郯庐断裂带山东段晚中生代火山岩地球化学特征及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
郯庐断裂带山东段早白垩世发育了大量的青山群火山岩,通过对其进行主量元素、微量元素、Sr-Nd-Pb同位素等地球化学特征和LA-ICP MS法单颗粒锆石U-Pb年代学的研究,首先明确其岩浆活动的具体时限,火山岩的岩石学和地球化学特征;随后示踪岩浆源区的性质,探讨其岩体成因,并结合年代学结果讨论其岩浆演化特征;最后与华北克拉通内同期的岩浆活动进行对比,分析了断裂带下火山岩岩浆源区性质的形成机制。
     该青山群火山岩具体喷发时期在120~108Ma之间,经历了约12Ma的喷发历史。研究区火山岩全岩SiO2含量变化于50.5~68.9%之间,属于以玄武岩、英安岩、粗安岩、粗面岩为主的火山岩,是一套橄榄安粗岩系列的高钾钙碱性、准铝质类型的岩石,总体上相对富集Rb、Ba、K等大离子亲石元素(LILE)和轻稀土元素(LREE),相对亏损Nb、Ta、Ti等高场强元素(HFSE)和重稀土元素(HREE),具有弱的Eu负异常。火山岩的87Sr/86Sr(t)值变化在0.7070~0.7110之间,εNd(t)值变化于-6.8~-19.1之间,显示岩浆具有富集的源区性质。Pb初始同位素的206Pb/204Pb(t)的范围为16.441~17.641,207Pb/204Pb(t)的范围为15.390~15.571,208Pb/204Pb(t)的范围为36.688~37.904。地球化学特征显示,在岩浆活动早期,该火山岩的岩浆来源于华北岩石圈地幔,兼有华北下地壳以及俯冲的扬子陆壳物质的加入,晚期研究区管帅地区部分火山岩显示有亏损的软流圈地幔物质的信息。
     早白垩世,郯庐断裂带与华北克拉通东部一起经历了大规模的岩浆活动,标志着大规模岩石圈减薄事件的发生,由于岩石圈的减薄作用软流圈顶面抬升或软流圈上涌,引起岩石圈地幔内热流升高,使岩石圈地幔发生部分熔融。由于印支期俯冲的扬子板块下伏于华北岩石圈下部,其陆壳释放的流体/熔体曾交代上覆华北岩石圈地幔,因而其岩浆携带有扬子俯冲陆壳信息,形成了早期的岩浆喷发;随着岩石圈减薄的进行,岩石圈内热流不断升高,软流圈物质发生部分熔融,与岩石圈地幔内熔体发生混合,晚期研究区管帅地区部分火山岩显示有软流圈亏损的地幔物质的信息。
     与华北克拉通内部同期岩浆相比,郯庐断裂带内的岩浆活动具有较早的开始时间和长期的活动历史,岩浆源区较浅。暗示断裂带内岩石圈具有较长的减薄历史和较强的减薄程度,断裂带的存在和活动为岩浆活动提供了良好的通道和有利的条件。
Large-scale volcanic rocks were developed in Qingshan formation from the Shandong segment of the Tan-Lu fault zone, belonging to early Cretaceous. Chronological, geochemical and Sr-Nd-Pb isotopic analyses have been carried out on the volcanic rocks along the Shandong segment of the Tan-Lu fault zone. Based on these results, this paper demarcated formation time of these volcanic rocks, summarized nature of their petrology and geochemistry, discussed deep processes of the magmatism,compositions of magma sources, and magmatic evolution features. Based on regional comparsions, this paper also analyzed patterns and characteristics of the magma sources beneath the fault zone.
