莠去津对土壤微生物群落结构及分子多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莠去津既具有持久性有机污染物的显著特征,又属于环境激素污染物的范畴,是全球比较受关注的污染物之一。除欧盟外,莠去津仍在全球范围内大面积使用,它对土壤生态系统势必产生一定程度的影响。系统地从微生物生物量及土壤微生物的功能、结构和遗传多样性的角度考察其土壤微生物的生态效应,报道较少。
     本项目以莠去津为污染物,在室内模拟的条件下,开展莠去津对土壤微生物的生态毒理效应研究,采用熏蒸提取的方法确定微生物生物量变化,通过Biolog、T-RFLP和DGGE等技术手段明确莠去津对土壤微生物功能、结构和遗传多样性的影响。将传统方法和分子生物学技术相结合,从生化和分子水平上探明莠去津污染对土壤微生物的生态毒性及土壤微生物对土壤污染的响应过程及时间,为客观评价莠去津对土壤微生物的生态风险提供科学依据和技术支持。主要研究结果如下:
     1、通过微生物的平板计数实验,研究了土壤中0.1、1、10mg/kg三个莠去津浓度染毒影响下土壤细菌、真菌、放线菌的数量变化,实验表明在莠去津的污染影响下,第7、14、21、28、42天土壤中的细菌、真菌、放线菌都呈现出生长受到抑制的现象。且这种抑制效应随莠去津浓度的增大而增强,表现出良好的剂量-效应关系。采用熏蒸-提取法研究了莠去津对土壤微生物生物量碳的影响,结果表明,在莠去津污染的影响下,土壤微生物生物碳量的变化趋势呈现一定的抑制效应,且与莠去津的处理浓度有关,莠去津浓度越高,抑制效应越明显。土壤微生物生物碳量的响应与莠去津处理浓度间呈现出良好的剂量-效应关系,这和莠去津污染状况下土壤微生物数量的响应变化规律是一致的。
     2、采用BIOLOG ECO研究了莠去津污染状况下土壤微生物功能多样性的变化,结果表明室内条件下低浓度莠去津处理土壤不会影响土壤微生物的群落的整体活性,在整个实验周期内,相对较高浓度的莠去津(10mg/kg)对土壤微生物的整体活性(AWCD)略有抑制,但在大部分时间内差异不明显。Shannon、Simpson和Mcintosh等三种多样性指数在实验条件下的变化规律基本一致,相对较高浓度(10mg/kg)的莠去津对三个指数均表现出轻微的抑制效应,使土壤微生物群落的丰富度降低,常见物种的优势度和物种的均一性均呈减小的表现。微生物主要利用的碳源种类水平顺序为糖类及其衍生物>代谢中间产物和次生代谢产物>脂类和脂肪酸类>氨基酸及其衍生物。
     3、采用PCR-DGGE技术研究莠去津污染状况下土壤微生物遗传多样性的变化,本文主要对土壤细菌、真菌和古菌的群落结构的变化规律进行了研究:
     (1)在莠去津污染对土壤细菌的研究中,通过泳道/条带识别分析、泳道图谱对比分析和聚类分析发现土壤样品中细菌种群受莠去津影响较小,但莠去津的浓度相对越高,其与对照处理组间的相似性和亲缘关系就相对越低;通过计算Shannon、Simpson和Mcintosh多样性指数表明,在整个实验周期内莠去津对土壤细菌的物种丰富度影响甚微,但较高浓度的莠去津却提高了常见菌群的优势度,而低浓度莠去津处理下的细菌的均匀度更好;通过切胶回收条带、连接转化和测序分析后,发现细菌DGGE条带所代表的土壤样品中优势细菌菌群主要属于5个大门类即变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、栖热菌门(Deinococcus-Thermus)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria),其中变形菌类群覆盖了α-Proteobacteria、β-Proteobacteria、γ-Proteobacteria三大菌纲。另外,在莠去津污染条件下,土壤中的厚壁菌门(Firmicutes)的丰度明显增加。
     (2)在莠去津污染对土壤古菌的研究中,通过泳道/条带识别分析、泳道图谱对比分析和聚类分析发现土壤样品中古菌类群受莠去津影响较小,但莠去津的浓度相对越高,其与对照处理组间的相似性和亲缘关系就相对越低,这与细菌的响应基本一致;通过计算Shannon、Simpson和Mcintosh多样性指数表明,较高浓度的莠去津抑制了古菌类型的丰富度,并提高了常见类型的优势度,而其他处理间差异不显著。通过切胶回收条带、测序分析和构建系统进化树后,发现古菌DGGE条带所代表的土壤样品中优势古菌菌群主要属于3个大门类即泉古菌门(Crenarchaeota)、广古菌门(Euryarchaeota)、Thaumarchaeota。其中有6条条带与氨氧化古菌(AOA)及亚硝化暖菌属(Nitrososphaera)相似度极高,可见莠去津的污染刺激了这些参与氮循环的菌群的活性。
     (3)在莠去津污染对土壤真菌的研究中,通过泳道/条带识别分析、泳道图谱对比分析和聚类分析,发现相对较高浓度的莠去津对土壤真菌的类群存在轻微的影响;通过计算Shannon、Simpson和Mcintosh多样性指数表明,莠去津的污染对土壤真菌的物种丰富度、最常见物种的优势度已经物种的均一性均未产生明显影响。通过切胶回收条带、测序分析和构建系统进化树后,发现真菌DGGE条带所代表的土壤中真菌的主要类群有子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、不等鞭毛门(Stramenopiles)三大门类。另外,莠去津的存在诱导了真菌中漆斑菌的活性提高或相应丰度的增加。
     4、采用PCR-T-RFLP技术分析莠去津对土壤中细菌群落结构的影响。结果表明:通过T-RFLP实验,可以比较直观的得到土壤中细菌的优势菌群已经土壤中菌群的变化情况。土壤中细菌在实验莠去津浓度的影响下物种多样性降低,说明在莠去津影响下土壤微生物种群的稳定性受到一定的影响而降低,但除相对较高浓度(10mg/kg)处理的Brillouin指数(H)与Shannon指数(H’)与对照相比变化较显著外(P<0.05),其他各处理组之间无明显差异。将T-RFs数据输入Phylogenetic Assignment Tool数据库进行比对,发现,图谱中占绝对优势地位的T-RFs都可以由属变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、栖热菌门(Deinococcus-Thermus)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)等门类的菌株16S rDNA酶切产生,这与细菌DGGE测序结果基本吻合。主成分分析(PCA)显示,莠去津的污染并没有对土壤微生物的类群产生较大的影响。
