弱凝胶驱油技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弱凝胶驱油技术是在聚合物驱技术和凝胶堵水技术基础上发展起来的一项提高采收率新技术,由于其在驱油的同时还具有调剖的作用,可解决油层垂直和平面矛盾,近年越来越受到研究人员的广泛关注。目前国内外许多学者也致力于这方面的研究,取得了不少成果,但该技术仍有许多问题未得到很好的解决,如交联引发及控制因素、弱凝胶的表征和描述测量、弱凝胶的结构、弱凝胶处理对油藏流体渗流机理的影响和调驱作用的发生条件、如何防止调驱剂对非目的层的伤害等,这些问题限制着弱凝胶驱油技术的推广应用。为了解决上述问题,充分发挥弱凝胶驱油技术的优势,本文对弱凝胶驱油技术进行了系统研究。
     弱凝胶指使用接近于聚合物驱浓度的聚合物,加入少量延缓型交联剂,使之形成主要以分子间交联为主,分子内交联为辅的凝胶体系。因此通过广泛调研和大量实验,本文首先筛选出适合深部弱凝胶调驱的聚合物主剂,合成出延缓型有机铬交联剂,在此基础上选择适当的稳定剂,通过合适的比例复合得到了深部调驱弱凝胶体系。然后系统研究了交联聚合物体系的基本性质,在此基础上研究双河现场污水和下二门现场污水对成胶反应的影响,探讨了各种影响弱凝胶性能的因素。
     本文对弱凝胶的成胶机理进行了探讨,采用原子力显微镜和环境扫描电镜等测试手段以纳米技术表征了不同弱凝胶类型的胶团结构,分析了凝胶强度与胶团结构的关系,认识了凝胶的微观结构,为弱凝胶的流变行为预测建立了基础。
     通过流变学实验分析了不同交联比条件下交联聚合物弱凝胶的粘弹性变化和弱凝胶反应过程中粘弹性的变化,建立了弱凝胶体系的本构方程,提出了有物理意义的参数。针对弱凝胶的特点,建立了一套评价弱凝胶强度、性能的技术方法和测试标准。通过岩心流动实验和数据拟合,直观反映了弱凝胶的注入性、选择性、剖面改善程度等性能,建立了粘弹性模量与残余阻力系数和渗透率的数学关系,为数模优化提供了基础参数。
     此外,论文对调驱作用发生条件及弱凝胶有效进入目的层技术进行了研究,探讨了弱凝胶对油水相渗透率变化影响机理,结果表明凝胶处理含油多孔介质使油/水相相对渗透率均大幅度下降,可动饱和度范围明显缩小,弱凝胶的易屈服性导致多孔介质中不同流体的渗透率均随流速的增加而上升;在此基础上分析了凝胶处理使油/水相对渗透率产生不均衡减少的原因。
     河南油田矿场实验结果表明弱凝胶注入后,注水井的吸水剖面有所调整,综合
    
    含水得到控制,起到了稳油控水的目的;与聚合物驱相比,采用有机交联弱凝胶驱
    可大幅降低生产成本。
    关健词:弱凝胶滚合物交联剂提商采收率驭油矿场实脸
The weak gel flooding technology is developed on the basic of the polymer flooding and the gel water shut-off technology, and due to its profile modification action besides the oil displacement action and which can solve the contradiction between the uprightness and the plane, so which have been paid attention to widely more and more by researcher in recent years. Now, many scholar at home and abroad take up with this study too and have acquired respectable fruits, but there are still many problems unsolved, such as the cross linking and the controlling factor, the characterize and the describing and the measurement of the weak gel, the structure of the weak gel, the gel treatment how to influence the seepage mechanism of the fluid in the petroleum pool and the conditions of the weak gel flooding occurred, and how to prevent the weak gel damage the non-objective stratum and so on, which limit the weak gel flooding to be extended and applied. In order to solve above problems and make full advantage of the weal gel flooding technology, this paper studied this technology systematically.The weak gel is that a few retarding type cross linker is added into the polymer, which the concentration is close to the polymer flooding, and make the polymer be formed the gel system of which the intermolecular cross linking is mostly and the intramolecular cross linking is secondary. So, through widely surveying and a great deal experiments, this paper firstly screened out the polymer host agent which is suited to the weak gel flooding in deep stratum and composed the retarding type organic chromium cross linking agent, and on the basic of that to select the proper stabilizing agent, and compounded with a proper ration to get the deep flooding modification weak gel system. Then, this paper studied systematically the basic property of the cross linking polymer system, on the basic o f which studied the infection of the Shuang He and Xia Er Men locale waste water to the cross linking reaction and discussed all sorts of infection factor of the weak gel property.This paper discussed the cross linking mechanism and used micromillimeter technic to characterize the gel lump structure of the different weak gel types by the atomic force microscope , environment SEM and other means, and analyzed the relation between the gel strength and the gel lump structure and recognized the gel microstructure, and established the foundation for the rheological behaviour of the weak gel forecasting.