     These volcanic rocks were erupted during the Early Cretaceous, the eruption ages varied from 120Ma to 108Ma with a long period of 12Ma. They had SiO2 of 51.8-55.92%, and constitute mainly basalt, latite, trachyte association, belonging to high-K cal-alkaline shoshonite series. These volcanic rocks were notably rich in LILE(Rb,Ba,K) and LREE, depletes in HFSE(Nb,Ta,Ti) and HREE, with slightly negative Eu anomaly. These rocks have high initial 87Sr/86Sr(t) ratios (0.7070 to 0.7110) and lowεNd(t) values (-6.8 to -19.1), 206Pb/204Pb(t) ratios (16.441 to 17.641), 207Pb/204Pb(t) ratios (15.390 to 15.571), 208Pb/204Pb(t) ratios (36.688 to 37.904). Geochemical characteristics show the earlier magma reflect enriched mantle of the North China craton, and have the information of the crust of the NCC and the lower crust of the Yangtze Block, the later together with a small quantity of melt from the isotopic depleted asthenosphere in Guanshuai.
     During the Early Cretaceous, the volcanic activities on the Tan-Lu fault zone and NCC began and indicated the lithosphere thinning. Becauce of the constantly uplifting of the asthenosphere surface and chemical action became gradually strong, thus appeared the partial melting of the mantle of the lithosphere. The deep-subducted lower crust of the Yangtze Block existed under the lithosphere of the NCC, contributed to melt to earlier magma, this melt was generated from the melting of the subducted lower crust of the Yangtze Craton. The asthenosphere upwelling and lithosphere extension play a key factors for the magmatism. The partial melting of the mantle of the lithosphere mixed with the asthenosphere, the later magma together with a small quantity of melt from the isotopic depleted asthenosphere in Guanshuai.
     Compared with the volcanic activities inner NCC, the volcanic activities on the Tan-Lu fault zone began earlier and have a comparatively long history, the magma source became shallower. Indicate an intense degree and a long period of of the lithospheric thinning beneath the fault zone, its occurrence and activities provides an routeway and an important role to magma activities.
引文
[1] Ames L,Tilton G R,Zhou G. Timing of the Sino-Korean and Yangtze craton:U-Pb dating of coesite-bearing eclogite.Geology,1993,21(4):339~342.
    [2] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb.Chemical Geology,2002,192:59~79.
    [3] Arndt NT and Christensen U. The role of lithospheric mantle in continental flood volcanism : Thermal and geochemical constraints.Journal of Geophysics Research.1992,97:10967~10981.
    [4] Belousova EA,Griffin WL,O’Reilly SY,et al. Igneous zircon:trace element composition as an indicator of source rock type.Contribution to Mineralogy Petrology,2002,143:602~622.
    [5] Boynton W V. Geochemistry of the rare earth elements: meteorite studies.In:Henderson P.ed.Rare Earth Element Geochemistry,1984,Amsterdam:Elsevier:63~114.
    [6] Burov E,Jaupart C,Mareschal JC. Large-scale crustal heterogeneities and lithospheric strength in cratons.Earth and Planetary Science Letters,1998,164:205~219.
    [7] Chang EZ. Collision orogene between north and south China and its eastern extension in the Korean Peninsula.Journal of Southeast Asian Earth Sciences,1996,13(3-5):267~277.
    [8] Chen B,Jahn BM,Arakawa Y,et al. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen , north China Craton :elemental and Sr-Nd-Pb isotopic constraints.Contrib.Mineral.Petrol.,2004,148:489~501.
    [9] Chen JF,Yan J,Xie Z,et a1. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China:Constraints on sources.Physics and Chemistry of the Earth,2001,26(9-10):719~731.
    [10] Chung SL. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between north and south China.The Journal of Geology,1999,07:301~312.
    [11] DePaolo DJ. Neodymium isotope geochemistry. In:An introduction:Minerals and rocks.Berlin Heidelberg New York:Springer,1988,20:1~187.
    [12] Fan QC and Hooper PR. The mineral chemistry of ultramafic xenoliths of eastern China : Implications for upper mantle composition and the paleogeotherms.J.Petrol.,1989,30:1117~1158.
    [13] Fan WM,Zhang HF,Baker J,et al. On and off the North China Craton:where is the Archean keel? J.Petrol.,2000,41:933~950.
