二水硫酸钙在铝酸钠溶液中的脱硅实验及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业上氧化铝的生产方法主要有三种:拜耳法,烧结法以及混联法(既有拜耳法又有烧结法)。在用拜耳法生产氧化铝时,脱硅是一个比较关键的步骤,目前工业生产上常用脱硅剂为氧化钙和氢氧化钙。由于氧化钙和氢氧化钙都是不可再生资源,而且价格较贵,因此,新型脱硅剂的开发与利用就成为一个重要的研究方向。
     二水硫酸钙是一种具有脱硅能力的新型脱硅剂,本论文对二水硫酸钙在铝酸钠溶液中的脱硅行为进行了实验及动力学研究。系统考察了脱硅反应温度,二氧化硅起始浓度,氢氧化钠溶度,氢氧化铝浓度,二水硫酸钙用量及粒度对脱硅实验的影响。结果发现,脱硅反应温度、二氧化硅起始浓度及二水硫酸钙用量是影响脱硅实验效果的主要因素,在最佳操作条件下,可以移除铝酸钠溶液中95%的二氧化硅。
     本论文用一个拟二级表面反应动力学模型关联了二水硫酸钙在操作条件下的脱硅实验数据,结果表明,此模型很好地关联了实验条件下的脱硅实验数据。通过该模型得出了二水硫酸钙在不同操作条件下的脱硅动力学参数,同时得到了二水硫酸钙在铝酸钠溶液中脱硅反应活化能为52kJ/mol。
     二水硫酸钙在铝酸钠溶液中的脱硅反应产物用XRD和SEM进行分析和表征,脱硅产物主要为方蓝石(3Na2O·2CaSO4·3Al2O3·6SiO2)和天青石(3Na2O·CaSO4.5Na2SO4·3A12O3·6SiO2)。二水硫酸钙脱硅后母液中硫酸根离子浓度大约为0.021 g/L。
There are three main methods for alumina production industry:Bayer method, sintering method and hybrid method (both Bayer and sintering). Desilication process is a critical step during alumina production with Bayer method. Desilication agents used in current alumina industry are calcium oxide and calcium hydroxide. The research and development of new desilication agent has become an important subject as calcium oxide and calcium hydroxide are non-renewable resources and costly.
     Calcium sulfate dihydrate (CaSO4·2H2O), as a new desilication agent, has the ability of desilication. The desilication kinetics of synthetic Bayer liquor by use of calcium sulfate dihydrate (CaSO4·2H2O) was studied experimentally and modelled mathematically. Factors affecting desilication reaction, namely temperature, initial silica concentration, the concentration of NaOH and Al(OH)3, the particle size and dosage of CaSO4·2H2O, were investigated systematically. Temperature, initial silica concentration and the dosage of CaSO4·2H2O were found to be the main factors affecting desilication reaction. CaSO4·2H2O was proved to remove up to 95% silica from sodium aluminate solution under the optimum operation conditions.
     A surface integration kinetic model, assuming that the desilication process follows a pseudo-second-order kinetics, was developed and successfully model the experiment data of desilication process via CaSO4·2H2O at the range of operating conditions investigated. An activation energy of 52 kJ/mol was estimated for the desilication process with CaSO4·2H2O over the temperature of 80-100℃. The desilication reaction products (DSP) were analyzed by XRD and SEM, and found to be mainly Hauyne (3Na2O·2CaSO4-3Al203·6Si02) and Lazurite (3Na2O·CaSO4·0.5Na2SO4·3Al2O3·6SiO2). The final sulfate concentration in the liquor after desilication with CaSO4·2H2O was 0.021 g/L.
