橡胶水泥土动力特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外汽车工业的发展,废弃轮胎带来的废橡胶成为当前主要的固体废弃物之一,其利用问题已引起人们广泛的关注。将粉碎后的废橡胶颗粒应用于水泥土中,是一种高效的利用废橡胶的方式。橡胶水泥土(RCS)是将土、橡胶粉、水泥等强制搅拌,在一系列物化反应后形成的新型水泥土复合体。
     本文在前人的试验基础上改进了橡胶水泥土水泥土复合试样的制备方法,通过不排水动三轴试验详细地分析了应变、围压、置换率以及橡胶粉掺入比四个主要因素对复合试样动力特性的影响并分析了内在机理,根据有关数据,到了较为完整的复合试样的动力变形曲线,通过回归分析方法,得到了相应的拟合公式,并以此用于指导工程抗震设计,具有重要的理论意义和巨大的工程实用价值。
     橡胶水泥土动强度的试验研究:在橡胶水泥土动强度试验中,复合试样轴向动应变与振动次数的关系:即使试样配比不同时,动应变与振动次数的关系曲线大致上是相同的;动强度随着围压的增大而增大;在围压不变的情况下,动强度随着橡胶粉掺入比的增加而降低,但却随着置换率的增大而增大。
     橡胶水泥土动弹性模量和阻尼比的试验研究:橡胶水泥土复合试样的动弹性模量与阻尼比和应变的相关曲线,和水泥土的有关曲线形状基本一致,只是在数值上有大小不同;试验结论表明,随着围压的增大,动弹性模量增大而阻尼比减小;随着橡胶粉掺入比的增加,动弹性模量减小而阻尼比增大;随着置换率的增大,动弹性模量增大而阻尼比减小。并且提出了计算橡胶水泥土复合试样动弹性模量和阻尼比的简单方法。
     通过本次试验,得出一些橡胶水泥土复合试样动力特性的规律,为今后类似工程合理地进行地基处理和结构抗震设计提供了良好的参考作用。
With the development of the automobile industries at home and abroad, the growing amount of waste rubber produced from scrap tires has resulted in an environmental problem. The utilization of scrapped rubber tyre in cement-soil has attracted attention with both energy crisis and the rise of environmental consciousness. Rubberized cement-soil (RCS for short) is a new type cement-soil, which is made by forced mixing soft soil, crumb rubber, cement and so on after a serial of physical and chemical reactions.
     The preparation method of RCS clay samples is modified based on former researches. The variation laws of dynamic elastic modulus and damping ratio for composite sample of RCS are studied experimentally by means of dynamic triaxial test. Emphasis is laid on the influence of confining pressure and rubber powder content ratio and replacement ratio and analysis their inner mechanisms, which led to several conelusions useful to seismic design in engineering practiee.
     Test study on dynamic strength of RCS: The relationship of RCS is similar to those of pure clay. Test results indicated that dynamic strength decreases as the confining pressure increases; dynamic strength increases as the rubber powder ratio increases; dynamic strength decreases as the replacement ratio increases.
     Test study on dynamic elastic modulus and damping ratio of RCS: The relationship of RCS is similar to those of pure clay. Test results indicated that dynamic elastic modulus increases and damping ratio decreases as the confining pressure increases; dynamic elastic modulus decreases and damping ratio increases as the rubber powder ratio increases; dynamic elastic modulus increases and damping ratio decreases as the replacement ratio increases. And a simple for calculating the dynamic elastic modulus and damping ratio is proposed.
     Some conclusions of RCS are summarized by dynamic triaxial tesx, which will be a useful referce to reasonable foundations treatment in similar engineering practice afterword.
引文
1.聂世辉.水泥土的发展和应用[J].上海建材,2001,(02).
    2.许贤敏,路凡.水泥土的性能及其在国外的应用[J].公路,2005,5(05).
    3.刘松玉,钱国超,章定文.粉喷桩复合地基理论与工程应用[M].北京:中国建筑工业出版社,2006.