With distinct character of permanent organic pollutant, and also belonging toenvironmental hormone pollutants, atrazine has caused great concern for the soil pollution ithas brought. In addition to the European Union, atrazine is still widely used in the worldwhich will have a great influence to soil ecosystem. The present study systematicallyinvestigated the ecological effect of soil microorganism in many aspects from the microbialbiomass, soil microbial function and structure and their genetic diversity, which was lack ofreports so far.
     Attrazine was selected as objective atrazine for pollutants and the experiment wasperformed to confirm the variation of microbial biomass with the fumigation-extractionmethod, the soil microbes function, structure and the influence of genetic diversity by meansof the Biolog, T-RFLP and DGGE technology, through which to estimate the ecologytoxicological effects of atrazine to soil microorganism in simulating conditions. The presentstudy determined the ecotoxicity of atrazine and the response process and time of soilmicroorganism from biochemic and molecular levels with the combination of traditionalmethods and molecular biology technology and may provide a scientific basis and technicalsupport for ecological risk assessment of attrazine to soil microorganism. The main results areas follows:
     1. Through the microbial flat count experiment, we studied the quantitative variation ofsoil bacteria, fungi and actinomycetes after exposure to three tested concentrations of attrazine(0.1,1,10mg/kg). The results showed that these three soil microorganism were all inhibitedon days7,14,21,28, and42. And the inhibition exhibited a dose-dependant manner withattrazine enhancement. With the fumigating-extraction method, the effects of soil microbialbiomass carbon were also showed a similar situation after exposed to attrazine.
     2. The research to varies with functional diversity of soil microorganism under thecondition of attrazine pollution by the systemic BIOLOG ECO method, and the resultssuggested that the indoor conditions deal with low concentration of attrazine would not affectthe whole community of soil microbial activity. In the whole experiment cycle, the whole ofthe soil microbial activity (AWCD) was slightly inhibited with high concentrations of attrazine (10mg/kg), but exhibited no obvious difference for most of time. The similarsituation was also appeared in three diversity indexes including Shannon, Simpson andMcintosh at the same concentration of attrazine. As a result, the soil microbial communitiesrichness, the uniformity of advantage degree of and species were decreased. The main use ofcarbon source microbial species level for sugar were raised and its derivatives order wassubsequently metabolic and secondary metabolites, lipid and fatty acid kind, amino acid andits derivatives.
