非贯通裂隙岩体破坏细观特征及其宏观力学参数确定方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对岩体工程中最常见、最重要的非贯通裂隙岩体,以典型物理模型试验为基础,通过建立能反映不连续性、非均匀性、各向异性、非弹性等裂隙岩体基本特性的细观数值分析模型,开展了系统的非贯通裂隙岩样破坏模态与细观破坏机理数值试验研究;根据经物理模型试验标定的细观数值试验分析成果,总结了裂隙几何分布特征、裂隙面摩擦性以及应力条件对非贯通裂隙岩体破坏模式与强度的影响规律,建立了能反映裂隙几何分布特征、裂隙力学性质、岩块力学性质以及侧压等因素的非贯通裂隙岩体宏观变形参数、强度参数计算分析模型,并对所建立的宏观力学参数计算分析模型进行了讨论与验证。主要创新点如下:
     (1)为反映裂隙岩体的不连续性、非均匀性、各向异性、非弹性,建立了非均匀损伤破坏模型;通过典型的室内物理模型试验,验证了该非均匀损伤破坏模型的合理性与正确性;利用分析系统中特有的解析刚体模型改进了裂隙岩体细观破坏数值试验边界条件与加载板的模拟方法。
     (2)利用所建的非均匀损伤破坏数值模型,对含一条、两条、多条(9条)裂隙的非贯通裂隙岩样,分别进行了系统的破坏模式与细观机理数值试验,着重分析了试样的第一主应力场、剪应力场、次生裂纹起裂与发展路径以及峰值强度等,总结了裂隙几何分布特征、裂隙面摩擦性质以及侧压对试样应力场、次生裂纹起裂与发展路径以及试样峰值强度的影响规律,提炼了非贯通裂隙岩体典型的破坏模式——单平面模式和台阶模式。
     (3)基于变形等效原理和裂隙岩体细观变形特征,推导了含单组非贯通裂隙岩体变形参数(变形模量、泊松比、剪切模量)计算分析模型,研究了岩体变形模量、泊松比、剪切模量等变形参数随岩体裂隙连通率、裂隙倾角、裂隙厚度率的变化规律;进一步推导了含多组非贯通裂隙岩体变形模量、泊松比计算分析模型,研究了含多组裂隙岩体的变形模量、泊松比随裂隙几何分布特性、裂隙变形参数、岩块变形参数的变化规律;并利用物理模型试验结果对计算分析模型进行了验证。
     (4)基于单平面破坏和台阶破坏两种模式假定,分别推导了发生单平面破坏、台阶破坏条件下非贯通裂隙岩体宏观剪切强度参数(粘聚力、内摩擦角)、抗压强度计算公式,并提出了相应的强度准则;进一步讨论了非贯通裂隙岩体剪切强度以及其参数、抗压强度受裂隙粘聚力、裂隙摩擦角、裂隙连通率、裂隙间距、裂隙排距、裂隙倾角、岩桥粘聚力、岩桥摩擦角、岩桥倾角的影响关系;对建立的分析计算公式进行了验证与讨论。
Fractured rock mass is one of the most common and important engineering materials in many industries such as energy, transportation, hydroelectric engineering, and mining. This study is focused on the meso-mechanical characteristics of fractured rock mass with nonpenetrative fissures during failure, and estimation the deformation and strength mechanical parameters by the scientific methods. To simulate the failure of fractured rock mass with nonpenetrative fissures, a meso-mechanical analysis model has been set up in this paper. A series of numerical model tests have been carried out to study the characteristics of deformation, distribution of stress, characteristics of failure, and process of failure, that related to the fractured rock mass. From the conclusions draw from the results after the numerical model tests, some laws that reflect the change of increasing and decreasing of strength for the fractured rock mass and some typical failure models of fractured rock mass have been presented. A new method of estimating the deformation and strength parameters, such as deformation modulus, poisson's ratio, shear modulus, inner cohesion, inner friction angle, have been derived by theoretic method and taking the fissure's factors and conditions of applied stress. Main summarizations listed as blow:
     (1) To simulate the failure of the fractured rock mass with nonpenetrative fissures, an inhomogeneous damage plasticity model is assembled in ABAQUS, by adding the Weibull distribution for mechanical parameters of rock. The numerical model is validated by the results from some typical physical model tests carried out on MTS system. The numerical model can represent the features possessed by fractured rock mass, such as discontinuous, inhomogeneous, anisotropic, and not elastic. In the numerical model, an analytical rigid body model is applied to simulate the loading board in physical model test, which shows a well simulation of boundary condition in numerical tests.