    [14] Fan WM,Guo F,Wang YJ,et al. Post-Orogenic Bimodal Volcanism Along the Sulu Orogenic Belt in Eastern China.Phys.Chem.Earth (A),2001,26(9-10):133~146.
    [15] Fan WM,Guo F,Wang YJ,et al. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen?.Chemical Geology,2004,209:27~48.
    [16] Foland K A,Allen J C. Magma sources for Mesozoic anonrogenic granites of the White Mountain magma series.New England USA.Contrib.Mineral. Petrol.,1991,109:195~211.
    [17] Froster M A,Lister G S. The interpretation of 40Ar/39Ar apparent age spectra produced by mixing:application of the method of asymptotes and limits.Journal of Structural Geology,2004,26:287~305.
    [18] Gao S,Luo TC,Zhang BR,et al. Chemical composition of the continental crust as revealed by studies in East China.Geochimica et Cosmochimica Acta,1998,62(11):1959~1975.
    [19] Gao S,Roberta LR,Richard WC,et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton.Earth and Planetary Science Letters,2002,198:307~322.
    [20] Gao S,Rudnick RL,Yuan HL,et al. Recycling lower continental crust in the North China craton.Nature,2004,432:892~897.
    [21] Gilder SA,Leloup PH,Courtillot V,et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data.Journal of Geophysical Research,1999,104(B7):15365~15390.
    [22] Gill J B. Early geochemical evolution of an oceanic island arc and backarc:Fiji basin.Journal of Geology,1987,95:589~615.
    [23] Griffin WL,O’Reilly SY and Ryan CG. Composition and thermal structure of the lithosphere beneath South Africa , Siberia and China : proton microprobe studies.International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and its Environs,Beijing,1992,1~20.
    [24] Griffin,W.L.,Zhang,A.,et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton.In:Flower,M.F.J.,Chung,S.L.,Lo,C.H.&Lee,T.Y. (eds.).Mantle Dynamics and Plate Interactions East Asia,Geophysical Monograph.American Geophysical Union,Geodynamics Series,1998,27,100:107~126.
    [25] Guo F,Fan WM,Wang YJ,et a1. Late mesozoic mafic intrusive complexes in north China block : constraints on the nature of subcontinental lithospheric mantle.Physics and Chemistry of the Earth(A),2001,26(9-10):759~771.
    [26] Guo F,Fan WM,Wang YJ,et a1. Geochemistry of late Mesozoic mafic magmatism in west Shandong Province,Eastern China:Characterizing the lost lithospheric mantle beneath the North China Block.Geochemical Journal,2003,37:63~77.
    [27] Guo F,Fan W M,Wang Y J,et al. Origin of early Cretaceous calc-alkaline lamprophyes from the Sulu orogen in eastern China:implications for enrichment processes beneath continental collisional belt.Lithos,2004,78:291~305.
    [28] Hacker BR,Ratschbacher L,Webb L,et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen,China.Earth Planet.Sci.Lett.,1998,161:215~230.
    [29] Hacker B R,Ratschbacher L,Webb L,et al. Exhumation of ultrahigh- pressure continental crust in east central China:Late Triassic-Early Jurassic tectonic unroofing.J.Geophys.Res.,2000,105B:13339~13364.
    [30] Hoernle K and Schmincke HU. The Role of Partial Melting in the 15Ma Geochemical Evolution of Gran Canaria:A Blob Model for the Canary Hotspot.Journal of Petrology,1993,34(3):599~626.
    [31] HsüKJ,Li J,Chen I,et al. Tectonic evolution of Qinling Mountains, China.Eclogae.Geol.Helve,1987,80:735~752.
    [32] Huang F,Li S G,Dong F,et al. Recycling of deeply subducted continental crust in the Dabie Mountains,central China.ScienceDirect.Lithos,2007,96:151~169.
    [33] Jahn BM,Wu FY,Lo CH,et a1. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrasions of the Northern Dabie complex,central China.Chemical Geology,1999,157:119~146.