     3. The changes of genetic diversity to soil microorganism was investigated by theapplication of by PCR-DGGE technology. The variation of ill the soil bacteria, fungi andbacteria of the community structure are as follows:
     (1) In the investigation of soil microorganism by attrazine pollution, the lane/striprecognition analysis, lane map contrast analysis and cluster analysis was adopted and wefound that soil microorganism were hardly influenced, while their similarity and relationshipswith control groups were relatively low at high attrazine concentrations; with the calculationof diversity index by Shannon, Simpson Mcintosh, we found that in the whole experimentcycle, soil bacteria the species richness was little influenced, but high concentrations ofattrazine could improve the common advantage of bacterium group and the homogeneousdegree of the bacteria were better at low concentrations; Through the rubber cutting recyclestrip, links, transformation and the sequencing analysis, we found the predominant microbeswhich were represented by bacteria DGGE strip were mainly belong to five categories, theywere Proteobacteria, Firmicutes, Deinococcus-Thermus, Actinobacteria, Acidobacteria.Among Proteobacteria, α-Proteobacteria、β-Proteobacteria、γ-Proteobacteria were covered.In addition, in the attrazine pollution condition, the abundance of Firmicutes was increasedsignificantly.
     (2) The lane/strip recognition analysis, lane map contrast analysis and cluster analysiswere applied to investigate the Archaea bacteria. The results suggested that the similarity andrelationships were relatively lower compare with control groups with the attrazine increasing,which was in accordance with soil bacteria; with the calculation of diversity index byShannon, Simpson Mcintosh, we found that the bundance of Archaea bacteria was inhibitedwhile the dominance was improved at high attrazine concentrations. Through the rubber cutting recycle strip, links, transformation and the sequencing analysis, we found thepredominant microbes which were represented by bacteria DGGE strip were mainly belong tothree categories, they were Crenarchaeota, Euryarchaeota and Thaumarchaeota, among whichsix led showed a high similarity with ammonium oxidation ancient fungus (AOA) diagramand the nitrosation of warm bacteria (Nitrososphaera) similarity is extremely high. It wasobviously that the atrazin pollution participated in nitrogen cycle of bacterium group activity.
     (3)The lane/strip recognition analysis, lane map contrast analysis and cluster analysiswas used for the determination of attrazine to soil fungi. We found that relative highconcentrations would have slight effects to the class group. With the calculation of diversityindex by Shannon, Simpson Mcintosh, we found both the abundance of fungal and thedominance of the most common species were exhibited no marked effects. Through therubber cutting recycle strip, links, transformation and the sequencing analysis, we found thepredominant microbes which were represented by bacteria DGGE strip were mainly havethree categories, they were Ascomycota, Basidiomycota and Stramenopiles. In addition, theexistence of attrazine induced the activity or the relevant abundance of Myrothecium.
     4. The PCR-T-RFLP technology was used to analyse the effects of attrazine to thebacterium structure in soil. The results suggested that the predominant bacterial flora in soilmicroorganisms and their changes could be visualized achieved by means of T-RFLPexperiment. The decreased of the stability of microbial population may be ascribe to thedecrease of species diversity, there were no significant differences in other treatment groupsexcepting for Brillouin index (H) and Shannon index (H’) on10mg/kg concentration attrazine(P<0.05). Contrast to other data in Phylogenetic Assignment Tool, T-RFs which play animportant role in map could be produced by the16S rDNA enzyme of strains such asProteobacteria, Firmicutes, Deinococcus-Thermus, Actinobacteria, and Acidobacteria. Theresults were in accordance with DGGE sequences. By using principal component analysis, nogreat effects on soil microorganisms were found after exposure to attrazine.
引文
安娜,富英群,王艳梅等.松花江肇源段水和沿岸土壤及作物中六六六和DDT的残留水平[J].环境与健康杂志,2010,27(4):335-338.
    崔嵩,田崇国,郭亮等.基于灰色关联分析法的土壤中有机氯农药污染评价研究[J].黑龙江大学自然科学学报,2011,28(1):96-100,105.
    冯秀斌,杨瑞,刘慧君.3种地下害虫杀虫剂对蚯蚓和土壤微生物的影响[J].农药,2009,48(3):208-210.
    傅丽君,杨文金.4种农药对枇杷园土壤磷酸酶活性及微生物呼吸的影响[J].中国生态农业学报,2007,15(6):113-116.
    胡江,代先祝,李顺鹏.阿特拉津及其降解菌的使用对土壤微生物群落的影响[J].应用生态学报,2005,16(8):1518-1522.
    胡晓,张敏.有机磷农药对土壤微生物群落的影响[J].西南农业学报,2008,21(2):384-389.
    霍晓非,李凤忱.无机化学肥料和农药对土壤微生物的影响初探[J].微生物学杂志,2008,28(2):101-103.
    李克斌,蔡喜运,刘维屏.除草剂单用与混用对土壤微生物活性的影响[J].农业环境科学学报,2004,23(2):392-396.
    李少南.农药对土壤微生物群落的副作用的研究方法[J].生态毒理学报,2010,5(1):18-24.