     (2)A series of numerical model tests are performed by the inhomogeneous damage plasticity model on ABAQUS, these tests include model rock mass sample with one crack, two cracks, or 9 cracks. The key factors influenced the strength and deformation of rock mass, such as dip of fissure, confining pressure, friction angle of fissure, layout of fissure, are studied in these numerical model tests. Some mechanical phenomena on model samples are discussed, for example 1 st principle stress, shear stress, initiation of induced crack, trace of failure and peak compressive strength. According to these results, some laws that reflect the change of increasing and decreasing of strength for fractured rock mass with the change of dip of fissure, confining pressure, friction angle of fissure, layout of fissure, and some typical failure models of fractured rock mass are presented
     (3)Based on the theory of equilibrium of deformation, a formula is derived by theoretic method, taking the layout of fissure and directions of applied force. The formula can be utilized to calculate the deformation modulus, poisson's ratio, and shear modulus, taking the deformation modulus, poisson's ratio of intact rock, filling, tangential stiffness, and normal stiffness. The validity of the formula is verified by the reasonable analysis. According to the formula, some change laws of deformation modulus, poisson's ratio, shear modulus, with the change of dip of fissure and layout of crack, are presented.
     (4)Based on the hypothesis of simultaneous failure on the failure zone and two failure models, Formulas are derived by theoretic method, taking the layout of fissures, fissure persistence, to calculate the inner cohesion, inner friction angle, and compressive strength. The validity of the formula is verified by the theoretic analysis. According to these formulas, some laws that reflect the change of inner cohesion, inner friction angle, and compressive strength, with the change of dip of fissure and layout of fissure, are presented.
引文
[1]ABAQUS, Inc. ABAQUS Theory Manual[M], Providence, USA,2006
    [2]Ajit Kummar, N. K. Samadhiya and Mahendra Singh. Experimental study on strength and deformation characteristics of phyllite[C]. Symposium on Fractured and Jointed Rock Mass,1992, Lake Tahoe, Ca., 363-378
    [3]Arai R. An inverse problems approach to the prediction of Multi-dimension consolidation behavior[J]. Soil and Foundation,1984,24(1):95-108
    [4]Barton N. the infuence of joint proerties in modeling jointed rock masses[C]. Proc.8th int. rock mesh. Congress. Tokyo.1995:3-4
    [5]Bobet A. The initiation of secondary cracks in compression[J]. Engng Frac Mech,2000,66:187-219
    [6]Bobet, A.& Einstein, H.H. Fracture Coalescence in Rock-type Materials under Uniaxial and Biaxial Compression[J]. International Journal of Rock Mechanics and Mining Science,1998,35(7),863-888
    [7]Bobet, A. Numerical simulation of initiation of tensile and shear cracks. Rock Mechanics in the National Interest[C]. Proceedings of the 38th US Rock Mechanics Symposium. Swets & Zeitlinger Lisse, Tinucci and Heasley eds., (2001) 731-738
    [8]Brace W F, Bombolakis E G.A note on brittle crack growth in compression[J]. J Geophys Res,1963, 68(B12):3709-3713
    [9]Cai M, Horii H. A constitutive model and FEM analysis of jointed rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,1993,30(4):351-359.
    [10]Chen, G, Kemeny, J.& Harpalani, S. Fracture Propagation and Coalescence in Marble Plates with Pre-cut Notches under Compression[C]. Symposium on Fractured and Jointed Rock Mass,1992, Lake Tahoe, Ca.,443-448
    [11]E. Hoek, M.S. Diederichsb. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics & Mining Sciences 43 (2006) 203-215
    [12]Farmer I. W.. Engineering properties of rocks[M].2nd Ed. Chapman & Hall, London,1983
    [13]Fossum A F. Effective elastic properties for a random jointed rock mass[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,1985,22(6):467-470
    [14]Germanovich LN, Salganik RL, Dyskin AV, Lee KK. Mechanisms of brittle fracture of rocks with multiple pre-existing cracks in compression[J]. Pure Appl Geophys 1994;143(1/2/3):117-149
    [15]Gerrard, C, M., Elastic Models of Rock Masses Having one two three sets of Joints[J], International Journal of Rock Mechanics and Mining Seciences &Geo-mechanics Abstracts.1982,19(1)
    [16]Gioda G, Maier G Direct search solution of an inverse problem in elastic-plasticity, identification of cohesion, friction angle and in-situ stress by pressure tunnel tests[J]. Int J Num Methods in Eng,1980,15: 1823-1834
    [17]Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression[J]. Int J Frac,1965(1): 137-155
    [18]Hoek E, Kaiser PK, Bawden WF, Hoek E, Kaiser PK, et al. Support of underground excavations in hard rock[M]. Rotterdam:Balkema,1995
    [19]Hoek, E. and Brown, E.T. Empirical strength criterion for rock masses[J]. J. Geotech. Engng Div., ASCE 1980.106 (GT9),1013-1035.
