tau path- ology. Curr. Alzheimer Res. 2006, 3, 437–448.
    36. Oddo, S. et al. Temporal profile of amyloid-β(Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβand Tau pathology. J. Biol. Chem. 2006, 281, 1599–1604.
    37. Roberson, E. D. et al. Reducing endogenous Tau ameliorates amyloidβ-induced deficits in an Alzheimer’s disease mouse model. Science. 2007, 316, 750–754.
    38. Trojanowski, J. Q., Smith, A. B., Huryn, D. & Lee, V. M.Y. Microtubule stabiliz- ing drugs for therapy of Alzheimer’s disease and other neurodegenerative dis- orders with axonal transport impairments. Expert Opin. Pharmacother. 2005, 6, 683–686.
    39. Ishihara T. et al. Age-dependent emergence and progression of a Tauopathy in transgenic mice overexpressing the shortest human Tau isoform. Neuron. 1999,24, 751–762.
    40. Zhang, B. et al. Microtubule-binding drugs offset Tau sequestration by stabiliz- ing microtubules and reversing fast axonal transport deficits in a Tauopathy model. Proc. Natl Acad. Sci. USA 2005, 102, 227–231.
    41. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neuro- fibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992, 42, 631–639.
    42. Arriagada, P. V., Marzloff, K. & Hyman, B. T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology. 1992, 42, 1681–1688.
    43. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005, 309, 476–481.
    44. Trojanowski, J. Q. & Lee, V. M. Pathological Tau: a loss of normal function or a gain in toxi- city? Nature Neurosci. 2005, 8, 1136–1137.
    45. Stokin G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005, 307, 1282–1288.
    46. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S Tauo- pathy mouse model. Neuron. 2007, 53, 337–351.
    47. Amadoro G,Serafino AL,Barbato C,et a1.Role of N—terminal Tau Domain Integrity on the Survival of Cerebellar Granule Neurons[J].Cell Death Differ (S1350-9047), 2004, l1(2):21 7-230.
    48. LIU SJ,WANG JZ.Alzheimer-like Tau Phosphorylation Induced by Wortmannin in Vivo and Its Attenuation by Melatonin[J].Acta Pharmaeol Sin(S1671—4083),2002,23(2):183-187.
    49. LIU SJ,ZHANG AH,LI HL, et a1.Overactivation of Glycogen Synthase Kinaserr3 by Inhibition of Phosphoinositol 3 Kinase and Protein Kinase C Leads to Hyperph0sphory1ation of Tau and Impairment of Spatial Memory[J] . J Neurochem (S0022—3042),2003, 87(6):1333 1344.
    50. LI SP,DENG YQ,WANG XC,et a1.Melatonin Protects SH—SY5Y Neuro- blastoma Cells from Calyeulin A-induced Neurofilament Impairment and Neuro- toxicity[J].J Pineal Res (S0742—3098), 2004, 36(3):186-191.
    51. Iqbal K,Alonso A,El一AKKAD E,et a1.Alzheimer NeurofIbri1lary Degenera- tion:Thero- peutic Targets and High throughput Assays[J].J Mol Neurosci (S0896-8696),2003, 20(3):425 -429.
    52. Delacourte A,Sergeant N,Champain D,et a1.Nonoverlapping but Synergetic Tau and App Pathologies in Sporadic Alzheimer’s Disease [J].Neurology (S0028 -3878), 2002, 59(3):398—407.
    53. Necula, M., Chirita, C. N. & Kuret, J. Cyanine dye N744 inhibits Tau fibrilliza- tion by blocking filament extension: implications for the treatment of Tauopathic neurodegenerative diseases. Biochemistry. 2005, 44, 10227–10237.
    54. Pickhardt, M. et al. Screening for inhibitors of Tau polymerization. Curr. Alzheimer Res. 2005, 2, 219–226.
    55. Pickhardt, M. et al. Anthraquinones inhibit Tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J. Biol. Chem. 2005. 280, 3628–3635.
    56. Taniguchi, S. et al. Inhibition of heparin-induced Tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem. 2005, 280, 7614– 7623.
    57. Frid, P., Anisimov, S. V. & Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Rev. 2007, 53, 135–160.
    58. Chirita C., Necula, M. & Kuret, J. Ligand-dependent inhibition and reversal of Tau filament formation. Biochemistry. 2004, 43, 2879–2887.
    59. Liu, M., Ni, J., Kosik, K. S. & Yeh, L. A. Development of a fluorescent high throughput assay for Tau aggregation. Assay Drug Dev. Technol. 2004, 2, 609– 619.
    60. Wischik, C. M., Edwards, P. C., Lai, R. Y. K., Roth, M. & Harrington, C. R. Selective inhibition of Alzheimer disease-like Tau aggregation by phenothiazines. Proc. Natl Acad. Sci. USA 1996, 93, 11213–11218.
    61. Ignatova, Z. & Gierasch, L. M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl Acad. Sci. USA 2006, 103, 13357– 13361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700