    刘波,蓝江林,林营志等.土壤甲胺磷抗性细菌种群特征脂肪酸生物标记的分析[J].生态毒理学报,2009,4(5):734-744.
    卢桂宁,党志,陶雪琴等.农药污染土壤的植物修复研究进展[J].土壤通报,2006,37(1):189-193.
    罗慧,王新红,汤丽等.中国部分沿海海域水体中溶解态有机氯农药和多氯联苯的残留分布特征[J].海洋环境科学,2010,29(1):115-120.
    骆爱兰,余向阳.氟啶胺对土壤中蔗糖酶活性及呼吸作用的影响[J].中国生态农业学报,2011,19(4):902-906.
    马秀兰,刘金海,崔俊涛等.栽参土壤中微生物降解莠去津影响因素的研究[J].农业环境科学学报,2007,26(5):1633-1666.
    孟阳,薛建良,刘广民等.持久性有机污染物的环境分布与生物危害[J].污染防治技术,2008,21(6):68-72.
    史婕,申鸿,王兵等.紫色土中联苯菊酯残留对土著微生物的影响[J].中国农学通报,2011,27(24):312-316.
    宋日,刘利,吴春胜等.阿特拉津对我国东北半干旱区黑钙土微生物活性影响研究[J].农业环境科学学报,2009,28(6):1153-1158.
    孙肖瑜,王静,金永堂等.我国水环境农药污染现状及健康影响研究进展[J].环境与健康杂志,2009,26(7):649-652.
    唐美珍,郭正元.68%代森锰锌对土壤微生物种群及呼吸作用的影响[J].土壤通报,2010,41(6):1365-1369.
    滕春红,陶波.氯嘧磺隆对土壤微生物类群及土壤呼吸强度的影响[J].土壤通报,2008,39(2):384-387.
    万金保,刘峰,汤爱萍等.小流域典型面源污染最佳管理措施(BMPs)研究[J].水土保持学报,2010,24(6):181-184.
    汪光,吕永龙,史雅娟等.北京东南化工区土壤有机氯农药污染特征和分布规律[J].环境科学与技术,2010,33(9):91-96.
    汪立刚,蒋新.土壤结合态农药残留生物有效性研究进展[J].农业环境科学学报,2003,23(2):376-379.
    王彬,米娟,潘学军等.我国部分水体及沉积物中有机氯农药的污染状况[J].昆明理工大学学报(理工版),2010,35(3):93-98.
    王佩华,赵大伟,聂春红等.持久性有机污染物的污染现状与控制对策[J].应用化工,2010,39(11):1761-1765.
    王颜红,李国琛,王世成等.欧盟农药风险评价发展现状[J].农药,2008,47(8):547-557.
    王玉霞,赵晓宇,张先成等.化学农药对环境的污染及生物整治措施[J].国土与自然资源研究,2008,(4):69-70.
    王智烨,徐茜,钱海丰. FDA水解检测井冈霉素的土壤微生物活性效应[J].土壤通报,2007,38(5):1030-1032.
    韦丽丽,郭芳,王健哲等.柳州岩溶地下河水体有机氯农药分布特征[J].中国岩溶,2011,30(1):16-21.
    魏海燕,蔡磊明,赵玉艳等.枯草芽孢杆菌对黑土中可培养微生物的生态效应[J].农药,2009,48(2):111-113.
    吴二社,张松林,刘焕萍等.农村环境中内分泌干扰物的现状、危害及处理[J].中国农学通报,2011,27(14):282-285.
    谢文明,刘兴泉,范志先等.莠去津在土壤中的残留动态和淋溶动态[J].农药学学报,2003,5(1):82-87.
    辛承友,朱鲁生,王军等.阿特拉津对不同肥力土壤磷酸酶的影响[J].生态环境2004,13(1):27-30.
    许育新,李晓慧,滕齐辉等.氯氰菊酯污染土壤的微生物修复及对土著微生物的影响[J].土壤学报,2008,45(4):693-698.
    杨东方,郑琳,姜欢欢.胶州湾水域有机农药HCH的分布及水质标准[J].海岸工程,2011,30(3):56-65.
    姚斌,徐建民,尚鹤等.阿特拉津除草剂对土壤微生物生态特征的影响[J].水土保持学报,2005,19(3):46-49.
    姚斌,徐建民,尚鹤等.阿特拉津除草剂对土壤微生物生态特征的影响[J].水土保持学报,2005,19(3):46-49.
    姚艳红,戈峰,沈佐锐.大气CO2与吡虫啉对甘蓝土壤细菌与微生物生物量C的影响[J].生态学报,2010,30(1):272-277.