    4.胡鹏,朱涵等.橡胶集料混凝土渗透性能的研究[J].混凝土与水泥制品,2007,4(2).
    5.王凤池,刘涛,刘磊,等.橡胶水泥土的抗盐蚀结晶性能[J].沈阳建筑大学学报,2009,25(4):630-634.
    6.王凤池,刘涛,李庆冰,等.有害离子对橡胶水泥土抗侵蚀性能的影响研究.新型建筑材料. 2009,36(345):50-53.
    7.Feng-Chi WANG, Xiao YAN, Tao LIU, Xiao-Peng YE and Lei LIU. Compressive strength and young’s modulus development rules of rubberized concrete. 3rd International Conference On The Concrete Future [C]. 2008: 419–424.
    8.王凤池,叶霄鹏,燕晓,等.初期受冻对橡胶水泥土的影响研究.济南大学学报(自然科学版).2010
    9.WANG Feng-chi, YE Xiao-peng, YAN Xiao. The test study on rubberized cement-soil in freeze-thaw cycle environment. 2009(ISTP收录)
    10.王凤池,刘磊,等.橡胶水泥土电阻率变化规律研究.沈阳建筑大学学报.
    11.王凤池,刘磊,等.环境对橡胶水泥土电阻率的影响研究.
    12.骆亚生,谢定义,陈存礼.黄土不同湿度状态下破坏动强度的试验分析[J]。西安理工大学学报,(2001)Vo l. 17 No. 4
    13.徐源,等.砂土动三轴应力应变滞回环试验及其动力特性研究[J].建材技术与应用1009 - 9441 (2009) 01 - 0004 - 03
    14.侯永峰,等.循环荷载作用下水泥复合土变形性状试验研究[J].岩土工程学报,(2003) Vo 5. No. 3:288-291
    15.杨广庆.水泥改良土动力特性的试验研究[J].岩石力学与工程学报.(2003)22-7:1156-1160
    16.梁旭,蔡袁强.复合地基动弹性模量和阻尼比的试验研究[J]。土木工程学报,2004,11:96-101
    17.蔡袁强,梁旭,李坤.水泥土-土复合试样的动力特性[J].水利学报,(2003)10-0019-07.
    18.李继祥,贺建清,张家生.在石灰土调料在动载作用下弹性模量的试验研究[J].岩土力学与工程学报,(2005) 8:4715-4719
    19.刘铁军,欧进萍.高阻尼混凝土框架的动力特性与抗震试验[J].地震工程与工程振动,(2008),4:63 67
    20. Their G R, Seed H B. Cyclic stress strain characteristics of clay [J]. J. of the Soil Mechanics and Foundation Engineering Division, ASCE, 1968, 94 (2):555-569.
    21. M.O. Vocalic Song, Improving the strain-sensing edibility of carbon fiber - reinforced cement by ozone treatment of the fibers [J]. Cement and Concrete Research, 1998, 28 (2): 183 -187.
    22. Wang Y, Chung DD L. Effects of sand and silica fume on the vibration damping behavior of cement [J]. Cement and Concrete Research, 1998, 28 (10): 1353 - 1356.
    23. Fu X L, Chung DDL. Vibration damping admixtures for cement [J]. Cement and Concrete Research, 1996, 26 (1): 69 - 75.
    24. Shi Z, Chung DD L, Carbon fiber - reinforced concrete for traffic monitoring and weighing in motion[ J ]. Cement and Concrete Research, 1999, 29 (3): 435 - 439.
    25. Houston. Crumb rubber concrete Rapa handbook on polymers use in construction [M]. Shaw bury, SY44NR, UK: Rapier Technology, 2004. 108-112o
    26. Yasuda N, Matsumoto N. Dynamic deformation characteristics of sands and rock-fill materials [J] o Canadian Coe-technical Journal, 1993,30(5): 747-757.
    27.周健,白冰,徐建平.土动力学理论与计算[M].中国建筑工业出版社,2001.
