复杂场地高坝建设适宜性的工程地质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究复杂地质环境条件下高坝建设的适宜性是水电工程建设过程中不可或缺的一个重要环节。针对这一课题,本文较为系统和明确的提出了高坝建设的适宜性评价问题以及研究这一问题的基本原理与方法体系。在此基础上,以澜沧江糯扎渡水电站为研究对象,以大量的现场实测资料为基础,以GEMM(Geology-Engineering-Mechanic Model)模型为桥梁,结合系统的数值模拟分析,进行了复杂场地高坝建设适宜性的工程地质研究。研究内容包括了岩体结构、地应力场、岩体力学特性、水力学特性等岩体力学环境条件的分析和评价;重点阐述了与高坝建设适宜性评价有关的岩体质量分级、GEMM模型建立及不同坝型在修建过程中可能产生的边坡稳定性问题、坝基不均匀沉降问题以及在蓄水后坝基岩体的变形稳定性问题。通过上述研究,本文取得了如下主要成果:
     系统归纳、总结了高坝建设工程地质适宜性评价的理论和方法,并将整个适宜性评价划分为规划选点、坝段坝址比选、坝线坝型比选、专项工程地质研究和技施设计工程地质研究五个阶段,提出了各个阶段的适宜性评价目标和决定因素。整个高坝建设适宜性评价的过程是一个从仅仅考虑地质因素到综合考虑地质环境和工程相互作用的逐步深入过程。
     提出了GEMM模型的概念,将GEMM模型定义为:由等价体单元、界面单元(包括天然边界单元和人工边界单元)以及各地质单元的目标参数构成的,包含有关键工程信息并可直接应用于分析判断和数值计算的参数化模型。认为GEMM模型是整个高坝建设工程地质适宜性评价的核心和纽带,它既是地质条件的概化综合,又包含了地质环境和工程相互作用的关键信息,同时也是理论分析和数值计算的基础。
     查明了糯扎渡坝区复杂岩体的成因,认为坝区岩体经历了复杂的岩浆活动、火山活动和多期构造作用后,产生了一系列原岩蚀变和变形破裂迹象;靠近右岸的丫口后山穹隆的隆起加剧了这些变形破裂从而为风化营力深入到坡体深部提供了良好的通道;两岸岩体介质水力学特性的不同更导致了地下水活动在空间上的不均匀性,从而形成了两岸岩体的差异风化,而风化程度的差异反过来进一步加剧地下水活动的不均匀性。因此,坝区复杂岩体是蚀变—构造—风化共同作用的结果。
     采用了四种岩体质量分级评价方案对研究区岩体质量进行了研究,这四种方案包括:工程岩体分级标准(GB50218-94)、水利水电围岩工程地质分类(GB50267—99)、岩体RMR分类(Bieniawski,1973)、岩体质量指数Z分级(小湾,1995)。结果显示,四种分级指标之间具有较好的相关性,岩体质量Z分级和其他的三种方法呈指数关系,RMR和水电围岩工程地质分级方法呈线性关系,而水电围岩工程地质分级与工程岩体分级方法则呈对数关系。其相关系数在0.85以上。在此定量化基础上,结合现场分类以及水利水电工程地质勘察规范,通过对比综合,得到研究区岩体质量分级。
     通过建立岩体力学参数与反映岩体质量优劣的指标(如RQD、K_V、V_P、Z、RMR、BQ、T)之间的相关方程,运用不同质量分级的分级定量指标计算相应级别的岩体力学参数值。结果表明,这种方法所求得参数值与实测值吻合很好,在试验资料不充分的部位,可以利用现场测得ROD、V_p等指标,快速求取相应的岩体力学参数值,供设计参考使用。
    
     咸都理工 大学工 学博士 学位论文,2002
     采用分形理论,研究了分维值与岩体变形模量和纵波速之间的关系,结果表明:岩体
    的变形模量并非只受岩体内结构面分布的影响,还受其岩块的变形性质的控制。仅用一个
    分维数与岩体变形模量的拟合方程来计算所有风化等级岩体的变形参数是不可行的,但是
    对于同一风化程度的同种岩体(其岩块变形参数相近)分维数和变形模量具有较好的线性
    相关关系,可以用分维数快速求取该种岩体的变形模量。
     运用数值模拟技术,对心墙堆石坝和混凝土重力坝对研究区的工程地质适宜性。研究
    结果表明:对于混凝土重力坝,按照现在的深开挖方案,坝肩开挖后,土石方开挖量高达
    820X10‘m‘,且在72dri高程至坡顶将产生大范围的破坏区,采用工程治理将带来巨额的
    费用。综合比较推荐的两种坝型的适宜性评价结果,表明:心墙堆石坝具有更好的适宜性。
Engineering geological feasibility study is a key stage to high-dam construction. Its research findings may have decisive influence on decision-making. Objectives of this research are to evaluate the strength stability and deformation stability of engineering buildings and rock mass within range of influence.