    张超兰,徐建民,姚斌.添加有机物对莠去津污染土壤微生物生物量的动态影响[J].农药学学报,2003,5(2):79-84.
    张超兰,徐建民,姚斌.阿特拉津污染胁迫下土壤微生物生物量对外源有机无机物质的响应[J].土壤学报,2004,41(2):323-326.
    张超兰,徐建民,姚斌.添加有机物对莠去津污染土壤微生物生物量的动态影响[J].农药学学报,2003,5(2):79-84
    张超兰,徐建民.添加莠去津的土壤中微生物生物量碳、氮、磷对外源有机无机物质的动态响应[J].水土保持学报,2004,18(4):57-60,72.
    张超兰,徐建明.氮磷无机营养物质对莠去津在土壤中消解的影响研究[J].农业环境科学学报,2007,26(5):1694-1697.
    赵书言.化学农药的土壤污染与治理[J].化学工程与装备,2011,(8):179-183.
    赵书言.化学农药的土壤污染与治理[J].化学工程与装备,2011,(8):179-181.
    周博如,王志英,王会研等.阿特拉津对土壤微生物类群及土壤呼吸强度的影响[J].东北林业大学学报,2009,37(7):82-83.
    周宁,孟庆娟,王荣娟等.除草剂阿特拉津微生物降解研究进展[J].东北农业大学学报,2008,39(9):136-139.
    朱鲁生,王金花,王军等.除草剂莠去津对长期定位施肥土壤中酶活性的影响[J].生态毒理学报,2006,1(1):64-69.
    邹小明,王能强,张瑜等.乐果与Cd2+复合污染对土壤微生物生态效应研究[J].农业环境科学学报,2009,28(2):348-352.
    Adetutu E.M., Ball A.S., Osborn A.M.Azoxystrobin and soil interactions: degradation andimpact on soil bacterial and fungal communities[J]. Journal of Applied Microbiology.2008,105:1777~1790.
    Alarikm. Jooste,Louish. Dupreez,Jamesa. Carr.Gonadal Development of Larval MaleXenopus laevis Exposed to Atrazine in Outdoor Microcosms[J]. Environmental Scienceand Technology.2005,39,5255-5261.
    Anderson Traute-Heidi, Domsch K. H.Soil microbial biomass: The eco-physiologicalapproach[J]. Soil Biology&Biochemistry.2010,42:2039~2043.
    Andreas Flie bach, Paul M der. Short-and long-term effects on soil microorganisms of twopotato pesticide spraying sequences with either glufosinate or dinoseb as defoliants[J].Biol Fertil Soils,2004,40:268–276.
    Andreoni V. Cavalca L., Rao M.A., Nocerino G., Bernasconi S., Dell’Amico E., Colombo M.,Gianfreda L. Bacterial communities and enzyme activities of PAHs polluted soils[J].Chemosphere.2004,57(5):401~412.
    Anne Kersant′e1, Fabrice Martin-Laurent2, Guy Soulas, et al. Interactions of earthwormswith Atrazine-degrading bacteria in an agricultural soil[J]. FEMS Microbiology Ecology,2006,57:192-205.
    Ashim Chowdhury, Saswati Pradhan, Monidipta Saha, et al. Impact of pesticides on soilmicrobiological parameters andpossible bioremediation strategies[J]. Indian J.Microbiol.,2008,48:114–127
    B. Scholz-Starke, A. Nikolakis, T. Leicher, et al. Outdoor Terrestrial Model Ecosystems aresuitable to detect pesticide effects on soil fauna: design and method development[J].Ecotoxicology,2011,20:1932–1948.
    Bintein S. Evaluating the environmental fate of atrazine in France[J]. Chemosphere.1996,32(12):2441-2456.
    Boundy-Mills K L,de Souza M L,Mandelbaum R T,et al. The alzB gene of Pseudomonassp. strain ADP encodes the second enryme of a novel atrazine degradation pathway [J].Appl Environ Microbiol,1997.63:916-923.
    Bruna de Campos Ventura, Dejanira de Fransceschi de Angelis. Mutagenic and genotoxiceffects of the Atrazine herbicide in Oreochromis niloticus (Perciformes, Cichlidae)detected by the micronuclei test and the comet assay[J].Pesticide Biochemistry andPhysiology.2008,90(1):42-51.
    C. D. Barton, A. D. Karathanasis. Influence of Soil Colloids on the Migration of Atrazine andZinc Through Large Soil Monoliths[J]. Water, Air,&Soil Pollution,2003,143(1-4):3-21.
    Chengwei F, Mark R, Jeffry J F. Characterization of rhizosphere microbial communitystructure in five similar grass species using FAME and BIOLOG analyses[J]. SoilBiology and Biochemistry,2001,33:679-682.