    [20]Hu K X, Huang Y. Estimation of the elastic properties of fractured rock masses[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,1993,30(4):381-394
    [21]Hudson J. A., Practical Rock Engineering, Principal of rock engineering consultants[M],9, H K Polytechnic University,2001
    [22]Ikeda K. A. Classificdation of conditions for tunneling[C]. Proc.1st int. congre. Eng geology IAEG. Paris,1970:1258-1265
    [23]Ito J, Konda T, Aydan O. Performance of the srpport system of tunnel in squeezing rocks[C]. Proc. Korea-Japan foint Symposium on rock Engineering.1996, Seoul:377-382
    [24]John A. Hudson, John R Harrison. Engineering Rock Mechanics[M]. Pergamon.2000. New York, NY, USA
    [25]Karanagh K and Clough R W. Finite element Application in the characterization of Elastic solids[J]. Int.J.solids structures,1972,7:11-23
    [26]Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behaviour of discontinuous rock mass and damage[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1988, 12(1):1-30.
    [27]Kirsten H A D. Determination of rock mass elastic moduli by back analysis of deformation measurement[C]. In:proc Symp on Expliration for Rock Eng. Johannesburg,1976.1154~1160
    [28]Kumar Ajit, Singh M. and Samadhiya N K (2004) An Experimental Study on True Shear Strength Parameters[C], Proc. Indian Geotechnical Conference 2004-Ground Engineering:Emerging Techniques, Dec 17-19, Warangal, India, pp 41-45
    [29]Lajtai E Z. Strength of discontinuous rocks in direct shear[J]. Geotechnique,1969,19(2):218-233
    [30]Lajtai, E.Z. Brittle Fracture in Compression[J]. International Journal of Fracture,1974,10(4),525-536
    [31]Lin P, Robina H.C. Wong, K.T. Chau and C. A. Tang. Multi-crack coalescence in rock-like material under uniaxial and biaxial loading[J]. Key Engineering Materials,2000,183-187:809-814
    [32]Lubliner, J., J. Oliver, S. Oller, and E. Onate, A Plastic-Damage Model for Concrete[J]. International Journal of Solids and Structures, vol.25, no.3, pp.229-326,1989.
    [33]M. Cai, P.K. Kaiser, H. Uno, Y. Tasaka, M. Minami. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system[J]. Int. J. of Rock Mechanics & Mining Sciences.2004,41:3-19
    [34]M. Cai, P.K. Kaiser, Y. Tasaka, M. Minami. Determination of residual strength parameters of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics & Mining Sciences.2007, 44:247-265
    [35]Margolin L G Elastic moduli of cracked body[J]. International Journal of Fracture,1983,22(1):65-79.
    [36]Mitaim S, Detournay E. Damage around a cylindrical opening in a brittle rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1447-1457.