引文
[1]Smith P. The processing of high silica bauxites-review of existing and potential processes[J]. Hydrometallurgy,2009,98:162-176
    [2]张论和,何静华,张颖.我国氧化铝工业现状及发展对策[J].轻金属,2006,2:3-7
    [3]Papanastassiou B, Csoke B, Solymar K. Improved preparation of the Greek diasporic bauxite for Bayer-process[C]. In:Wolfgang A and Schneider eds. Light Metals 2002. Warrendale, PA: The Minerals, Metals & Materials Society (TMS),2002.67-74
    [4]Huang C B, Wang Y H. Removal of aluminosilicates from diasporic-bauxite by selective flocculation using sodium polyacrylate[J]. Sep. Purif. Technol.,2008,59:299-303
    [5]Kumar A, Galaev IY, Mattiasson B. Affinity precipitation of a-amylase inhibiter from wheat metal by metal chelate affinity binding using Cu (Ⅱ) loaded copolymers of 1-vinylimidazole with N-isopropy-acrylamide[J]. Biotechnol. Bioeng.,1998,59:693-704
    [6]Jiang T L, Li G F, Huang C B, Fan X, Qiu G R. Thermal behaviors of kaolinite-diasporic bauxite and desilication from it by roasting-alkali leaching processing[C]. In:Wolfgang A and Schneider eds. Light Metals 2002. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),2002.89-94
    [7]Chen W, Peng G The Digestion Technology of Diasporic Bauxite[M]. Beijing:Metallurgical Industry Press,1997
    [8]Liu W C, Yang J K, Xiao B. Review on treatment and utilization of bauxite residues in China[J]. Int. J. Miner. Process.,2009,93:220-231
    [9]Massola C P, Chaves A P, Lima J R B, Andrade C F. Separation of silica from bauxite via froth flotation[J]. Miner. Eng.,2009,22:315-318
    [10]Hu Y, Jiang H, Qiu G. Solution chemistry of flotation separation of diasporic bauxite[J]. Chin. J.Nonferrous Met.,2001,1:125-130
    [11]Li W, Hou P, Wang S. A new process technology of bauxite concentration-tube digestion for alumina production[C]. In:Wolfgang A and Schneider eds. Light Metals 2002. Warrendale, PA: The Minerals, Metals & Materials Society (TMS),2002.95-100
    [12]胡岳华,王毓华,王淀佐.铝硅矿物浮选化学与铝土矿脱硅[M].科学出版社,北京,2004
    [13]Boros J, Csillag Z, Ferenczi T. Catalyst for bauxite digestion-for the conversion of goethite and hematite[P]. USA Patent,4226838A.1978-05-26
    [14]Solymar K, Steiner J, Zoldi J. Technical peculiarities and viability hydrothermal treatment of red mud[C]. In:Huglen R ed. Light Metals 1997. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),1997.49-54
    [15]Zhao H. Digestion of diasporic bauxite with mass ratio of Al2O3/SiO2 no greater than 7 by Bayer process with an excessive addition of lime[C]. In:Wolfgang A and Schneider eds. Light Metals 2002. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),2002.101-104
    [16]Gu S, Yin Z, Qi L. Intensifying method of Bayer digestion process of diasporic bauxite in China. In:Wolfgang A and Schneider eds. Light Metals 2002. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),2002.83-88