    Cycon, M., Piotrowska-Seget, Z., Kaczynska, A., Kozdrój, J.,2006. Microbiologicalcharacteristics of a sandy loam soil exposed to tebuconazole and l-cyhalothrin underlaboratory conditions[J]. Ecotoxicology.2006,15:639~646.
    D. Seghers, R. Bulcke, D. Reheul, et al. Pollution induced community tolerance (PICT) andanalysis of16S rRNAgenes to evaluate the long-term effects of herbicides onmethanotrophic communities in soil[J]. European Journal of Soil Science,2003,54:679-684.
    Dalton R.Frogs put in the gender blender by America's favourite herbicides[J]. Nature,2002,416(6882):665~666.
    Dana W. K, Jack E. B., Robert J. Gilliom. Atrazine and metolachlor occurrence in shalllowgroundwater of the United States,1993to1995:relations to explanatory factors[J].Journal of the American water resources association.2002,38(1):301-311.
    Dave Seghers, Kristof Verthe, Dirk Reheul, et al. E!ect of long-term herbicide applications onthe bacterial community structure and function in an agricultural soil[J]. FEMSMicrobiology Ecology,2003,46:139-146.
    Derek W Gammon, Charles N Aldous, Wesley C Carr Jr, et al. A risk assessment of atrazineuse in California:human health and ecological aspects[J]. Pest Manag Sci.,2005,61:331–355.
    Dhritiman G, Krishnakali R, Velusamy S, et al. In-situ enrichment and analysis ofatrazine-degrading microbial communities using atrazine-containing porous beads[J]SoilBiology and Biochemistry,2009, doi:10.1016/j.soilbio.2008.12.027
    Dia′na Vira′g, Zolta′n Naa′r, Attila Kiss. Microbial Toxicity of Pesticide DerivativesProduced with UV-photodegradation[J]. Bull Environ Contam Toxicol.,2007,79:356–359.
    Dong Xue, Huai-Ying Yao, De-Yong GE et al. Soil Microbial Community Structure inDiverse Land Use Systems: A Comparative Study Using Biolog, DGGE, and PLFAAnalyses[J].Pedosphere,2008,18:653-663.
    Е. Blagodatskaya, Y. Kuzyakov. Mechanisms of real and apparent priming effectsand theirdependence on soil microbial biomass and community structure: critical review[J]. BiolFertil Soils,2008,45:115–131
    Edvantoro B B, Naidu R, Megharaj M, et al. Chanagesin microbial properties associated withlong-term arsenic and DDT contaminated soil at disused cattle dip sites[J]. Ecotoxicologyand Environmental Safety,2003,55:344-351.
    Eisenhauer N., Klier M., Partsch S., Sabais A. C.W., Scherber C., Weisser W. W., Scheu S..Nointeractive effects of pesticides and plant diversity on soil microbial biomass andrespiration[J]. Applied Soil Ecology.2009,42:31~36.
    Fabrice Martin-Laurent, Beno t Barrès, Isabelle Wagschal, et al. Impact of the maizerhizosphere on the genetic structure, the diversity and the atrazine-degrading genecomposition of cultivable atrazine-degrading communities[J]. Plant and Soil,(2006)282:99–115.
    Ferreira E.P.B., Dusi A.N., Costa J.R., Xavier G.R., Rumjanek N.G.Assessing insecticide andfungicide effects on the culturable soil bacterial community by analyses of variance oftheir DGGE fingerprinting data[J]. European Journal of Soil Biology.2009,45:466~472.
    Guo H., Chen G., Lv Z., Zhao H., Yang H.,Alteration of microbial properties and communitystructure in soils exposed to napropamide[J]. Journal of Environmental Sciences.2009,21:494~502.
    Han W., Kemmitt S J. Brookes P.C.Soil microbial biomass and activity in Chinese tea gardensof varying stand age and productivity[J].Soil Biology&Biochemistry.2007,39:1468~1478.
    Ioanna M. Spyrou, Dimitrios G. Karpouzas, Urania Menkissoglu-Spiroudi. Do BotanicalPesticides Alter the Structure of the SoilMicrobial Community[J]. Microb Ecol.,2009,58:715-727.
    Isabelle George, Laurent Eyers, Beno t Stenuit, et al. Effect of2,4,6-trinitrotoluene on soilbacterial communities[J]. J Ind Microbiol Biotechnol,2008,35:225-236.
    J. A. Ampofo, W. Tetteh, M. Bello. Impact of commonly used agrochemicals on bacterialdiversityin cultivated soils[J]. Indian J Microbiol,2009,49:223-229.