    [34] Le Bas MJ,Le Maitre RW,Streckeisen A,et a1. A chemical classification of volcanic rocks based total alkali-silica diagram.Journal of Petrology,1986,27:745~750.
    [35] Li S,Jagoutz E,Chen YZ,et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains,Central China.Geochimica et Cosmochimica Acta,2000,64(6):1077~1093.
    [36] Li S G,Xiao Y L,Liu D L,et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites : Timing and processes.Chen,Geol.,1993,109:89~111.
    [37] Li ZX. Collision between the North and South China Blocks : A Crustal-detachment model for the suturing in the region east of the Tanlu fault.Geology,1994,22,739~742.
    [38] Lin G,Zhang Y,Guo F,et al. Numerical modelling of lithosphere evolution in the North China Block:Thermal versus tectonic thinning.Journal of Geodynamics,2005,40:92~103.
    [39] Lin JL and Fuller M. Paleomagnetism.North and South China collision,and the Tan-Lu fault.Phil.Trans.Roy.Soc.Lond.,1990,A331:589~598.
    [40] Liu,M. Cenozoic extension and magmatism in the North American Cordillera:the role of gravitational collapse.Tectonophysics,2001,342:407~433.
    [41] Ludwig KR. Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication,2003,4:1~70.
    [42] Maniar PD and Piccoli PM. Tectonic discrimination of granitoids. Geological Society of America Bulletin,1989,101:615~643.
    [43] McDonough WF and Sun SS. The composition of the Earth.Chemical Geology,1995,120:223~253.
    [44] Mckenzie DP and Bickle MJ. The volume and composition of melt generated by extension of the lithosphere.Journal of Petrology,1988,29:625~679.
    [45] Menzies MA,Fan WM and Zhang M. Paleozoic and Cenozoic lithoprobes and the los of >120 km of Archean lithosphere,Sino-Korean craton,China.In : Prichard H M , Alabaster T , Harris NBW , Neary CR ,eds.Magmatic Processes and Plate Tectonics.Geological Society,London,1993,76:71~81.
    [46] Menzies MA,Xu YG,Vroon P,et al. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing,NE China.J.Petro.,1998,39(3):469~493.
    [47] Miller C,Schuster R,Klotzli U,et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet : Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis.Journal of Petrology,1999,40(9):1399~1424.
    [48] Okay,A.I.and Sengor,A.M.C. Evidence for intracontinental thrust related exhumation of the ultra-high-pressure rocks in China.Geology,1992,20:411~414.
    [49] Peccerillo A and Taylor SR. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey.Contribution to Mineralogy and Petrology,1976,58:68~81.
    [50] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries.In:Thorpe R S,ed.Andesites.New York:Wiley,1982,528~548.
    [51] Pysklywec,R.N.and Beaumont,C. Intraplate tectonics:feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities.Earth and Planetary Science Letters,2004,221:275~292.
    [52] Ren,J.Y.,Kensaku,T.,Li,S.T.,et al. Late Mesozoic and Cenozoic rifting and itd dynamic setting in Eastern China and adjacent areas.Tectonophysics,2002,344:175~205.
    [53] Rowley DB,Xue F,Tucker RD,et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology.Earth Planet.Sci.Lett.,1997,151:191~203.
    [54] Shen Z K,Zhao C and Yin A. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurments.Jour. Geophys.Res.,2000,105(B3):5721~5734.
    [55] Sun S S. Chemical compositions and origin of earth’s primitire mantle,Geochim.Cosmochim.Acta.v.1982,46:179~192.
    [56] Sun S.-S.and McDonough W.F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.In:Saunders A.D. and Norry M.J.(eds.),Magmatism in ocean basins.Geol.Soc.London.Spec.Publ.1989,42,pp.313~345.
    [57] Tang YJ,Zhang HF,Ying JF,et a1. Refertilization of ancient lithosphericmantle beneath the central North China Craton:Evidence from petrology and geochemistry of peridotite xenoliths.Lithos,2007,in press..