    In terms of main principles of Dynamic Geo-historical Course Analysis and Systems, field site at Nuozhadu hydropower station, Langcangjiang River, Yunnan Province is investigated in detail.
    Based on the in situ measured data and numerical modeling results, the research are mainly composed of four parts. Included are: (1) Engineering geological conditions, rock mass mechanical environment and it's hydraulic parameters at research area. (2) Assessment of rock mass quality and determination of their corresponding mechanical parameters. (3) Study of Geological Engineering Mechanical Model(GEMM). (4) Evaluation of feasibility of planned dam types in course of dam construction and after storage.
    The main findings of this research are as follows:
    The researching theory and method system of engineering geological feasibility study of high-dam construction are summarized in this thesis. Furthermore, the study process has been divided into five stages, namely are planning, comparison of dam section, comparison of dam site, comparison of dam axes and special-purpose engineering study. Each stage has its own research objectives and key decisive factor. The whole researching process of engineering geological feasibility is a step by step course from merely considering geological factors to taking the interaction between geological environment and engineering into account.
    The concept of GEMM (Geology-Engineering-Mechanic Model) has been proposed in this thesis. GEMM is a parameterized model consisted of representative units, boundary units (including natural boundary and artificial boundary), target parameters and key engineering information. It is a kernel and belt in the process of geological feasibility evaluation because it is not only integration of generalized geological conditions and engineering information but also basis of further theoritical analysis and numerical modeling. As an example, A GEMM has been built in combine with the research practice of research area.
    The formation mechanism of complex rock mass at research area is probed. Research shows that four factors have great influence on the formation of complex rock mass. First, rock mass subjected six times of tectonic movement during long period of geo-history, each tectonic movement produced fractures and associated joints corresponding to the orientation of maximum
    
    
    
    principal stress and deteriorated the properties of fractures formed at former period(s). Second, down-cutting of Langcangjiang River produced unloading fractures. Third, the upheaval of Yakou Vault produced a serial of radial tensile fractures which located xm right-bank side, thus, degraded the rock mass structure of right-bank. Fourth, the intersection and convergence of all these fractures formed a fracture net which served as good channel for all kinds of weathering forces, especially ground water, enter into deep inner part of rock mass. Under the combined action of above-mentioned four factors, the complex rock mass at right bank which consist of two weak rock mass bands and superficial unloading relaxed rock mass came into being.
    Quality of rock mass has been accomplished by using four kinds of assessment method. Zone maps show that rock mass quality generally has the tendency which decedent with elevation, however, the change of rock mass quality is not gradual but has "skips" at some positions. This manner of change reflected the great influence of texture to rock mass quality.
    Rock mass mechanical parameters corresponding to individual rock mass quality at different levels are determined by means of correlation analysis and statistical analysis. Results show that calculation outcomes match well with measured mechanical parameters. Thus, mechanical parameter
引文
[1]黄润秋,王士天,胡卸文等.澜沧江小湾水电站高拱坝坝基重大工程地质问题研究.成都:西南交通大学出版社.1996
    [2]成都勘测设计研究院.金沙江溪落渡水电站可行性研究报告(第一篇 综合说明).1998,1
    [3]谷德振,岩体工程地质力学基础.北京:科学出版社,1979.