    J. Mahía&A. Cabaneiro&T. Carballas, et al. Microbial biomass and C mineralization inagricultural soils as affected by atrazine addition[J]. Biol Fertil Soils,2008,45:99–105.
    Jackie Aislabie a, Asim K. Bej b, Janine Ryburn. Characterization of Arthrobacternicotinovorans HIM, anatrazine-degrading bacterium, from agricultural soil NewZealand[J]. FEMS Microbiology Ecology,2005,52:279-286.
    Jane A Mcelroy, Ronald E Gangnon. Risk of breast cancer for women living in rural areasfrom adult exposure to atrazine from well water in Wisconsin[J]. Journal of ExposureScience and Environmental Epidemiology.2007,17:207–214.
    Joergensen R. G., Emmerling C. Methods for evaluating human impact on soilmicroorganisms based on their activity, biomass, and diversity in agricultural soils[J].Journal of Plant Nutrition and Soil Science.2006,169:295~309.
    Julia S., Lytle, Thomas F. Lytle. Atrazine effects on estuarine macrophyte spartina alternifloraand juncus foemerianus[J]. Environmental Toxicology and Chemistry,1988,17(10):1972-1978,1988.
    Katherine Nieves-Puigdoller, Bj rn Thrandur Bj rnsson.Effects of hexazinone and atrazine onthe physiology and endocrinology of smolt development in Atlantic salmon[J].AquaticToxicology.2007,84(1):27-37.
    Keith R, Solomon, Environ Toxicol Chem [M].1996,15(1):31-76.
    Kraigher B., Stres B., Hacin J., Ausec L., Mahne I., van Elsas J. D., Mandic-Mule I..Microbialactivity and community structure in two drained fen soils in the Ljubljana Marsh[J]. SoilBiology&Biochemistry.2006,38:2762~2771.
    Larry J Krutz, Terry J Gentry, Scott A Senseman. Mineralisation of atrazine, metolachlor andtheir respective metabolites in vegetated filter strip and cultivated soil[J]. PestManagement Science,2006,62:505–514.
    Lesya M. P, Sang-Ryul Lee. In vitro atrazine exposure affects the phenotypic and functionalmaturation of dendritic cells[J]. Toxicology and Applied Pharmacology.2007,223(3):206-217.
    Li X. Y., Zhang H. W., Wu M. N.,Zhang Y., Zhang C. G.Effect of methamidophos on soilfungi community in microcosms by plate count, DGGE and clone library analysis[J].Journal of Environmental Sciences.2008,20:619~625.
    Li XinYu, Su Zhen Cheng,Li Xu, et al. Assessing the effects of acetochlor on soil fungalcommunitiesby DGGE and clone library analysis[J]. Ecotoxicology,2010,19:1111-1116.
    Lisa C.Strong, Hugh McTavish, Michael J.Sadowsky, et al. Field-scale remediation ofatrazine-contaminated soil using recombinant Escherichia coli expressing atrazinechlorohydrolase[J]. Environmental Microbiology,2000,2(1):91-98.
    Marco Vervliet-Scheebaum. Short-term effects of benzalkonium chloride and atrazine onElodea canadensis using a miniaturised microbioreactor system for an online monitoringof physiologic parameters[J].Ecotoxicol Environmental Safe.2008,69(2):254-62.
    Megharaj M, Kaantachote D, Singleton I, et al. Effects of long-term contamination of DDT onsoil microflora with special reference to soil algae and algal transformation of DDT[J].Environmental Pollution,2000,109:35-42.
    Moutushi Dutta, Devashis Sardar, Raktim Pal, et al. Effect of chlorpyrifos on microbialbiomassand activities in tropical clay loam soil[J]. Environ Monit Assess,2010,160:385-391.
    N. Udikovic′Kolic′, F. Martin-Laurent, M. Devers, et al. Genetic potential, diversity andactivity of an atrazine-degrading community enriched from a herbicide factory effluent[J].Journal of Applied Microbiology,2008,105:1334-1343.
    N. Udikovic′-Kolic′1, D. Hrsˇak1, M. Devers2, V. Klepac-Ceraj, et al. Taxonomic andfunctional diversity of atrazine-degrading bacterial communities enriched fromagrochemical factory soil[J]. Journal of Applied Microbiology,2010,109:355-367.
    Nikolina Udikovi-Koli, Marion Devers-Lamrani, Ines Petri, et al. Evidence for taxonomicand functional driftof an atrazine-degrading culture in responseto high atrazine input[J].Appl Microbiol Biotechnol,2011,90:1547-1554.