    [37]Ning. Li, W. Chen, P. Zhang, G Swoboda. The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading[J]. Int. J. Rock Mech.& Mini.,2001,38 (7): 1071-1079
    [38]P. H. S. W. Kulatilake, J. Liang, H. Gao, Experimental and numerical simulations of jointed rock block strength under uniaxial loading[J], Journal of Engineering Mechanics,2001,127 (12) 120-124
    [39]Petit, J.& Barquins, M. Can Natural Faults Propagate under Mode II Conditions Tectonics[J],1988.7(6), 1243-1256
    [40]Reyes O, Einstein H H. Failure mechanisms of fractured rock-A fracture coalescence model[C]. Proceedings of 7th International Congress on Rock Mechanics, Aachen, Germany,1991.333-340
    [41]Sagall P, Pollard D D; Mechanics of discontinuous faults [J]. Journal of Geological Research,1980
    [42]Sagong M, Bobet A. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(2):229-241
    [43]Sakurai S, Takeuchi K. Back analysis of measured displacement of tunnel[J]. Rock Mech and Rock Eng,1983,16(3):173-180
    [44]Salamon M. D. G., Elastic moduli of a stratified rock mass[J]. Int. J. Rock Mech. Min. Sci. Geomec(?). Abstr.,1968,5:519-527
    [45]Shen B, Stephansson O, Einstein H H, et al. Coalescence of fractures under shear stresses in experiments[J]. J Geophys Res,1995b,100(B4):5975-5990
    [46]Shen B. The mechanism of fracture coalescence in compression-experimental study and numerical simulation[J]. Eng. Fract. Mech.,1995,51(1):73-85
    [47]Stimpson B. Failure of slopes containing discontinuous planar joints[C]. Proc.19th U. S. Symp. on Rock Mechanics.1978,296-300
    [48]Wang Zhiyin, Liu Huaiheng. Back analysis of measured rheologic displacements of underground openings[C]. In:Proc 6th Conf on Num Meth in Geom. Austria,1988.2291-2297
    [49]Wong R H C, Chau K T. Crack coalescence in a rock-like material containing two cracks[J]. Int J Rock Mech Min Sci,1998,35 (2):147-164
    [50]Wong R H C,K T, Tang C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws-Part Ⅰ:experimental approach[J]. Int J Rock Mech Min Sci,2001,38(7):909-924
    [51]Wong R H C, Lin P, Chau K T, et al. The effects of confining compression on fracture coalescence in rock-like material[J]. Key Engineering Materials,2000,183-187:857-862
    [52]Yavuz H, Altindag R, Sarac S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43(5)
    [53]Yoshiaki Okui, Hideyuki Horii, Narioki Akiyama. A continuum theory for solids containing Micro defects[J]. International Journal of Engineering Science,1993,31(5):735-749.
    [54]白世伟,任伟中,丰定祥等.共面闭合断续裂隙岩体强度特性直剪试验研究[J].岩土力学,1999,20(2):10-15
    [55]白世伟a,任伟中,丰定祥,周少怀等.共面闭合非贯通岩体强度特性直剪试验研究[J]岩土力学,1999,20(2):10-16
    [56]白世伟b,任伟中,丰定祥,陈锦清,贾中和.平面应力条件下闭合断续裂隙岩体破坏机理及强度特性[J].岩石力学与工程学报.1999,18(6):635-640
    [57]车法星,黎立云,刘大安.类岩材料多裂纹体断裂破坏试验及有限元分析[J].岩石力学与工程学报.2000,19(3):295-298
    [58]陈方方.地下洞室弹塑性仿真反分析研究[D].西安理工大学硕士学位论文,2004
    [59]陈卫忠,李术才,朱维申.考虑裂隙闭合和摩擦效应的裂隙岩体能量损伤理论与应用[J].岩石力学与工程学报,2000,19(2):131-135.
    [60]陈文玲,李宁.含非贯通裂隙岩体介质的损伤模型[J].岩土工程学报,2000,22(4):430434
    [61]杜庆华.弹性理论[M].北京:科学出版社,1986
    [62]范景伟,何江达.含定向闭合断续裂隙岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199
    [63]范景伟,何江达.含定向闭合断续裂隙岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199.
    [64]冯夏庭,张治强,杨成祥等.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报.1999,18(5):529-533
    [65]高安译,张宪玄.各向异性裂隙岩体应力~应变关系探讨[J].水力发电学报.1983(2)
    [66]韩贝传,王思敬.一种计算多组节理系统损伤张量的方法[J].岩石力学与工程学报,1993,12(1):46-54.