    [4]孙玉科,李建国.岩质边坡稳定的工程地质研究.地质科学,No.4.1965.
    [5]孙广忠,岩体结构力学.北京:科学出版社,1988.
    [6]张倬元,王士天,王兰生.工程地质分析原理(第二版).地质出版社,1993
    [7]黄润秋,张倬元等.中国西南地壳浅表层动力学过程及其工程环境效应研究.成都:四川大学出版社,2001.
    [8]黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究.成都:成都科技大学出版社,1991.
    [9]开创复杂性研究的新学科—系统科学纵览.成都:四川教育出版社,1991.
    [10]崔政权.系统工程地质导论.北京:水利电力出版社,1992.
    [11]陈祖安主编.中国水利发电工程(工程地质卷).北京:中国电力出版社,2000.
    [12]李广诚,王思敬.浅论工程地质的决策与方法.工程地质学报,Vol(18),suppl,2000.
    [13]李怀祖.决策理论导引.北京:机械工业出版社,1993.
    [14]水利电力部西北勘测设计院.黄河拉西瓦水电站可行性研究报告.1986,9.
    [15]水利电力部成都勘测设计研究院.金沙江溪落渡水电站坝址选择报告(可行性研究阶段).1993,12.
    [16]水利电力部成都勘测设计研究院.金沙江溪落渡水电站可行性研究报告(第三篇工程地质).1998,2.
    [17]Priest S.D.,Hudson J.A. Discontinuity of Spacing in Rocks, Int. J. Rock Mech. Min. Sci..And Geomech.Abstracts,Vol. 13,1976
    [18]Priest S.D.,Hudson J.A. Estimation of discontinuity spacing and trace length using scanline. Int. J. Rock Mech. Min. Sci..And Geomech. Abstracts, Vol. 19,1981
    [19]Kulatilake P H S W, Wu T H. Estimation of mean Iength of discontinuities. Rock Mech. Rock Eng. Vol. 17,1984
    [20]Deere D.U.,Technical Description of Rock Cores for Engineering Purposes,Rock Mech. Eng. Geol. Vol. 1,1964
    [21]Gaziev E.G.,Tiden E.N.,Probabilistic Approach to the Study of Jointing in Rock Masses,Bulletin of the Int.Assoc.of Engineering Geology, Vol.20,1979
    [22]Miller S.M.,Borgman L.E.,Spectral Type Simulation of Spatially Correlated Fracture Set Properties,Mathematical Geology, Vol. 17,1985
    [23]朱焕春,杨连生,论岩体几何的地质属性,武汉水利电力大学学报,Vol.28,No.2,1995
    [24]孔德坊.工程岩土学.北京:地质出版社.1992
    [25]Patton F D. Multiple Model of Shear Failure in Rock,Proc. Lst Int Congr, Int Soc Rock Mesh,Lisbon,Geol, 1966.
    [26]Barton N, A relationship between joint roughness and joint shear strength,Rock Fracture,Proc.Int.Symp. Rock Mech.,Nancy, 1971.
    [27]Barton N, Review of a new shear strength criterion for rock joints, Engineering Geology, 1973,7.
    
    
    [28]Barton N, etal. Strength,deformation and conductivity coupling of rock joints, Int J Rock Mech Min Sci,Vol.22,No. 3,1990.
    [29]Barton N and Choubey V, The shear strength of rock joints in theory and practice,Rock Mechanics, 1977,10.
    [30]N. Barton and S. Bandis. Review of Preditive Capabilities of JRC-JCS Model in Engineering Practice, Rock Joints, 1990.
    [31]R. Tse and D. M. Cruden. Estimating Joint roughness coefficient. Int. J. Mech. Sc. & Geomech. Abstr. 1979, Vol.16
    [32]王歧,用伸缩率R确定岩石节理粗糙度系数的研究,地下工程经验交流会论文集,1986.