    P. Dhasarathan, P. Theriappan, C. Ashokraja Microbial diversity in fi rework chemicalexposed soil and water samples collected in Virudhunagar district, Tamil Nadu, India[J].Indian J. Microbiol.,2010,50:46–49
    Paul E.A., Voroney R.P.Nutrient and energy flows through soil microbial biomass[M]. In:Ellwood, D.C. et al.(Ed.), Contemporary Microbial Ecology. Academic Press, London,1980,216~237.
    Pérez D. J., Menone M. L., Camadro E. L., Moreno V. J. Genotoxicity evaluation of theinsecticide endosulfan in the wetland macrophyte Bidens laevis L[J]. EnvironmentalPollution,2008,153(3):695~698.
    Qiongshan Wang, Mengchang He, Ying Wang. Influence of combined pollution of antimonyand arsenicon culturable soil microbial populations and enzyme activities[J].Ecotoxicology,2011,20:9–19.
    Quistad G B, Sparks S E, Casida J E. Fatty acid amide h rolase inhibition by neurotoxicorganophosphorus pestieides[J].Toxicology and Applied Pharmacology,2001,173(l):48-55
    S. Hang, E Barriuso, S Houot. Atrazine behaviour in the different pedological horizons of twoArgentinean non-till soil profiles[J]. European Weed Research Society WeedResearch,2005,45:130-139.
    Sigler WV, Turco RF. The impact of chlorothalonil applicationon soil bacterial and fungalpopulations as assessedby denaturing gradient gel electrophoresis. AppliedandEnvironmental Microbiology,2002,(21):107–118.
    Sylwia Lew, Marcin Lew, Józef Szarek, et al. Seasonal patterns of the bacterioplanktoncommunitycomposition in a lake threatened by a pesticide disposal site[J]. Environ SciPollut Res,2011,18:376-385.
    T.K. Ralebitso1, A. Yamazoe, W.F.M. Roling. Insights into bacterial associations catabolizingatrazine by culture-dependent and molecular approaches[J]. World Journal ofMicrobiology&Biotechnology,2003,19:59-67.
    Teresa A. Johnson, Gerald K. Sims. Introduction of2,4-dichlorophenoxyacetic acid into soil
    Tong Z., Bischoff M., Nies L., Applegate B., Turco R. F.Impact of Fullerene (C60) on a SoilMicrobial Community[J]. Environmental Science and Technology.2007,41(8):2985~2991.
    Ushio M., Kitayama K., Balser T.C. Tree species effects on soil enzyme activities througheffects on soil physicochemical and microbial properties in a tropical montane forest onMt. Kinabalu, Borneo[J]. Pedobiologia,2010,53:227-233.
    Vig K. Singh D.K., Agarwal H.C., Dhawan A.K., Dureja P. Soil microorganisms in cottonfields sequentially treated with insecticides [J].Ecotoxicology and EnvironmentalSafety.2008,69(2):263~276.
    Widenfalk A., Bertilsson S., Sundh I., Goedkoop W.Effects of pesticides on communitycomposition and activity of sediment microbes e responses at various levels of microbialcommunity organization[J]. Environmental Pollution.2008,152:576~584.
    with solvents and resulting implications for bioavailabilityto microorganisms[J]. World JMicrobiol Biotechnol,2011,27:1137–1143.
    Yang C., Wang Y., Li J.Plant Species Mediate Rhizosphere Microbial Activity andBiodegradation Dynamics in a Riparian Soil Treated with Bensulfuron-methyl[J].CLEAN–Soil, Air, Water2011,39(4):338~344.
    Yang YH, Yao J, Hu S. Effects of agriculturalchemicals on DNA sequence diversity of soilmicrobial community: a study with RAPD marker. Microbial Ecology,2000,(39):72–79.
    Yasuyoshi Hase, Michiko Tatsuno. Atrazine binds to F1F0-ATP synthase and inhibitsmitochondrial function in sperm[J].Biochemistry Biophysiology Resource Community.2008,366(1):66-72.
    Young Han Lee, Hoon Kim. Response of Soil Microbial Communities to Different FarmingSystems for Upland Soybean Cultivation[J]. J. Korean Soc. Appl. Biol. Chem.2011,54(3):423-433.
    Zachery R. Staley, Jason R. Rohr, Valerie J. Harwood. The effect of agrochemicals onindicator bacteria densities in outdoor mesocosms[J]. Environmental Microbiology (2010)12(12),3150-3158.
    Zhang B., Bai Z., Hoefel D., et al. The impacts of cypermethrin pesticide application on thenon-target microbial community of the pepper plant phyllosphere[J]. Science of the TotalEnvironment.2009,(407):1915~1922.
    Zhang W, Ki JS, Qian PY. Microbial diversity in polluted harbor sediments I: Bacterialcommunity assessment based on four clone libraries of16S rDNA [J]. Estuar Coast ShelfS,2008,76(3):668-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700