堆积型铝土矿选择性解离—浮选脱硅理论与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国广西、云南等地区赋存有丰富的堆积型铝土矿,目前单纯以洗矿作为脱硅手段,与之相关的选别技术研究甚少。本文以云南文山堆积型铝土矿为研究对象开展选矿脱硅的理论与工艺研究,以矿石的结构构造为基础,借助镜下观察、X射线衍射分析、EDS能谱分析,研究了碎解过程中铝硅矿物的走向及碎解产品各粒级中铝硅矿物的解离特性,并通过红外光谱分析、动电位分析、吸附量测试和粒度分析等手段,考查了堆积型铝土矿组成矿物的可浮性及其机理,进而开发了“堆积型铝土矿选择性解离-聚团浮选”工艺原型。主要研究内容及结果如下:
     1.堆积型铝土矿矿石性质
     堆积型铝土矿以沉积型铝土矿为矿源,经长期的岩溶作用和改造作用而形成。堆积型铝土矿中,铝、硅、铁为主要元素,相应主要赋存于一水硬铝石、高岭石和褐铁矿等矿物中,具有高铝、高硅、高铁、低硫的特点。铝硅矿物的嵌布特征存在差异,相对高岭石集合体,一水硬铝石集合体嵌布粒度较粗,硬度较大。
     结构致密的堆积型铝土矿矿石铝含量高,结构疏松的矿石铝含量低。堆积型铝土矿中,粗粒级铝硅比明显高于细粒级。
     2.堆积型铝土矿的选择性解离
     矿粉胶结型与粘土胶结型两种堆积型铝土矿矿石在磨矿过程中选择性解离现象明显,铝矿物在粗粒级中富集,解离程度的提高有利于提高粗粒级的铝硅比。
     对于铝硅比较低的原矿,破碎后直接分级所得粗粒产品难以满足拜耳法氧化铝生产要求。当磨矿细度为-0.074mm含量50-55%时,两种矿样+0.074mm粒级产品中铝硅比均在9以上,满足拜耳法对铝土矿精矿的要求,铝回收率为40-50%。磨矿细度的增加有利于提高粗粒级的铝硅比,但铝矿物在粗粒级中的回收率降低。
     结合镜下观察、X射线衍射分析、EDS能谱分析,磨矿后粗粒级单体解离度较高,一水硬铝石主要与铁矿物共生,细粒级虽然铝硅比较低,但仍有大量一水硬铝石富连生体存在,且铝矿物与硅矿物之间基本实现解离。
     3.堆积型铝土矿组成矿物的可浮性
     堆积型铝土矿中一水硬铝石和高岭石的可浮性与沉积型矿床中相近;pH为6-9是两种矿物可浮性较好的pH区间,在此pH范围内,一水硬铝石的可浮性好于高岭石;+0.038mm各粒级的一水硬铝石可浮性较好,-0.038mm粒级可浮性差;一定用量的铝离子和铁离子对一水硬铝石的浮选有活化作用。
     油酸钠可在一水硬铝石表面发生化学作用生成油酸铝,且油酸钠在一水硬铝石表面的吸附量是在高岭石表面的两倍以上,从而造成两种矿物的可浮性差异。适量的活化剂TK可使细粒级一水硬铝石产生选择性疏水聚团,提高矿物回收率。六偏磷酸钠的加入可增大一水硬铝石和高岭石的可浮性差异,且其在矿物表面的吸附可增大动电位负值,有利于矿泥的分散从而优化浮选过程。
     4.堆积型铝土矿的浮选脱硅
     文山铝土矿可以采用浮选方法实现选矿脱硅。由于堆积型铝土矿中存在大量矿泥,对矿浆的强化分散和对细粒铝矿物的选择性活化是堆积型铝土矿浮选脱硅的关键。采用高效活化剂TK进行堆积型铝土矿的活化浮选,可以在不降低精矿铝硅比的前提下大幅提高铝回收率。
     针对云南文山堆积型铝土矿,“选择性解离-聚团浮选”流程可取得明显优于洗矿工艺的选别效果。该工艺可由铝硅比5.97的原矿,得到铝硅比11.30的精矿,全流程Al2O3回收率达到81%。
     5.“洗矿-拜耳法”和“选矿-拜耳法”两种流程技术经济对比
     采用本研究开发的“选择性解离-聚团浮选”技术作为选矿工艺,可形成堆积型铝土矿生产氧化铝的“选矿-拜耳法”流程。对云南文山800kt/a氧化铝厂从采矿至氧化铝生产全过程的有限因素进行技术经济对比分析和社会效益对比分析表明,“选矿-拜耳法”流程与“洗矿-拜耳法”流程相比,每年可节约成本/增加利税总额1.15亿元,显著提高项目的盈利能力和抗风险能力;且由于大幅提高了资源利用效率,在现有探明储量基础上,可将文山州资源保障年限由50年延长至99年。因此,该技术为云南省铝工业的可持续发展和持续带动当地经济社会进步创造了良好的条件,具有良好的推广应用前景。
China's Guangxi and Yunnan, etc. are rich in accumulative bauxite ores. At present ore washing is the only way been used to desiliconize for the separation of accumulative bauxite ores due to less relevant separation technologies. Targeted at Wenshan accumulative bauxite in Yunnan Province, theory and technology of beneficiation-desiliconization are probed in this dissertation on the basis of the ore structure, with the help of microscopical observation, x-ray diffraction analysis, EDS spectrum analysis. The trend of aluminum minerals and silicate minerals during the process of crushing and dissociation characteristics of aluminum minerals and silicate minerals in various grain sizes of crushed products are also studied. Flotability and its mechanism of accumulative bauxite have been examined through infrared spectrum analysis, electrokinetic potential analysis, adsorptive capacity test and grain size analysis and so on. As a result, a prototype of "accumulative bauxite selective dissociation agglomeration floatation process" is developed. The main study contents and results are shown as follows:
     1. Properties of accumulative bauxite ores
     Accumulative bauxite ores have been formed through long-term karstification and transformation based on the mineral source of sedimentary bauxite. In the accumulative bauxite, the aluminum, silicon and iron are the principal elements which mainly exsit in such minerals as diasporite, kaolinite and limonite, etc. correspondingly with the features of higher-content aluminum, higher-content silicon, higher-content iron and lower-content sulfur. There exist differences in embedded characters among aluminum minerals and silicate minerals. Compared with kaolinite, diasporite aggregate is coarser in disseminated grain size and harder in hardness.
     The aluminum content is higher in the compact-structure accumulative bauxite ores while that is lower in loose-structure ones. In the accumulative bauxite, A/S value of coarser sizes is obviously higher than that in the fine size.
     2. Selective dissociation of accumulative bauxite ores
     During the grinding process, obvious selective dissociation phenomenon happens in powder cemented accumulative bauxite ores and clay cemented ones. Aluminum minerals are enriched in the coarse sizes. As a result, the improvement of dissociation facilitates higher A/S value in the coarse sizes.
     As for the crude ores with lower A/S value, it is difficult for the coarse-size products obtained from direct classification after crushing to meet the requirements of the Bayer process. When the grinding fineness is 50-55% content of-0.074mm size, the A/S value of +0.074mm size products from the powder cemented accumulative bauxite and clay cemented ones samples are all over 9, which satisfies the requirements of Bayer process on the bauxite concentrates. The recovery of aluminum is 40-50%. The increment of grinding fineness is in favor of improving the A/S value of the coarse-size products, but the recovery of aluminum reduces in the coarse-size products.
     Combined with microscopical observation, x-ray diffraction analysis and EDS spectrum analysis, it is found out that the liberation degree is higher in the coarse-size monomer after grinding, diasporite is mainly intergrowth with iron ore. Although the A/S is low in the fine-size ores, there still exists massive diasporite intergrowth, and aluminum minerals can be basically liberated from silicate minerals as well.