    [58] Wan T F. Formation and Evolution of the Tancheng-Lujiang Fault Zone.Beijing:China University of Geosciences,1996,Press:1~37.
    [59] Wang YJ,Fan WM,Peng TP,et al. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen,Central China:Evidence from 40Ar/39Ar geochronology,elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks.Chemical Geology,2005,220:165~189.
    [60] Wang Q,Derek AW,Xu JF,et a1. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area,Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization.Lithos,2006a,89:424~446.
    [61] Wang YJ,Fan WM,Zhang HF,et al. Early Cretaceous gabbroic rocks from the Taihang Mountains : Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton.Lithos,2006b,86:281~302.
    [62] Watson M.P.,Hayward A.B.,Parkinson D.N.,et al. Plate tectonic history,basin development and petroleumsource rock deposition onshore China.Marine and Petroleum Geology,1987,4,205~225.
    [63] Weaver BL. The origin of ocean island basalt end member compositions:Trace element and isotopic constrations.Earth and Planet Science Letters,1991,104:381~397.
    [64] Wiedenbeck M,Alle P,Corfu F,et al. Three natural zircon standards for U-Th-Pb , Lu-Hf , trace element and REE analyses.Geostandard Newsletters,1995,19:1~23.
    [65] Wijbrans JR,McDougall I. 40Ar/39Ar dating of white mica from Alpine high-pressure metamorphic belt on Naxos(Greece):the resetting of the argon isotopic system.Contrib.Mineral.Petrol.,1983,93:187~194.
    [66] Wu FY,Lin JQ,Wilde SA,et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China.Earth and Planetary Science Letters,2005,233:103~119.
    [67] Xu YG,Ross JV,Mercier JCC. The upper mantle beneath the continental rift of Tanlu,Eastern China:Evidence for the intra lithospheric shear zones.Tectonophysics,1993,225:337~360.
    [68] Xu YG,Menzies MA,Vroon P,et al. Texture-temperature-geochemistryrelationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing,NE China.J.Petro.,1998,39(3):469~493.
    [69] Xu YG. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos,2007,96:281~298.
    [70] Xu JW and Zhu G. Tetonic model of the Tan-Lu fault zone,eastern China.International Geology Review,1994,36:771~784.
    [71] Xu JW,Zhu G,Tong WX,et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northern of the Pacific Ocean.Tectonophysics,1987,134:273~310.
    [72] Xu WL,Gao S,Wang QH,et al. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications.Geology,2006a,34:721~724.
    [73] Xu WL,Wang QH,Wang DY,et al. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust.Journal of Asian Earth Sciences,2006b,27:230~240.
    [74] Xu YG. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean in China : evidence , timing and mechanism.Phys.Chem.Earth,2001,26(9-10):747~757.
    [75] Yin A and Nie SY. An indendation model for the North and South China collision and the development of the Tan-Lu and Honam fault system,eastern Asia.Tectonics,1993,12(4):801~813.
    [76] Yuan HL,Gao S,Liu XM,et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry.Geostand.Geoanaly.Res.,2004,28:353~370.
    [77] Zhai MG,Fan QC,Zhang HF,et al. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China:Underplating,replacement and delamination.Lithos,2007,96:36~54.
    [78] Zhang Z M,Liou J G,Coleman,R G. An outline of the plate tectonics of China.Geol Soc Am Bull,1984,95:295~312.
    [79] Zhang K J,North and South China collision along the eastern and southern North China margins.Tectonophysics,1997,270:145~156.
    [80] Zhang HF,Gao S,Zhong ZQ,et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt,China.Chemical Geology,2002b,186:281~299.
    [81] Zhang HF,Nakamura E,Sun M,et al. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction:evidence from a highly fertile mantle xenolith from the North China Craton.Inter.Geol.Rev.,2007b,49:658~679.
    [82] Zhang HF,Sun M,Zhou MF,et al. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton : evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks.Geological Magazine,2004,141:55~62.
