矿井围岩与风流热湿交换若干问题的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,我国各类矿井开采深度的不断增加,矿井热害越来越严重,机械制冷降温成为矿井降温技术重要的发展方向。要合理选择制冷设备,首先就需要确定巷道内的冷负荷和湿负荷,弄清矿井围岩与风流热湿交换的机理,这是进行一切降温除湿技术的基础。在诸多热源中,巷道围岩的散热散湿是最主要的一项,计算过程也最为复杂。与一般建筑的空调冷负荷相比,矿井冷负荷要复杂的多。因为围岩的散热散湿是一个三维非稳态过程,传热系数与传湿系数的影响因素很多,传热传湿机理相当复杂。而目前,我国矿井一般都是延用前苏联的一些经验计算公式,但是这些公式都存在以下几个问题:一、计算时需要的参数很多,在实际工程上很难被应用;二、忽略湿度对传热的影响,计算结果往往差强人意;三、不能较为准确适用于计算中国矿井独特的情况。
     本文采用理论分析与模拟实验相结合的方法,首先推导出矿井围岩与风流热湿交换的微分方程组的柱坐标形式,建立一套系统的适用于矿井的数学模型。然后在实地调查、测试的基础上,按照相似理论搭建一矿井风流热湿交换模拟实验台,用与煤矿围岩热工性能相似的混凝土试件代替真实巷道,模拟矿井围岩与风流的热湿交换过程。通过变换风流进口的温度、湿度、速度,监测出口空气状态的变化和围岩内部温度的变化。经过多组实验工况的测试并利用统计学工具进行分析研究,分析出风流经过矿井湿壁巷道,沿途增温增湿的影响因素和变化规律,围岩稳态内壁温度的变化规律,以及围岩传热系数和传湿系数的回归计算公式。
With the development of the social economy, the mining depth is increasing and the heat harm of mine becomes increasingly serious. The main development trend of mine temperature drop technology is mechanical refrigeration for lowering temperation. The choosing of refrigeration equipments need the cooling and humidity load of laneway first. Thus, making the mechanism of heat and humidity exchange between rock wall and airflow in mine clear is the base of mine temperature drop and dehumidification technology. The heat and humidity dissipating from the surrounding rock takes a biggest part of the total load, but the calculation of this part is most difficult. Compared with the calculation of cooling load for air conditioning building, the calculation of cooling load for mine has a higher complexity. Because the heat and humidity dissipating from the surrounding rock is a 3D unsteady process, a number of factors can influence heat transfer coefficient and humidity transfer coefficient, and the mechanism of heat and humidity exchange is quite complicated. At present, empirical formulas of former soviet union is usually used to calculate the cooling and humidity load in Chinese mines. However, some weaknesses exist in these formulas:
     fist, the parameters needed in these formulas are too many to make the formulas feasible; second, the effect of mass transfer is ignored which makes the calculation result not so precise; third, these formulas of former soviet union can’t be applied to calculation for Chinese mines perfectly. In this paper theory analysis and experiment simulation were combined. First, differential equations system of heat and humidity exchange between rock wall and airflow in mine in cylindrical coordinates was derived, and the mathematical modeling was built. Then on the basis of field survey and measurement, the simulation experimental bed system was built under the similarity theory to simulate the process of heat and humidity exchange between rock wall and airflow in mine. The actual sandstone in mine tunnels was replaced with concrete for its similar thermal performance in this experimental bed. The air state parameters at the outlet and temperature distribution in the surrounding rock can be monitored with changing of the temperature, humidity and velocity at the inlet of airflow. By a lot of experimental conditions and statistics methods, the influencing factors and change law of airflow heating and humidifying along the laneway when flowing through wet tunnel walls and surface steady temperature of surrounding rock was concluded, and regressive formulas for heat transfer coefficient and humidity transfer coefficient were obtained.