     3. Floatability of minerals in accumulative bauxite
     The floatability of diasporite and kaolinite in accumulative bauxite deposite is very close to that in the sedimentary one. It's a good pulp condition for the floatability of two kinds of minerals when the pH is between 6 to 9, in which the floatability of diasporite is higher than that of kaolinite. The floatability of diasporite is good at the size of+0.038mm while bad at -0.038mm. A certain amount of aluminum ions and iron ions can be used to activate the diasporite behavour in floatation.
     Aluminum oleate can be formed when chemical action of sodium oleate takes place with the surface of diasporite. The adsorption of sodium oleate on the surface of diasporite is two times more than that on the kaolinite, resulting in the difference in the floatability of the two kinds of minerals-diasporite and kaolinite. Appropriate amount of activator TK can selectively make fine-size diasporite produce the hydrophobic aggregate and improve the mineral recovery. Addition of sodium hexametaphosphate can increase the difference in floatability between diasporite and kaolinite. The adorption of it can enlarge the negative value of Zeta potential of mineral particles, so it is beneficial to the dispersion of slime.
     4. Desiliconization of accumulative bauxite by floatation process
     Desiliconization of Wenshan bauxite can be realized by means of the floatation process. Considering of the plenty of mine slime in the accumulative bauxite, selective activation of minor diasporite particles and strengthened pulp dispersion are the key to the desiliconization of the by floatation process. Highly effective activator TK can be used to activate the floatation of the accumulative bauxite and can greatly improve the recovery of aluminum under the premise of not lowering the A/S of the concentrates.
     In view of Yunnan Wenshan accumulative bauxite, the flowsheet of "Selective Dissociation-Agglomeration Floatation Process" is obviously much more better than the process of ore washing in the separation effect. By the former, concentrates of A/S= 11.30 can be obtained with the recovery of Al2O3 up to 81% in the entire flow.
     5. Comparison of technical economy between two flowsheets of "Ore washing-Bayer process" and "Floatation-Bayer process"
     The flowsheet of "Floatation-Bayer Process" for producing aluminum oxide with accumulative bauxite can be formed by using "Selective Dissociation-Agglomeration Floatation Process" developed in this research as a mineral processing technology. For Yunnan Wenshan Aluminum Oxide Factory with the capacity of 800kt/year, comparison and analysis of technical economy and social efficiency in terms of limit factors in the whole process from mining to the production of aluminum oxide indicate that compared with the flowsheet of "Ore washing-Bayer Process", the flowsheet of "Floatation-Bayer Process" can save the cost /or increase the total amount of profits by RMB 115 million Yuan per year, which has obviously improved the capacity to earn profits and to resist risks. Furthermore, the guaranteed life of the mineral resources in Wenshan Prefecture can be prolonged from 50 years to 99 years based on the existing proven reserves because of the greatly increased utilization efficiency of the resources. Therefore, this "Floatation-Bayer Process" has a good prospect for popularization, which will be of great advantage to the sustainable development of aluminum industry in Yunnan Province and to the sustainable advancement of local economy and society.