    [17]Ma S H, Wen Z G, Chen J L, Zheng S L. An environmentally friendly design for low-grade diasporic-bauxite processing. Miner. Eng.,2009,22:793-798
    [18]Wang Y H, Huang C B, Hu Y H, Hu Y M, Lan Y. Beneficiation of diasporic-bauxite ore by selective flocculation with a polyacrylate flocculant[J]. Miner. Eng.,2008,21:664-672
    [19]Xu Z, Plitte V, Liu Q. Recent advances in reverse flotation of diaspore ores-a Chinese experience[J]. Miner. Eng.,2004,17:1007-1015
    [20]Burkin A R. Production of Aluminium and Alumina[M]. New York:John Wiley & Sons, Ltd., 1987
    [21]杨重愚.氧化铝生产工艺学[M].冶金工业出版社,北京,1993
    [22]刘广义.一水硬铝石型铝土矿浮选脱硅研究[D].长沙:中南工业大学,1999.78
    [23]黄国志,方启学,崔吉让.铝土矿选矿方法及其研究的进展[J].轻金属,1999,5:16-20
    [24]赵清杰.硅矿物及有机物在拜耳法生产氧化铝过程中的行为[D].长沙:中南大学,2008.140
    [25]陶英君,杨玉华.我国氧化铝工业现状及发展建议[J].轻金属,1998,7:3-9
    [26]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术[M].冶金工业出版社,北京,1997
    [27]赵清杰.中国氧化铝生产技术的发展方向[J].有色金属,2000,9:34-39
    [28]Yang Q F, Zhao Q J, Qi L G. Invetigation of new digestion technology of diaspore[C]. In: Crepeau P N ed. Light Metals 2003. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),2003.160-168
    [29]赵清杰.一水硬铝石矿溶出新工艺的研究[J].轻金属,2000,1:17-25
    [30]潘思贵.苹果岩溶堆积型铝土矿地质特征及成矿模式探讨[J].轻金属,2006,9:9-11
    [31]富崇彦,侯斌,张佳荣.中铝山西分公司铝土矿资源发展战略[J].采矿技术,2005,2:9-10
    [32]杨纪倩.我国铝土矿与氧化铝生产的现状与探讨[J].世界有色金属,2006,11:17-19
    [33]董家龙.贵州铝土矿基本地质特征及勘察方法的思考[J].矿产与地质,2004,6:555-558
    [34]刘中凡.我国铝土矿资源展望[J].轻金属,2002,2:4-9
    [35]Whittington B I. The chemistry of CaO and Ca(OH)2 relating to the Bayer process[J]. Hydrometallurgy,1996,43:13-35
    [36]Whittington B I, Cardile C M. The chemistry of tricalcium aluminate hexahydrate relating to the Bayer process [J]. Int. J. Miner. Process.,1996,48:21-38
    [37]毕诗文,于海燕.氧化铝生产工艺[M].化学工业出版社,北京,2006
    [38]毕诗文.铝土矿的拜耳法溶出[M].冶金工业出版社,北京,1996
    [39]杨重愚.轻金属冶金学[M].冶金工业出版社,北京,2002
    [40]Lamerant J M, Bitsch R. Optimization of gibbsite bauxite treatment[C]. In:Evans J W ed. Light Metals 1995. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),1995.29-33
    [41]胡岳华,蒋昊,邱冠周,王淀佐.一水硬铝石型铝土矿浮选分离的溶液化学[J].中国有色金属学报,2001,11:126-130
    [42]李光辉,姜涛,范小慧,黄柱成,邱冠周.一水硬铝石型铝土矿焙烧碱浸脱硅新工艺(II)[J].中国有色金属学报,2000,10:705-709
    [43]姜涛,李光辉,范小慧,黄柱成,邱冠周.一水硬铝石型铝土矿焙烧碱浸脱硅新工艺(I)[J].中国有色金属学报,2000,10:534-538
    [44]Eric L, Bernard B, Odysseas K. Alumina production from diasporic bauxite[C]. In:Bouchard M and Faucher A eds. Light Metals 1999. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),1999.55-61
    [45]李自如,张且凡.世界铝工业发展的若干特点和规律[J].世界有色金属,1998,8:37-39
    [46]张阳春.我国多品种氧化铝生产的发展[J].轻金属,1996,8:7-12
    [47]于斌.混联法氧化铝生产新工艺的探索[J].轻金属,2000,2:9-13
    [48]马善理,王锡慧.混联法氧化铝生产的改造与发展方向[J].世界有色金属,1997,7:11-17
    [49]Zhong H. Flotation separation of diaspore from kaolinitr, pyrophyllite and illite using three cationic collectors[J]. Miner. Engineering,2008,21:1055-1061