    
    Through the rheology experiment, this paper analyzed viscoelasticity variation of the cross linking polymer weak gel in different cross linking ration and during the cross linking reaction, and established the constitution equation of the weak gel system, and put forward to the parameter having the physical meaning. Aiming at the characteristic of the weak gel, this paper established a suit of technical method and test criteria to evaluate the strength and the performance of the weak gel. Through the rock core flowing experiment and the data matching, it visually reflected the injectivity, the selectivity , the profile improved degree and other performance of the weak gel, and established the mathematic relation for the viscoelastic modulus, residual resistance factor and permeability, and offered the basal parameter for the numerical model optimized.Moreover, this paper studied the condition of the flooding action occurred and the technology of the weak gel effectively entering into the objective stratum, and discussed the infection mechanism of the weak gel to the permeability rate variation of the oil and water phase. The results indicate that using the weak gel to treat the oil-bearing porous medium will cause the relative permeability of the oil/water phase to be reduced greatly, and the movable saturation scope to be decreased obviously, and the permeability of the different fluids in the porous medium to be increased with the velocity of flow increasing because of the weak gel easily bended performance. Based on above, this paper analyzed the reason that th
引文
[1] 中国石油天然气总公司科技发展开发生产局编,改善高含水油田开发效果实例,石油工业出版社,1996
    [2] 王平美等,弱凝胶调驱体系在岩心试验中的行为特性研究,石油钻采工艺,2002(5)
    [3] Sydansk R D, Smith T B, SPE 17383
    [4] Smith J E. SPE 28989, 1995
    [5] 韩大匡等,胶态分散凝胶驱油技术的研究与进展,油田化学,1996(9)
    [6] 刘翔鹗,堵水和剖面调整技术在中国油田的发展和应用,SPE29907
    [7] 白宝君等,国内外化学堵水调剖技术综述,断块油气田,1998
    [8] McCool C S. Permeability Reduction Mechanisms Involved Insitu Gelation of a Polycrylamide/Chrominum(Ⅵ)/Thiourea System. SPE/DOE 17333, 1988
    [9] Mumallah N A. A Practical Method for the Evaluation of Weak Gels, SPT, 1987
    [10] Deborah Setal. The Effect of Temperature on Gelation Time for Polycrylamide/Chrominum Systems. SPEJ, 1982
    [11] 吴凤芝等,PI—8203调剖剂效果室内岩心评价,大庆石油学院学报,1988
    [12] 张祥云等,矿化度对交联聚合物成胶的影响,大庆石油学院学报,1990(14)
    [13] Smith J E. Quantative Evalution of Polyacrylamide Crosslinked Gels for Use in Enhanced Oil Recovery. International ACS symposium, Anaheim, California, 1986
    [14] Smith J E. SPE27774, 1994
    [15] Smith J E et al. SPE35352, 1996
    [16] Smith J E And Mack J C. SPE27780, 1994