引文
[1]刘中凡.世界铝土矿资源综述.轻金属,2001,(5):13-18
    [2]赵祖德.物理学.北京:科学出版社,1994
    [3]崔萍萍,黄肇敏,周素莲.我国铝土矿资源综述.轻金属,2008,(2):6-8
    [4]廖士范.中国铝土矿地质学.贵阳:贵州科技出版社,1991
    [5]刘广义,张国范,卢毅屏.捕收剂RL浮选铝土矿研究.矿产保护与利用,2000,(2):33-36
    [6]张国斌.铝土矿选矿及尾矿综合利用.轻金属,1998,(9):3-6
    [7]骆兆军.铝土矿磨矿及反浮选体系分散/凝聚的理论研究与实践:[博士后研究报告].长沙:中南大学,2001
    [8]布申斯基.铝土矿地质学,王恩孚译.北京:地质出版社,1984.154-162
    [9]廖士范.论铝土矿矿床成因及矿床类型.华北地质矿产杂质,1994,9(2):153-160
    [10]廖士范.论铝土矿矿床成因与类型(及亚型)划分的新意见.贵州地质,1998,15(2):139-144
    [11]曹异生.我国铝土矿资源特点及开发利用前景.云南冶金,1999,28(4):1-6
    [12]于传敏.铝土矿选矿为氧化铝工业发展开辟一条新路.轻金属,2000,(9):3-6
    [13]毕诗文.铝土矿的拜耳法溶出.北京:冶金工业出版社,1997
    [14]李海普.改性高分子药剂对铝硅矿物浮选作用机理及其结构-性能研究:[博士学位论文].长沙:中南大学,2002
    [15]顾松青.我国氧化铝工业可持续发展之路.见:中国有色金属学会第六届学术年会论文集.北京:中国有色金属学会,2005.10-18
    [16]钮因健.对我国铝土矿资源和氧化铝工业发展的认识.轻金属,2003,(3):3-8
    [17]刘瑞平,梁少中,赵武壮,等.关于我国铝工业发展的战略思考.世界有色金属,2003,(10):4-7
    [18]毕诗文,杨毅宏,谢雁丽.21世纪初中国氧化铝工业的思考.见:中国有色金属学会第五届学术年会论文集.北京:中国有色金属学会,2003.33-35
    [19]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993
    [20]陈万坤,彭关才.一水硬铝石型铝土矿的强化熔出技术.北京:冶金工业出版社,1997.56-60
    [21]邵志博.中国氧化铝工业的发展方向.世界有色金属,1999,(3):8-12
    [22]曲正.铝土矿铝硅比与拜耳法生产能耗的关系.轻金属,1998,(11):20-23
    [23]谢珉.铝土矿选矿试验研究.有色金属(选矿部分),1995,(6):12-16
    [24]陈湘清.硅酸盐矿物强化捕收与一水硬铝石选择性抑制的研究:[博士学位论文].长沙:中南大学,2004
    [25]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术.北京:冶金工业出版社,1997.1-29
    [26]程汉林.烧结法氧化铝生产的节能与降耗-低品位铝土矿焙烧预脱硅研究:[博士学位论文].长沙:中南大学,1995
    [27]郭守国,何斌.非金属矿产开发利用.北京:地质出版社,1991.167-170
    [28]刘今,程汉林,吴若琼.低铝硅比铝土矿预脱硅研究.中南工业大学学报,1996,27(6):666-670
    [29]沈镭,魏秀鸿.区域矿产资源开发概论.北京:气象出版社,1998.293
    [30]李章存.铝的能耗分析.轻金属,1998,(5):3-5
    [31]马朝建,赵岗.用我国中低品位一水硬铝石矿生产氧化铝的新方法.轻金属,1998,(12):7-10
    [32]中低品位铝土矿预脱硅分选-拜耳法新工艺研究“九五”国家科技攻关可行性认证报告.郑州:郑州轻金属研究院,1996:2-5
    [33]河南铝土矿工艺矿物学研究报告.北京:北京矿冶研究总院,1999:10
    [34]冯其明,刘广义,卢毅屏.九十年代铝土矿选矿除杂研究现状与展望.轻金属,1998, (4):9-13
    [35]刘丕旺,张晓风.高硅铝土矿脱硅选矿的现状和前景.轻金属,1998,(6):9-12
    [36]姜涛,邱冠周.中低品位铝土矿选矿预脱硅的新进展.矿冶工程,1999,19(2):3-6
    [37]黄国智,葛长礼.铝土矿脱硅方法及其研究的进展.轻金属,1999,(5):16-20
    [38]方启学,黄国智.我国铝土矿资源特征及其选矿脱硅技术.国外金属矿选矿,2000,37(5):11-16
    [39]王毓华,黄传兵,兰叶.一水硬铝石型铝土矿选择性絮凝分选工艺研究.中国矿业大学学报,2006,35(6):742-46
    [40]Huang Chuanbing, Zhang Lin, Wang Yuhua, et al. Separation of aluminosilicates and diaspore from diasporic-bauxite by selective flocculation. J. CENT. SOUTH UNIV.TECHNOL.,2008,15 (4):520-525