    [33]谢和平,Pariseau W G.岩石节理粗糙系统(JRC)的分形估计,中国科学,1994,Vol.24
    [34]王剑锋,岩体结构面粗糙度系数研究进展,地质科技情报,1991,No.10
    [35]P.H.S.W.Kulatilake and T.W.Wu.Estimation of mean length of Discondnuity.Rock Mech Rock Eng.1984,Vol.17
    [36]G.M.Laslett.Censoring and Edge Effects in Aera and Line Transect Sampling of Rock Joint.1982
    [37]黄国明,黄润秋.基于交切条件下的不连续面迹长估计算法.地质科技情报.1998,25(6).
    [38]范留民.溪洛渡水电站工程八架抗滑稳定边界条件及其工程适宜性评价(成都理工学院学位论文),2000.
    [39]周维垣,杨延毅.节理岩体的损伤模型及非线性有限元分析.岩石力学与工程学报,1988,7(3).
    [40]何满潮,薛延河,彭延飞.工程岩体参数确定方法研究.岩石力学与工程学报,2001,20(2).
    [41]黄润秋等,金沙江溪落渡水电工程岩体结构模型及工程应用研究.成都理工学院,1999.12
    [42]黄润秋,张倬元,王士天等.黄河拉西瓦水电站高边坡稳定性的系统工程地质研究,成都:成都科技大学出版社,1991.
    [43]黄润秋等.长江三峡工程大跨度地下厂房围岩稳定性研究报告,成都理工学院,1999
    [44]白世伟,任伟中.共面闭合断续节理岩体强度特性直剪试验研究,岩土力学 1999,20(2).
    [45]吴刚.完整岩体卸荷破坏的模型试验研究,实验力学.1997,12(4).
    [46]张国新,李广新,郭瑞平.不连续变形分析与土的应力应变关系.清华大学学报,2000,40(8).
    [47]梁海波,李仲奎.FLAC程序及其在我国水电工程中的应用,岩石力学及工程学报,1996,15(3).
    [48]寇晓东,杨若琼.三维快速拉格朗日法在小湾拱坝稳定分析中的应用.云南水利发电学报,2000,16(2).
    [49]梅松华,盛谦.FLAC在岩土工程参数反演中的应用.矿冶工程.-2000,20(4).
    [50]胡斌.深切峡谷区大型地下硐室群围岩稳定性的动态数值仿真研究.成都理工大学学位论文,2001.
    [51]寇晓东,周维垣.FLAC—3D进行三峡船闸高边坡稳定分析.岩石力学与工程学报.-2001,20(1).
    [52]Palmstrom A.Chatacterizing rock mass by the RMI for use in practical rock engineering. Tunnelling and Underground Space Technology, 1996 11(2).
    [53]徐军,邵军,郑颖人.遗传算法在岩土工程可靠度分析中的应用.岩土工程学报,2000,22(5).
    [54]陈昌彦,王思敬,沈小克.边坡岩体稳定性的人工神经网络预测模型.岩土工程学报,2001,2(2).
    [55]Hoek E,Bray J W.岩石边坡工程.卢世宗等译.北京:冶金工业出版社,1981.
    [56]罗国煜.岩坡稳定性系统工程分析的初步探讨.地质评论,1986,32(2).
    [57]陈文玲,李宁.含非贯通裂隙岩体介质的损伤模型.岩土工程学报,2000,22(4).
    [58]谢和平.岩石混凝土损伤力学.徐州:中国矿业大学出版社,1990.
    [59]范景伟,何江达.含定向闭合断续节理岩体的强度特性.岩石力学与工程学报.1998,17(3).
    [60]王华宁,吕爱钟,曹志远.巷道裂隙岩体的损伤参数识别.岩土工程学报,2001,23(5).
    [61]Lemaitre J. How to use damage mechanics. Nuclear Engineering and Design, 1984,(80).
    
    
    [62]王述红,郝哲.岩体微裂隙注浆量预测的遗传神经网络方法,岩土工程学报,2001,23(5).