    [17] Smith J E And Mack J C. Gels Correct In-Depth. Reservoir Permeability Variation. Oil Gas J, 1997
    [18] 韩大匡,我国三次采油提高采收率技术发展展望,中国石油天然气总公司油气田开发工作会议文集,1996
    [19] 刘敏等,非水解聚丙烯酰胺/乙酸铬凝胶堵剂研究,油田化学,1998
    [20] 王彬等,一种深部调剖用聚合物/有机铬冻胶体系,油田化学,1999
    [21] 陈铁龙等,胶态分散凝胶及其流度、渗流特性研究,油田化学,1998
    [22] 彭勃等,聚丙烯酰胺胶态分散凝胶微观形态研究,油田化学,1098
    [23] 王克亮等,胶态分散凝胶驱油效果实验研究,大庆石油地质与开发,1999
    [24] Seright R S. Soc Petrol Enging J Reservair Eng. 1991
    
    [25] 刘义坤等,凝胶体系地层流体转向技术,石油工业出版社,2000
    [26] 韩冬,可动凝胶驱油体系研究及矿场试验,博士后论文
    [27] Fielding R C Jr, Gibbons DH, Legrand F P, SPE27773
    [28] 大庆堵水示范区综合治理技术总结报告,全第八次堵水会议材料
    [29] Jack L M, Green W N, Schoelingl, Amer Oil Report, 1991
    [30] 湛凡更等,MS—881油藏深部调剖剂,石油钻采工艺,1993
    [31] 崔桂陵等,调部用部分水解聚丙烯酰胺—柠檬酸钛体系,油田化学,1993
    [32] Hedge, R. M. US4657080, 1987
    [33] Bruning, D. D. US4498537, 1985
    [34] Paynt, K. L. US4702842, 1987
    [35] Hammett, R. E. US4488601, 1984
    [36] Willhite PG, Jordan DJ. Polym, Prepr, Amer, Chem. Soc, Oil, Polym, Chem. 1981
    [37] 李炜等,新型聚丙烯酰胺—柠檬酸铝延缓交联体系的研究,“七五”国家重点科技攻关项目成果报告
    [38] Prud homme RK, UH1 LT, Poinsatee J Petr1. SPE J, 1983
    [39] Robison PD, Stipanovic A, Stypulkoski CE et al. USA Patent 5, 236, 046
    [40] Sydansk RD. USA patent 4, 744, 418
    [41] Albonic P, Lockhart T P. SPE25220
    [42] Fletcher AJP, Flew S, Forsdyke IN et al. Proceeding 6th European Improved Oil Recovery Symposium, Searanger, Norway, 1991
    [43] Sydansk RD, SPE17329
    [44] Bartosek M, Mennella A, Lockhart T Petal, SPE27828
    [45] Liang J T, Seright R S. SPE27829
    [46] Norton C J, Fak D O, USA Patent 4, 343, 363
    [47] Burkholder L A, Avery M R, Gruenfeider M A, SPE14114
    [48] Polym, Cooke R W, Hawk W A, Mafri Science Engineering, 1986, 5: 778
    [49] Barkat O, Clark P E, SPE19331
    [50] Harms M W, Norman R L, Sandy M J, USA Patent 5, 165, 479
    [51] Mumallah N A. SPE15906
    [52] Albonico P, Bartosek M, Lockhart T P. SPE27609
    [53] Shu P. Oilfield Chemistry ACS Symp. 1989
    [54] Thompson M, Cormick E R, Inorganic Chemistry, 1981
    [55] 中国科学院数学研究所数理统计组编,正交实验法,人民教育出版社,1975
    [56] 顾文涛等,浅析油田采出水的成份及所受影响,油气田地面工程,1999
    
    [57] 张云涛等,低矿化度污水对聚合物粘度的影响,石油钻采工艺,1998
    [58] 师树义等译,采油用水溶性聚合物,北京:石油工业出版社,1994
    [59] Nanda S K, SPE16253
    [60] J. H. Sugarman, Polym, sci, 1994
    [61] 李良雄,弱凝胶深部调驱机理研究,硕士学位论文,石油勘探开发研究院,1999
    [62] Lockhart T P, SPE20998
    [63] 赵福麟,采油化学,石油大学出版社,1989
    [64] 江体乾,流变学在我国发展的回顾与展望,力学与实践,1999
    [65] 李晓晖译,实用流变测量学,石油工业出版社,1998
    [66] Aslam S, Viscometric Measurement of Chromium(Ⅲ)-Polyacrylamide Gels by Weissemberg Rheologiometer, SDE/DOE 12639
    [67] Gebhard Schramm,李晓晖译,实用流变测量学,北京:石油工业出版社,1998