    [41]Sun Wei, Liu Wenli, Hu Yuehua. FTIR analysis of adsorption of poly diallyl-dimethyl-ammonium chloride on kaolinite. J. CENT. SOUTH UNIV. TECHNOL.,2008,15 (3):373-377
    [42]陈汉成,贺义兴,马红梅,等.晋豫铝土矿的物质组分及矿石可用性研究.华北地质矿产杂质,1996,11(3):407-422
    [43]红钢.河南铝土矿的矿石性质及其对选冶工艺的影响.矿冶,2002,11(1):27-32
    [44]南京大学地质学系岩矿教研室.结晶学与矿物学.北京:高等教育出版社,1972
    [45]王毓华,胡岳华,何平波,等.铝土矿选择性脱泥试验研究.金属矿山,2004,(4):38-40
    [46]梁爱珍,李庭惠.选别铝土矿合理工艺流程探讨.轻金属,1984,(01):1-6
    [47]冯其明,卢毅屏,欧乐明,等.铝土矿的选矿实践.金属矿山,2008, (10):1-4
    [48]赵平,吴东印,张艳娇,等.选择性破磨新工艺处理中低品位铝土矿研究.矿产保护与利用,2002,(2):35-37
    [49]张国范,冯其明,陈启元,等.铝土矿选择性解离中磨矿介质的研究.中南大学学报,2004,35(4):552-556
    [50]Ou Leming, Feng Qiming, Chen Yun, et al. Disintegration mode of bauxite and selective separation of Al and Si. Minerals Engineering,2007,20(2):200-203
    [51]欧乐明,冯其明,卢毅屏,等.铝土矿碎解方式与铝硅矿物选择性分离.金属矿山,2005,(2):28-32
    [52]田祎兰,韩跃新,杨小生,等.用助磨剂强化铝土矿选择性解离研究.金属矿山,2006,(3):42-45
    [53]肖松文,罗立群,梁经冬.国内外铝土矿选矿研究概况.广西冶金,1992,(4):4-8
    [54]关明久.国外铝土矿选矿试验及生产实践概况.轻金属,1991,(6):1-5
    [55]Eygeles M A, et al. Selective flotation of kaolinite-hydrargillite. Tsvetnye Met. Jan,1970, (1):84-86
    [56]Kuznetsov V P, et al. Flotation of lean porous hydrargillite-kaolinite bauxites. Leningrad,1972,143-145
    [57]Ishchenko V V, et al. Action of sodium hexametaphosphate and sodium oleate upon bauxite minerals. Izv VUZ Tsvet Metall,1972, (5):8-12
    [58]Ishchenko V V,4et al. Physicochemical interaction of bauxite-forming minerals with flotation reagents. Nauch Tech. Ural. Politeckh Inst,1972,1973, (1): 10-11
    [59]Salatic D, et al. Floatability of boehmite and kaolin with anionic collectors. Trav. Com.Int.Etudrbauxite, Alu minaAlum,1979, (15):157-159
    [60]Andreev P I, Lycheva L V, Segodina V V. Effect of the composition of the culture medium on the bacterial decomposition of aluminosilicates. IZV Vyssh Uchebn zaued Tsuetn metail,1979, (5):7-9
    [61]Hinds S A,et al. Beneficiation of bauxite tailings. Light Metals,1985,24-28
    [62]Lyushnya L M, et al. Beneficiation of unconditioned Ukrainian Bauxites. Obogashch. Polez. Iskop.,1973,13:3-9