    [50]Andrew P I, Anishchenko N M, Mishchenkova N P. Mechanism of the anionic flotation of chamosite and gibbsite[J]. TSV. Met.,1973,116:16-20
    [51]Wang Y, Hu Y, He P, Gu C. Reverse flotation for removal of silicates from diasporic bauxite[J]. Miner. Eng.,2004,17:63-68
    [52]付高峰,田福泉,权昆.中低品位铝土矿石灰拜耳法溶出的研究[J].东北大学学报(自然科学版),2005,11:13-17
    [53]李安,徐克已.石灰拜耳法工业试验过程[J].有色矿冶,2004,20:35-37
    [54]郝建平,李安,柴改珍.石灰拜耳法工业试验探析[J].有色金属:冶炼部分,2004,3:27-29
    [55]赵清法,杨红菊.石灰拜耳法石灰添加剂方式探讨[J].有色冶金节能,2002,5:23-26
    [56]赵恒勤,金梅.山西中低品位铝土矿的石灰拜耳法溶出[J].矿产保护与利用,2002,2:41-44
    [57]Cousineau P G, Fulforf G D. Aspect of the desilication of Bayer liquor[C]. In:Zabreznik ed. Light Metals 1987. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),1987. 11-17
    [58]Tizon E, Clerin P, Cristol B. Effect of predesilication and digestion conditions on silica level in Bayer liquor[C]. In:Alton T and Taberaux eds. Light Metals 2004. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),2004.9-14
    [59]田兴久.全俄铝镁设计研究院、扎波罗什铝联合企业、尼古拉也夫氧化铝厂考察报告[J].世界有色金属,1996,12:9-10
    [60]朱瑞泽.以串联法新工艺开创氧化铝工业新局面[J].轻金属,2003,6:3-6
    [61]朱瑞泽.发展拜耳-烧结串联法建设氧化铝工业强国[J].轻金属,2002,6:3-5
    [62]谭丹君,马鸿文,邹丹,李歌.从高苛性比铝酸钠溶液中制取氢氧化铝的实验研究[J].应用化工,2008,37:1320-1324
    [63]夏国定.苏联霞石综合利用和生产工艺现状[J].新疆有色金属,1991,3:15-20
    [64]郑诗理,张懿,李佐虎.传统过程工业绿色化的定量评价[J].化工学报,2000,5:12-17
    [65]张懿,陈家镛,刘会洲.新一代资源回收、循环集成技术及生态化产业体系[J].化工进展,2000.2:22-29
    [66]张懿.绿色过程工程[J].过程工程学报,2001,1:1-8
    [67]Zhang Y F, Li Y H, Zhang Y. Phase diagram for the system Na2O-Al2O3-H2O at high alkali concentration[J]. J. Chem. Eng. Data,2003,48:617-620
    [68]Zhang Y F, Li Y H, Zhang Y. Supersolubility and induction of aluminosilicate nucleation from clear solution[J]. J. Cryst. Growth,2003,254:156-163
    [69]李迎辉.亚熔盐反应-熟化新工艺处理一水硬铝石矿的基础研究[D].北京:中国科学院过程工程研究所,2002.77
    [70]元炯亮,张懿.铝酸钠溶液添加铝酸钙脱硅过程[J].有色金属,2003,55:60-62
    [71]元炯亮.高浓介质法强化处理一水硬铝石型铝土矿[J].有色金属,2002,54:33-36
    [72]张亦飞.亚熔盐法生产氧化铝的基础性研究[D].北京:中国科学院过程工程研究所,2003. 133
    [73]谢雁丽,吕子剑.铝酸钠溶液晶种分解[M].冶金工业出版社,北京,2003
    [74]柳妙修,周佩芳,陈念贻.Si02在铝酸钠溶液中存在状态的研究[J].金属学报,1990,26:218-226
    [75]刘桂华,李小斌,周秋生NaAl(OH)4溶液脱硅动力学研究现状[J].轻金属,1998,6:13-16
    [76]马淑杰,辛敏谦,冯典英.硅酸钠和硅铝酸钠溶液的研究[J].高等学校化学学报,1987,8:109-111
    [77]Sizyakov V M, Volokhow Y A. Study of struchure and properties of aluminosilica components in aluminate liquors[C]. In:Adkins E M ed. Light Metals 1983. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),1983.233-237
    [78]刘桂华,李小斌,彭志宏.浓碱高苛性比铝酸钠溶液中水合铝酸钠形成的动力学研究[J].高等学校化学学报,1999,8:1262-1265
    [79]罗玉长.添加晶种低温硅及其动力学[J].轻金属,1999,11:24-27
    [80]中科院大连化物所分子筛组.沸石分子筛[M].科学出版社,北京,1978
    [81]邓红梅,曾文明,陈念贻.氧化铝生产中“硅渣”的组成和结构研究[J].金属学报,1996,32:1248-1251
    [82]李小斌.铝酸钠溶液铝硅分离工艺与理论研究.[D].沈阳:东北大学,2000.155
    [83]Noworta A. On the removal of silica from aluminate solutions:mechanism and kinetics of the process[J]. Hydrometallurgy,1981,7:99-106