    [67]何满潮,薛廷河,彭延飞.工程岩体力学参数确定方法的研究[J].岩石力学与工程学报,2001,20(2):225-229
    [68]黄宏伟,孙钧.基于Bayesian广义参数的反分析[J].岩石力学与工程学报,1994,13(3):219-228
    [69]黄宏伟.岩土工程中位移量测的随机逆反分析[J].岩土工程学报,1995,17(2):36-41
    [70]黄凯珠,林鹏,唐春安等.双轴加载下断续预制裂纹贯通机制的研究[J].岩石力学与工程学报,2002,21(6):808—816
    [71]黄明利,冯夏庭,王水林,多裂纹在不同岩石介质中的扩展贯通机制分析[J],岩土力学,2002,23(2):142-146
    [72]黄明利.岩石多裂纹相互作用破坏机制的研究[D].东北大学博士学位论文,2000
    [73]蒋树屏.岩体工程反分析研究的新进展[J].地下空间,1995,15(1):25-33
    [74]李建林,哈秋舲.裂隙岩体拉剪断裂与强度研究[J].岩石力学与工程学报,1998,17(3):259-266
    [75]李建林.三峡工程永久船间陡高边坡岩体宏观力学参数研究[D].博士学位论文.重庆:重庆建筑大学,1996
    [76]李宁,Swoboda G.当前岩石力学数值方法的几点思考[J].岩石力学与工程学报,1997,16(5):502-505
    [77]李宁,陈文玲,张平.动荷作用下非贯通裂隙介质的强度性质[J].自然科学进展,2000,10(11):1029-1034
    [78]李宁,陈文玲,张平.动荷作用下裂隙岩体介质的变形性质[J].岩石力学与工程学报,2001,20(1):74-78
    [79]李宁,李永刚,张平.碎裂块体围岩安全监测与仿真反分析[J].岩土工程学报,2000,22(2):170-173
    [80]李宁,尹森菁.边坡安全监测的仿真反分析[J].岩石力学与工程学报,1996,15(1):9-18
    [81]李宁,张平,陈蕴生.裂隙岩体试验研究进展与思考[C].中国岩石力学与工程学会第七次大会论文集.北京:中国科学技术出版社,2002.63-69
    [82]李宁,张志强,陈方方.总干闸胸墙裂缝危害性及处理措施分析[J].岩土力学.2004,25(10):
    1537-1541
    [83]李宁,张志强,张平,刘林.裂隙岩样力学特性细观数值试验方法探讨[J],岩石力学与工程学报,2008,27(Supp.1):2848-2854
    [84]李宁,张志强,张平.地下洞室设计新理念与仿真分析方法[C],第八次全国岩石力学与工程学术大会论文集(2004年),469-473
    [85]李宁,Swoboda G.当前岩石力学数值方法的几点思考[J].岩石力学与工程学报,1997,16(5):502-505
    [86]李术才,朱维申.复杂应力状态下断续裂隙岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报,1999,18(2):142-146.
    [87]李素华,朱维申.优化方法在弹性、横观各向同性以及弹塑性围岩变形观测反分析中的应用[J].岩石力学与工程学报,1993,12(2):105-114.
    [88]李新平,朱维申.多裂隙岩体的损伤断裂模型及模型试验[J].岩土工程学报,1991,12(2):5-14.
    [89]李银平,王元汉,陈龙珠,余飞,李亮辉.含预制裂纹大理岩的压剪试验分析[J].岩土工程学报.2004,26(1):120-124
    [90]林鹏.含裂纹与孔洞缺陷介质的脆性破坏行为[D].沈阳:东北大学,2002
    [91]凌建明,蒋爵光,傅永胜.非贯通裂隙岩体力学特性的损伤力学分析[J].岩石力学与工程学报,1992,11(4):373-383
    [92]凌建明.裂隙岩体损伤力学研究中的若干问题[J].力学进展,1994,25(2):257-264.
    [93]刘怀恒,熊顺成.隧洞衬砌变形及安全预测[J].岩石力学与工程学报,1990,9(2):7-11
    [94]刘远明,夏才初.非贯通裂隙岩体直剪贯通模型和强度研究[J].岩土工程学报.2006,28(10):1242-1247
    [95]潘家铮,夹层地基分析,水工结构分析文集[M].电力工业出版社,1981,4
    [96]潘家铮.岩石力学与反馈设计[J].水电站设计,1994,10(3):3-10
    [97]秦飞,岑章志,杜庆华,多裂纹扩展分析的边界元方法[J],固体力学学报,2002,23(4):431-439
    [98]秦飞,岑章志,杜庆华.确定裂纹体等效变形模量的边界元方法[J].固体力学学报,1996,17(3):207-213
    [99]任伟中,王庚荪,白世伟,丰定祥,陈锦清,贾中和.共面闭合非贯通岩体的直剪强度研究[J].岩石力学与工程学报,2003,22(10):1167-1672
    [100]孙钧,黄伟.岩石力学参数弹塑性反演问题的优化方法[J].岩石力学与工程学报,1992,11(3):221-229
    [101]唐春安,采动岩体破裂与岩层移动数值试验[M],吉林大学出版社,2003,
    [102]陶振宇,曾亚武,赵震英.裂隙岩体损伤模型及验证[J].水利学报,1991,6:52-58.
    [103]王芝银,李云鹏.地下工程位移反分析法及程序[J].陕西科学技术出版社,1993.12
    [104]王芝银.地下巷道考虑空间效应的增量反分析[J].西安矿业学院学报,1987,7(4):13-21
    [105]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性—断裂损伤演化方程及试验验证[J].岩土力学,1994,15(2):1-12.