    [63]富田竖二.非金属矿选矿法.北京:中国建筑工业出版社,1982.306
    [64]Fuerstenau D W, et al. Adsorption at mineral/water interfaces. Principles of Flotation,1982:53-71
    [65]张国范,冯其明,卢毅屏,等.油酸钠对一水硬铝石和高岭石的捕收机理.中国有色金属学报,2001,(2):298-301
    [66]蒋玉仁,胡岳华,曹学锋.新型螯合捕收剂COBA结构与捕收性能的关系.中国有色金属学报,2001, (4):702-706
    [67]卢毅屏,谭燕葵,冯其明,等.8-羟基喹啉在微细粒铝硅矿物浮选分离中的作用.中国有色金属学报,2007,17(8):1353-1358
    [68]陈湘清,李旺兴.一种铝土矿浮选用的捕收剂.中国专利,CN200610127934,2006-09-05
    [69]张国范,卢毅屏,欧乐明,等.捕收剂RL在铝土矿浮选中的应用.中国有色金属学报,2001,11(4):712-715
    [70]Lu Yiping, Zhang Guofan, Feng Qimign, et al. A novel collector RL for flotation of bauxite. J. CENT. SOUTH UNIV. TECHNOL.,2002,9 (1):21-24
    [71]胡岳华,蒋昊,邱冠周,等.一水硬铝石型铝土矿铝硅浮选分离的溶液化学.中国有色金属学报.11(1):125-130
    [72]张国范.铝土矿浮选脱硅基础理论及工艺研究:[博士学位论文].长沙:中南大学,2001
    [73]吴边华,董洁.关于铝土矿浮选脱硅的综述.煤炭技术,2008,27(4): 120-122
    [74]铝土矿选矿脱硅新技术的研究扩大连选试验报告.北京矿冶研究总院,1998
    [75]铝土矿选矿拜耳法新工艺报告.中国长城铝业公司,北京矿冶研究总院,中南工业大学,沈阳铝镁设计研究院,郑州轻金属研究院
    [76]关明久.国外铝土矿选矿试验及生产实践概况.轻金属,1991 (6):1-5
    [77]Anishchenko N M, et al. Interaction of cation reagents in the flotation of chamosite-gibbsite bauxites. Izv. Vyssh. Uchyebn. Zaved. Tsvet. Metall.,1972, (4):12-16
    [78]Tikhonov S A, et al. Removing free silica from bauxite-containing rock. Tsvetn Met.,1972, (11):43-45
    [79]Ishchenko V V, et al. Flotation of silica from bauxites. Izv. Vyssh. Ucheb. Zaved. Tsvet. Metall.,1974, (3):7-11
    [80]Csillag Z S, et al. Enrichment of bauxites by selective agglomeration. Trav. ICSOBA.,1976, (13):271-284
    [81]Ray D T, et al. Enrichment of bauxite in the Tatun volcanic area. Taiwan, Kuang Yeh Chi Shu.,1980, (18):69-81
    [82]H.Sasaki. Silica Remove from Aiumina-containing Ore. JP.0747,30121, 1995-02:
    [83]刘广义,卢毅萍,冯其明.阳离子捕收剂反浮选一水硬铝石型铝土矿研究.矿产保护与利用,2001,(2):38-42
    [84]蒋昊,胡岳华,覃文庆,等.直链烷基胺浮选铝硅矿物机理.中国有色金属学报,11(4):688-692
    [85]曹学锋.铝硅酸盐矿物捕收剂的合成及结构-性能研究:[博士学位论文].长沙:中南大学,2003
    [86]蒋昊.铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸矿物作用的溶液化学研究:[博士学位论文].长沙:中南大学,2004
    [87]杜平,曹学锋,胡岳华,等.胺类捕收剂的结构与性能研究.轻金属,2003,(1):27-31
    [88]Zhao S M, Wang D Z, Hu Y H, et al. Flotation of aluminosilicates using N-(2-aminoethyl)-1-naphthaleneacetamide. Minerals Engineering,2003,16: 1031-1033