    [84]Noworta A. Mathematical models of the desiliconization of aluminate solutions[J]. Hydrometallurgy,1981,7:107-115
    [85]Wang Q W, Tian G Y, Yang Z Y. Aspect of deep desilication with lime agent[C]. In:Wayne H ed. Light Metals 1997. Warrendale, PA:The Minerals, Metals & Materials Society (TMS),1997. 29-33
    [86]Barnes M C, Addai-Mensah J, Gerson A R. The kinetics of desilication of synthetic Bayer liquor seeded with cancrinite and cancrinite/sodalite mixed-phase crystals[J]. Journal of Crystal Growth,1999,200:251-264
    [87]Addai-Mensah J, Gerson A R, Smart R St C. Continuous plug flow precipitation of sodalite scale on steel heat transfer surfaces[C]. In:Sahoo M F ed. Light Metals 1998. Warrendale (TMS), 1998.21-28
    [88]Addai-Mensah J, Gerson A R, Zheng K, O'Dea. The precipitation mechanism of sodium aluminosilicate scale in Bayer plants[C]. In:Huglen R ed. Light Metals 1997. Warrendale (TMS),1997.23-28
    [89]Kumar K V. Simple kinetic expressions to study the transport process during the growth of crystals in solution[J]. Industrial and Engineering Chemistry Research,2009,48:11236-11240
    [90]Muller-Steinhagen H, Jamialahmadi M, Robson B. Understanding and mitigating heat exchanger fouling in bauxite refineries[J]. Journal of the Minerals Metals and Materials Society, 1994,46:36-41
    [91]O'Neill G A. Prediction of heat exchange heat transfer coefficient decay due to fouling[C]. In: Miller R E ed. Light Metals. TMS, Warrendale,1986,133-140
    [92]Cousineau P G, Fulford G D. Aspect of the desilication of Bayer liquor[C]. In:Zabreznik R D ed. Light Metals. TMS, Warrendale,1987,11-17.
    [93]Jamialahmadi M, Muller-Steinhagen H. Thermodynamic relationships for the solubility of silica in Bayer process liquor[J]. Aluminum,1992,68:230-233
    [94]Garside J, Mullin J W, Das S N. Importance of crystal shape in crystal growth rate determinations[J]. Industrial & Engineering Chemistry Process Design and Development,1973, 12:369-371
    [95]Ding X H, Tan Q. Industrial Crystallization[M]. Chemical Industry Press, Beijing,1985
    [96]Breuer R G, Barsotti L R, Kelly A C. Behavior of silica in sodium aluminate solutions[C]. In: Gerard G. Stroup P T eds. Extractive metallurgy of aluminium. Interscience, New York,1963, 133-158
    [97]Ikkatai T, Okada N, Showa K K. Viscosity, specific gravity, and equilibrium concentration of sodium aluminate solutions[C]. In:Gerard G, Stroup P T. eds. Extractive metallurgy of aluminium. Interscience, New York,1963,159-173
    [98]Patra A, Satapathy B K, Panigrahi A K. Evaluation of impurities level and their effect across the precipitators in the Bayer process[C]. In:Das S K. ed. Light Metals. TMS, Warrendale,1993, 135-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700