    [106]徐卫亚,刘世君.岩石力学参数的非线性随机反分析[J].岩土力学,2001,22(4):432-435
    [107]徐小敏,裂隙岩体损伤本构模型研究及应用[D].重庆:重庆大学,2007.
    [108]晏石林,黄玉盈,陈传尧.非贯通裂隙岩体等效模型与弹性参数确定[J].华中科技大学学报,2001b,29(6):64~67
    [109]晏石林,黄玉盈,陈传尧.贯通裂隙岩体等效模型与弹性参数确定[J].华中科技大学学报,2001a,29(6):60~63
    [110]晏石林,潘鹏志,吴代华.有限元法预测贯通裂隙岩体三维等效弹性参数[J].武汉理工大学学报.2003,25(4):47-50
    [111]杨学堂,哈秋舲,张永兴,李建林,袁大祥,王乐华.裂隙岩体宏观力学参数数值仿真模拟研究[J].水力发电.2004,30(7):14-16
    [112]杨志法,王思敬等.岩土工程反分析原理及应用[M].北京:地震出版社,2002.3
    [113]樱井春辅.地下洞室设计和监控的一种途径[J].隧道译丛,1986,(4):13-25
    [114]张平,李宁,贺若兰等.动载下3条断续裂隙岩样的裂缝贯通机制[J],岩土力学,2006,27(9):1457~1465
    [115]张海东,刘考学.地下工程现场位移量测的反算分析[C].第一届全国计算岩土力学研讨会论文集(二).峨眉:西南交通大学出版社,1987,1-12
    [116]张平,李宁,贺若兰等,动载下两条断续预制裂隙贯通机制研究[J],岩石力学与工程学报,2006, 25(6):1210~1217
    [117]张平.动应力条件下的破坏模式与局部化渐进破损模型研究[D].西安理工大学博士学位论文.2004
    [118]张武,张宏宪.裂隙岩体的弹性模型[J].岩土工程学报,1987,9(4):33~44
    [119]张玉军.裂隙岩体等效模型及其数值计算和室内试验[J].岩土工程学报.2006,28(1):29-32
    [120]张玉军.围岩流变参数反分析方法[J].岩土工程学报,1990,12(6):84-90
    [121]张志强,李宁,Swoboda G..软弱夹层分布部位对洞室稳定性影响研究[J],岩石力学与工程学报,2005,24(18):3252-3257
    [122]张志强,李宁,陈方方,Swoboda G..不同分布距离的软弱夹层对洞室稳定性的影响研究[J],岩土力学,2007,28(7):1363-1638
    [123]张志强,李宁,徐彬.大规模引水隧洞群施工方案三维有限元分析[J],水力发电学报,2004,23(6):83-87
    [124]赵吉东 尹健民,周维垣.裂隙岩体断裂损伤模型在三峡坝基岩体力学参数模拟和预测中的应用[J].岩石力学与工程学报,2002,21(2):176-179.
    [125]郑颖人,张德微,高效伟.弹塑性问题反演计算的边界元法[C].中国土木学会第三届年会论文集.上海:同济大学出版社,1986,377-386
    [126]周维垣,杨延毅.裂隙岩体的损伤断裂模型及验证[J].岩石力学与工程学报,1991,10(1):43-54.
    [127]周维垣,杨延毅.裂隙岩体力学参数取值研究[J],岩土工程学报,1992,14(5):1-11
    [128]周维垣.高等岩石力学[M],北京:水利电力出版社,1993
    [129]朱合华,杨林德,桥本正,深基坑工程动态施工反演分析与变形预报[J].岩土工程学报,1998,20(4):30-35
    [130]朱万成,唐春安,岩板中混合裂纹扩展过程的数值模拟[J],岩土工程学报,2000,22(2):231-234
    [1311朱维申,何满潮.复杂条件下围岩稳定性与岩体施工力学[M].北京:科学出版社,1995.
    [132]朱维申,李术才,陈卫忠著.裂隙岩体破坏机理和锚固效应及工程应用[J].北京:科学出版社,2002
    [133]朱维申,王平.裂隙岩体的等效连续模型与工程应用[J].岩土工程学报,1992,14(2):1-11.
    [134]朱维申,张强勇.裂隙岩体脆弹性断裂损伤模型及其工程应用[J].岩石力学与工程学报,1999,18(3):245-249.
    [135]朱维申等.考虑时空效应的地下洞室变形观测及反分析[J].岩石力学与工程学报,1989,8(4):346-353

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700