    28.王杰贤.动力地基与基础[M].科学出版社,2001.
    29.黎冰,高玉峰,刘汉龙,等,几个影响室内土动力试验的重要试验参数,防灾减灾工程学报,2005,12,25(4)446-45.
    30. Maher, Chan BrigilSongl. inclined stripes in reinforced soil walls [J]. Civil Engineering, 1979, 54(6) :60-61
    31. Maher MH Woods RD. Sharma response of sand reinforced with randomly distributed fibers. Journal of Geotechnical Engineering, 1990, 116(7): 1116- 1131
    32.吴世明.土动力学[M.1,中国建筑工业出版社,2000.
    33 . Mors , Z. On the description of anisotropic work hardening o. J Mech Physics solids, 1967, 15: 612
    34. Iwan W D . On a class of models for the yielding behaviors and composite systems. J Appall Mesh, ASME, 1967,34:612
    35. Prevost J H. Mathematical modeling of monotonic and cyclic untrained clay behaviors. Int J N umber Analysts Methods Geo-mesh, 1977, 1, 195-216
    36 . Defiles Y F, Popov E P. A model of non-linearly hardening materials for complexloadings Acta Mechanics, 1977, 1, 195-216
    37. Krieg RDo A practical two-surface plasticity theory J Appall Mesh, ASME,1975, 42:641-646
    38.Gable CH,Weismann U C. Effectiveness of a reinforcing geared in a railway sub base under dynamic loads. Geo-textile and Geo-membranes, 1994,13:91-99
    39.张克绪,谢君雯.土动力学[M].地震出版社,1989.
    40.中国振动工程学会土动力学专业委员会.土动力学工程应用实例与分析[M].中国建筑工业出版社,1998.
    41.钱家欢,殷宗泽,土工原理与计算[M](第二版),中国水利水电出版社,1996.
    42.谢定义,土动力学[M],西安:西安交通大学出版社,1988
    43.朱思哲,刘雯,包承纲,等,三轴试验原理与应用技术[M],中国电力出版社,2003.
    44.袁举云.土工试验与原理[M],同济大学出版社,2005.
    45.汪闻韶.土的动力强度和液化特征[M] .中国电力出版社。1997.
    46.刘保健,谢定义,随机荷载下土动力特性测试分析法[M],人民交通出版社,2001
    47.奕茂田,郭莹,李木国,等,土工静力-动力液压三轴-扭转多功能剪切仪研发与应用[J],大连理工大学学报,2003,43(5):670-67
    48.汪闻韶,往返荷载下饱和砂土的强度、液化和破坏问题[J],水利学报,1950 (l):14-2
    49.谢定义,巫志辉,郭耀堂,极限平衡理论在饱和砂土动力失稳过程中的应用[J].土木工程学报,1981(4)
    50.何昌荣,动三轴试验的压缩和挤压伸长特性[J],四川联合大学学报(工程科学),1998,7, 2 (4):49-5
    51.中华人民共和国国家标准《地基动力特性测试规范》GB/T50269-97,北京:中国计划出版社,1998
    52.李松林,动三轴试验的原理和方法[M],北京:地质出版社,1990
    53.何昌荣,动模量和阻尼的动三轴试验研究[J],岩土工程学报,1997,3,19(2):39-48
    54.陈善民,等.水泥土动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报(工学),2000,34(3):398-403
    55.袁晓铭,等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程和工程振动,2000,20(4):133-139
    56.Lambe T W, Whitman R V. Soil mechanics [M]. John Wiley and Sons, Inc., New York, N. Y. 1969.
    57.“Lime stabilization.”. State of the Art Rep.[R]. Transp.R3es. Board, Washington, D. C. 1987.
    58.Hitcher P Y, El Hosri M S, Homsi M. Cyclic properties of soils within a large range of strain amplitude [M].Developments in Geotechnical engineering 42, soil dynamics and liquefaction, A. S. Cakmak, ed., Elsevier Science Co., Inc., New York, N, Y., 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700