    [68] 许元泽等,高分子通讯,1985,(3),221
    [69] Leblans, P. J. R, J. Sampers, and H. C. Booij, Rheol. Acta, 1985, 24, 152
    [70] Lodge. A. S, Trans. Faraday soc, 1956, 52, 120
    [71] Johnson, Fluid Mech, 1977, 2, 255
    [72] Callister. Jr, Materials science and Engineering, An Introduction, 4(th) ed, New York, 1997, 108
    [73] Macosko, C. W, Rheology Principles, Measurements, and Applications Wiley-Vch, 1994, 175
    [74] De Gennes, P. G, J. Chem, Phys, 1971, 55, 572
    [75] Doi, M. And S. F. Edwards, J. Chem. Soc, Faraday Trans, 1978, 74, 1789
    [76] Jennemen GE. U. S. patent 4, 934, 456
    [77] 白春礼,物理通报,1995.10
    [78] 陈文芳著,力学丛书,非牛顿流体力学,第1版,北京:科学出版社,1984
    [79] Waiters, K, Relation Between Coleman and Noll, Rivlin and Ericksen, Green and Rivlin, and oldroyd Fluids, ZAMP, 1970, 21, 592
    [80] D. M. Dolan. SPE25454
    [81] 刘玉章等,胜利油田用化学法提高原油采收率的探索与实践,油气采收率技术,1994
    [82] A. O. Bordeaux U. SPE59317 Apr. 2000
    [83] R. S. Seright. SPE59316 Apr. 2000
    [84] “冻胶调剖剂性能评价方法”,石油天然气行业标准SY/T 5590-93
    [85] “采油用聚合物冻胶强度的测定”,石油天然气行业标准SY/T 6296-1997
    [86] 刘双成等,用于堵水和调剖的聚合物水基凝胶的力学性能,油田化学,1995
    
    [87] J. Smith, SPE18739, 1989
    [88] 陈铁龙等,孔隙阻力因子法评价胶态分散凝胶强度,油田化学,1998
    [89] 李颖等,交联聚合物转变压力测试方法及装置,石油仪器,2000
    [90] R. D. Sydank. A Newly Developed Chromium(Ⅲ) Gel Technology. SPEeservoir. Eng1990
    [91] 田根林等,交联聚合物剪切特性及渗流规律研究,油气采收率,1997.4
    [92] Dawe, R. A. and Zhang. Y. Mechanistic study of the selective action of oil and water penetrating into a gel emlaced in a porous medium[J]. Journal of Petroleum Science and Engineering(1994) 12, 113-125
    [93] Seright, R. S., Liang, J., and Sun, H. Gel Treatments in Production Wells with Water-Coning Problems[J]. In Situ(1992) 17, No. 3, 243-272
    [94] Liang, J. and Seright, R. S. Further Investigation of Why Gels Reduce K_W, More Than K_O[C], SPE 37249(Feb. 1997)
    [95] Thompson, K. E. and Fogler, H. S. Pore-Level Mechanisms for Altering Multihpase Permeability with Gels[J], SPEJ(September 1997)2, 350—362
    [96] Nilsson, S. Stavland, A. And Jonsbraten, H. c. Mechanistic Study of Disproportionate Permeability Reduction[C], SPE 39365(19-22 April 1998)
    [97] Wheeler W D, Inorganic Chem, 1982, 21, 3248—3253
    [98] 彭勃,李明远等,油田化学,1999,16(3),254—257
    [99] 谭忠印,王琛等,中国科学:B辑,化学.1999,29(2),97—100
    [100] 屈小中等,功能高分子学报,1999,12(2),218—223
    [101] Binning G, Quate C F, Gerber CH, Phys Rev Lett, 1986, 56, 930
    [102] 白春礼,扫描遂道显微技术及其应用,上海:上海科学出版社,1992
    [103] 吴人洁主编,现代分析技术在高聚物中的应用,第1版,上海:上海科学技术出版社,1987,414
    [104] 严启团等,环境扫描电子显微镜在中国油气工业中的应用,中国石油勘探开发科学研究院廊坊分院资料,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700