    [63]黄润秋.岩石高边坡的时效分析及其工程地质意义.工程地质学报,2000,8(2).
    [64]黄润秋,许强.开挖过程的非线性理论分析.工程地质学报,1999,7(1).
    [65]黄润秋.现代系统科学理论与工程地质系统观.水文地质与工程地质,1997,24(1).
    [66]黄润秋.边坡治理工程的数值模拟研究.地质灾害防治与地质环境保护,1996,7(1).
    [67]黄润秋.高边坡整体稳定性评价探讨.水文地质与工程地质,1995,22(6).
    [68]陈宝林.最优化理论与算法.北京:清华大学出版社,1989.
    [69]吴世伟.结构可靠度分析.北京:人民交通出版社,1990.
    [70]GB50287-99,水利水电工程地质勘查规范.
    [71]工程地质手册编写委员会.工程地质手册.北京:中国建筑工业出版社,1992.
    [72]孙玉科.边坡岩体稳定性分析.北京:科学出版社,1988.
    [73]Romana M . SMR Classification. Proceedings of the 7th International Congress in Rock Mechanics. International Society for Rock Mechanics(ISRM),1992.
    [74]Kwomoto T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanic theory. Int J Num &Anal Methods Geomech, 1998,12(1).
    [75]焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1996.
    [76]贺可强,阳吉宝,王胜利.遗传算法在土钉支护结构优化设计中的应用.岩土工程学报,2001,23(5).
    [77]仵彦卿,张倬源.岩体水力学导论.成都:西南交通大学出版社,1995.
    [78]田开铭,万力.各向异性裂隙介质渗透性的研究与评价.北京:学苑出版社,1989.
    [79]杨成田.专门水文地质学.北京:地质出版社,1981.
    [80]朱学愚.地下水资源评价.南京:南京大学出版社,1987.
    [81]Bienlawski Z.T. Engineering Rock Mass Classification, Intercience Publication, Viley, New York, 1993.
    [82]Bienlawski Z.T. The Geomechanics Classification in Rock Engineering Applications. Proc.4th international conference on rock mechanics, 1979.vol.1, 55~95.
    [83]黄志全,王思敬等.岩体力学参数取值的置信度及其可靠性.岩石力学与工程学报,1999,18(1).
    [84]徐建平,胡厚田,张安松.边坡岩体物理力学参数的统计特征.岩石力学与工程学报,1999,18(4).
    [85]Chowdhuny R N. Slope analysis. New York: Elscsvier Scientific Publishing Company, 1978.
    [86]王如路,陈乃明等.用随机过程确定岩体力学参数.矿冶工程,1994,14(4).
    [87]李胡生,熊文林.岩体力学参数的工程模糊处理.水利学报,1994,(1).
    [88]Georgi,M. On the valuation of strength and resistant conduction of the rock in natural rock mass. Proceeding of the second congress of the international society for rock mechanics, 1970.
    [90]李胡生等.岩石样本力学参数的随机模糊处理方法.岩土工程学报,1992,6.
    [89]Bieniaswki,Z.T., Determining rock mass deformability experience from case histories I.J.R.M., Vol. 15,1978.
    [91]陈志坚,孙英学.裂隙岩体力学参数的弱化处理.江苏地质,2000,24(1).
    [92]Ikeda K A. Classification of rock mass conditions for tunneling. Proceeding of first congress of geological engineering. Paris 1970.
    [93]Aydan O,Akogi T, Kawmoto T. The squeezing potential of rocks around tunnels: theory and prediction. Rock Mech. And Rock Engineering, 1993,26(2).
    [94]Ito J.Konda T. Ayden O. performance of the suport system of a tunnel in squeezing rocks. Proceeding Korea-Japan Joint Symposium on Rock Engineering. Seoul:1996.
    
    
    [95] Barton N. The influence of joint properties in modeling jointed rock masses .Proceeding 8th rock mechanics congress. Tokyo: 1995.