    [89]Zhao S M, Wang D Z, Hu Y H, et al. The flotation behaviour of N-(3-aminopropyl)-dodecanamide on three aluminosilicates. Minerals Engineering 2003,16:1391-1395
    [90]赵世民,胡岳华,王淀佐,等.一水硬铝石的N-(3-二乙基氨丙基)-脂肪酸酰胺浮选.有色金属,56(2):84-87
    [91]Hong Zhong, Guangyi Liu, Liuyin Xia. Flotation separation of diaspore from kaolinite, pyrophyllite and illite using three cationic collectors. Minerals Engineering,2008,21 (12-14):1055-1061
    [92]Guangyi Liu, Hong Zhong, Yuehua Hu. The role of cationic polyacrylamide in the reverse flotation of diasporic bauxite. Minerals Engineering,2007,20 (13): 1191-1199
    [93]Xia Liuyin, Zhong Hong, Liu Guangyi, et al. Comparative studies on flotation of illite, pyrophyllite and kaolinite with Gemini and conventional cationic surfactants. Trans. Nonferrous Met. Soc. China,2009,19 (2):446-453
    [94]伍磊.广西平果堆积型铝土矿矿石特征及工艺研究.矿产与地质,2003,17(4): 559-562
    [95]祝瑞勤,李小罗,莫晓东.广西岩溶堆积型铝土矿矿床特征.地质与勘探,2004,40(4):13-16
    [96]孙玉波.重力选矿.北京:冶金工业出版社,1985
    [97]罗桂民,黄振艺.平果铝土矿降低洗矿含泥率的生产实践.轻金属,2006,(7): 6-8
    [98]王振敏.平果岩溶堆积型铝土矿洗矿生产流程的优化.冶金矿山设计与建设,2001,33(4):12-14
    [99]任竹焕,董家龙,杨松.云南砚山县红舍克铝土矿床地质特征、找矿标志及资源潜力分析.矿产与地质,2007,21(3):278-283
    [100]李彩娟.桂西岩溶堆积型铝土矿矿床成矿作用及控矿因素.矿产与地质,2003,17(3):225-228
    [101]邓军.桂西岩溶堆积型铝土矿矿床地质特征及成矿模式.南方国土资源,2006, (2):35-37
    [102]王德滋,谢磊.光性矿物学.北京:科学出版社,2008
    [103]Fan X, Rowson N A. The effect of Pb (NO3) 2 on ilmenite flotation. Minerals Engineering,2000,13 (2):205-215
    [104]Fornasiero D, Ralston J. Cu(II) and Ni(II) activation in the flotation of quartz lizardite and chlorite. Int. J. Miner. Process.,2005,76:75-81
    [105]WANG Yu hua, YU Fu-shun. Effects of Metallic Ions on the Flotation of Spodumene and Beryl. Journal of China University of Mining & Technology, 2007,17 (1):35-39.
    [106]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988
    [107]萨马桑德兰.以离子分子络合物为基础的浮选机理.中南矿冶学院学报,1983,8(增刊2):59-68
    [108]卢涌泉,邓振华.实用红外光谱分析.北京:电子工业出版社,1989
    [109]张国范,陈启元,冯其明,张平民.温度对油酸钠在一水硬铝石矿物表面吸附的影响.中国有色金属学报,2004,14(6):1042-1046
    [110]Briggs D. X射线与紫外光电子能谱,桂玲玲译.北京:北京大学出版社,1983
    [111]于传敏,黄国智,方启学,等.精矿铝硅比对选矿-拜耳法经济性的影响.轻金属,2002(9):13-17
    [112]昆明有色冶金设计研究院邓传宏等.云南文山800kt/a氧化铝工程可行性研究报告.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700