引文
[1]中华人民共和国国家统计局.中国统计年鉴-2005[M].北京:中国统计出版社,2005:237~240
    [2]郭云涛.中国煤炭中长期供需分析与预测[J].中国煤炭,2004,30(10):20~24
    [3]余恒昌,邓孝,陈碧琬,等.矿井热害与热害治理[M].北京:煤炭工业出版社,1991:336~452
    [4]胡中文.解决矿井深部开采问题的对策[J].煤炭技术,2004,23(3):40~41
    [5]胡汉华.深井高温矿山通风与降温技术研究动态[J].金属矿山,1999(7):39~43
    [6]谢贤平.深井降温技术中的新方法[J].江西有色金属,1996,10(1):7~10
    [7]冯如彬,李惠娟.深井降温技术中的新方法——冰冷却系统[J].矿业世界,1995(2):8~10
    [8]行政院劳工委员会.劳工作业环境测定实施办法[S],劳安三字第○二六九九号令,台湾:1981-02-14
    [9]李亚洁,廖晓艳,李利.高温高湿环境热应激研究进展[J].护理研究,2004,18(9):1514~1517
    [10]王建学,郭鑫禾,赫淑坤.高温采面围岩与风流的不稳定换热及氧化散热的计算[J].河北煤炭建筑工程学院学报.1995,(3):18~23
    [11]张国枢.通风安全学[M].徐州:中国矿业大学出版社,1989,221~230
    [12]吕品.矿井热害的调查与防治[J].中国煤炭,2002,12(7):57~59
    [13]国家安全生产监督管理总局总规划〔2007〕41号,煤矿安全生产“十一五”规划[S]
    [14]王文,桂祥友,王国君.矿井热害的治理[J].矿业安全与环保,2002,9(03):89~94
    [15]国家安全生产监督管理总局.煤矿安全规程[S].北京:煤炭工业出版社,2005-05-02
    [16]瓦斯通风防灭火安全研究所.矿井降温技术的50年历程[J].煤矿安全,2003,34(增):28~32
    [17]郭文兵,涂兴子,姚嵘,李文彩.深井煤矿巷道隔热材料研究[J].煤炭科学技术,2003,31(12):23~26
    [18]姚嵘,张玉波.深井煤矿巷道隔热材料研制[J].材料科学与工程,2002,20(4):572~575
    [19]吴先端等.德国矿井降温技术考察[J].江苏煤炭,1992,18(4):75~81
    [20]李莉,张人伟,王亮,彭担任.矿井热害分析及其防治[J].煤矿现代化,2006,71(2):34~36
    [21]中国科学院地质研究所地热室.矿山地热概论[M].北京:煤炭工业出版社,1981:3~8
    [22] Van der Walt,Whillier A,The Cooling Experiment at the Hartebeestfontein Gold Mine[J].Journal of the Mine Ventilation Society of South Africa.1978,31(8):120~125
    [23]余恒昌.矿山地热与热害治理[M].北京:煤炭工业出版社,1991,336~452
    [24]石建中,刘堂文.高温矿井空调冷负荷计算[J].工业安全与防尘,2001,3(3):112~116
    [25]赵义.井下热源计算[J].煤炭科技,1998,56(1):58~60
    [26]舍尔巴尼.矿井降温指南[M].北京:煤炭工业出版社,1982,72~101
    [27]吴世跃,王英敏.湿壁巷道传热系数及传质系数的研究[J].煤炭学报,1993,18(1):41~51
    [28]章熙民.传热学[M].北京:中国建筑工业出版社,2001,101~140
    [29]连之伟.热质交换原理与设备[M].北京:中国建筑工业出版社,2001,11~48
    [30] Lebcdev P D . Heat and m ass transfer between moist solids and air[J]. Int. J Heat Mass Transfer, 1961(1): 302~ 305
    [31]杨德源.矿井风流热交换[J].煤矿安全,2003,34(增):94~97
    [32] J.R.Welty (著),李为正,叶路(译).动量、热量、质量传递原理[M].北京:国防工业出版社,1984:90~362
    [33]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1998,260~262
    [34]朱谷君.工程传热传质学[M].北京:航空工业出版社,1989,544~547
    [35]杨沫.煤矿巷道内围岩传热量计算若干问题研究[D].天津:天津大学,2006:13~15
    [36]高建良.巷道围岩温度分布及调热圈半径的影响因素分析[J].中国安全科学学报,2005,15(2):74~77
    [37]周西华,单亚飞,王继仁,井巷围岩与风流的不稳定换热[J].辽宁工程技术大学学报,2002,21(3):264~266
    [38]李之光.相似与模化[M].北京:国防工业出版社,1982:18~54
    [39]姜振泉,季梁军,岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153~156
    [40]凌善康,李湜然.温度测量基础[M].北京:计量出版社,1998,271~284
    [41]赵明.多元线性回归预测及其检验在EXCEL中的实现[J].吉林化工学院学报,2003,20(2):85~87
    [42]何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001,238~239
    [43]约翰·内特.张勇,王国明,赵秀珍译.应用线性回归模型[M].北京:中国统计出版社,1990,113~127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700