    [96] Singh B. Indian case studies of squeezing grounds and experiences of application of Barton's Q system. Workshop on Norwegimn Method of Tunneling. CSMRS. New Delhi: 1993.
    [97] Kalamaras G S,Bieniawski Z.T.A rock mass strength concept for coal seams incorporating the effect of time. Proceeding 8th ISRM Congress. Tykyo: 1995.
    [98] Hoek E.Brown E.T.. Empirical strength criterion for rock masses. Journal of Geotechnical Engineering. ASCE, 1980
    [99] 乔春生,张清,黄修云.岩体力学参数预测的新方法.北方交通大学学报,1999,23(4).
    [100] 白明洲.大型地下硐室围岩稳定性的岩体结构控制效应研究.成都理工大学博士学位论文,2000,5.
    [101] 国家电力公司昆明勘测设计院.工程地质选坝报告(科研报告),2001,10.
    [102] Goodman,R.E. Introduction to rock mechanics, Wiley, New York, 1989.
    [103] 黄国明.节理岩体描述及其工程应用.成都理工大学博士学位论文,1999,5.
    [104] Hoek E, Brown E.T. Empirical strength criterion for rock mass, ASCE Journal of Geotecnical Engineering, 1988, vol. 106.
    [105] 光跃华.岩土工程参数统计中的几个问题.岩石力学,1992,(25).
    [106] Amusin B.Z. Mechanical characteristics of rock in place in analytical calculations on rock pressure phenomena in workings,Sov. Min. Sci.,15,1979
    [107] 李云林.三峡工程坝基岩体力学参数选择分析.长江科学院院报,1996,13(3).
    [108] 高安秀树著,常子文等译.分数维.北京:地震出版社,1989.
    [109] 张济忠.分形.北京:清华大学出版社,1995.
    [110] 平田隆幸.断层与分维数.地震地质译丛,1991,1.
    [111] 王在泉,华安增.节理岩体损伤变量确定的分形方法.岩土力学,1998,19(2).
    [112] 徐志英.岩石力学.北京:水利电力出版社,1993.
    [113] 陈志坚,孙英学.裂隙岩体力学参数的弱化处理.江苏地质,2000,24(1).
    [114] 张建海,何江达,范景伟.小湾工程岩体力学参数研究.云南水力发电,2000,16(2).
    [115] Wyllie D. C. Foundations on Rock. Chamber and Hall, London, U.K.(1992)
    [116] Itasca Consulting Group Inc. Manual for FLAC~(3d) users, USA(1997).
    [117] 寇晓东,周维垣,杨若琼.三维快速拉格朗日法及其在拱坝稳定分析中的应用.水利水电技术,2000(7).
    [118] 柴军瑞.龙滩碾压混凝土坝渗流场对重力场的影响.红水河,2001,20(2).
    [119] 柴军瑞,仵彦卿.混凝土坝渗流场与应力场耦合分析的数学模型.水利学报,2000.9.
    [120] 王运生,黄润秋,王士天.西南某坝区右岸复杂岩体成因初步分析.地质灾害与环境保护,2002,13(1).
    [121] 文志兵,王士天,王运生.西南某电站右岸倾坡内夹泥裂隙成因探讨.地质灾害与环境保护,2002,13(1).
    [122] 严明,黄润秋,许模.某水电站右岸坝肩边坡的网状张裂变形.地质灾害与环境保护,2002,13(1).
    [123] 日本电力土木技术协会编.最新土石坝工程学.北京:水利电力出版社,1983.
    [124] 阿德玛.瑟言奥,费奥瑞里等.伊泰普混凝土大坝性能中几个令人关注的问题,第二十届国际大坝会议)论文集 Q.78-R.3,第41—49页.
    [125] 李振富,张社荣,李胜军.蓄水过程对重力坝岸坡坝段的影响.水利水电技术,2001,5.
    [126] 黄润秋,胡卸文等.金沙江溪洛渡水电工程岩体结构模型及其工程应用研究.成都理工大学,1997,12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700