    [83] Zhang HF,Sun M,Zhou XH,et al. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major-,trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts.Contribution to Mineralogy and Petrology,2002a,144:241~253.
    [84] Zhang HF,Sun M,Zhou XH,et al. Secular evolution of the lithosphere beneath the eastern North China Craton:Evidence from Mesozoic basalts and high-Mg andesites.Geochimica et Cosmochimica Acta,2003a,67(22):4373~4387.
    [85] Zhang HF,Sun M,Zhou XH,et al. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications.Lithos,2005,81:297~317.
    [86] Zhang HF,Ying JF,Shimoda G,et al. Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton : Evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths.Lithos,2007a,96:67~89.
    [87] Zheng,Z.,O’Reilly,S.Y.,Griffin,W.L.,et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula,Sino-Korean Cration,Eastern China.Int.Geol.Rev.,1998,40:471~499.
    [88] Zheng JP,Griffin WL,O’Reilly SY,et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis.Geochim.Cosmochim.Acta,2007,71:5203~5225.
    [89] Zheng JP,O Reilly SY,Grifin WL,et al. Relict refractory mantle beneath the eastern North China block : sign ificance for lithosphere evolution.Lithos,2001,57:43~66.
    [90] Zhou XH,Sun M,Zhang GH,et al. Continental crust and lithospheric mantle interaction beneath North China:isotopic evidence from granulitexenoliths in Hannuoba,Sino-Korean craton.Lithos,2002,62:111~124.
    [91] Zhu G,Wang Y S,Liu G S.,et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu Fault Zone,East China.Journal of Structural Geology,2005,27(8):1379~1398.
    [92] Zhu G and Xu J W. Displacement,timing and tectonic model of the Tan-Lu fault zone.Proceedings of 30th International Geological Congress,1997,Vol.14.Utretch:VSP,217~228.
    [93] Zinlder A and Hart SR. Chemical Geodynamics.Annual review of earth and planetary sciences,1986,14:493~571.
    [94]陈斌,翟明国,邵济安.太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据.中国科学(D),2002,32:896~907.
    [95]陈沪生,周雪清,李道琪,等.中国东部灵璧-奉贤(HQ-13)地学断面.北京:地质出版社,1993.
    [96]陈立辉,周新华.鲁西中生代闪长岩中的深源超镁铁质岩捕虏体及其富硅交代作用.中国科学D辑,2003,23(8):734~744.
    [97]陈全茂,李忠飞.辽河盆地东部凹陷构造及含油气性分析.北京:地质出版社,1998,141~148.
    [98]陈文,李曙光,张彦,等.苏鲁超高压变质带东海青龙山高压正片麻岩中白云母的40Ar/39Ar年代学研究.地质论评,2003,49(5):537~543.
    [99]陈义贤.辽河裂谷盆地断裂演化序次和油气藏形式模式.石油学报,1985,6(2):1~11.
    [100]池际尚,路风香,赵磊,等.华北地台金伯利岩及古生代岩石圈地幔特征.北京:科学出版社,1996.
    [101]池际尚,主编.中国东部新生代玄武岩及上地幔研究.武汉:中国地质大学出版社,1988.
    [102]邓晋福,莫宣学,赵海玲,等.中国东部岩石圈根/去根作用与大陆“活化”.现代地质,1994,8:349~356.
    [103]邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造―大陆动力学的钥匙.北京:地质出版社,1996,97.
    [104]邓晋福,赵国春,赵海玲,等.中国东部燕山期火成岩构造组合与造山深部过程.地质论评,2000,46(1):41~48.
    [105]董树文,吴宣志,高锐,等.大别造山带地壳速度结构与动力学.地球物理学报.1998,41(3):349~361.
    [106]鄂莫岚,赵大升.中国东部新生代玄武岩及深源包体.北京:科学出版社,1987.
    [107]高维明,李家灵,孙竹友.沂沭活动断裂及其地震构造.构造地质论丛,1984,(3):263~271.
    [108]国家地震局地质研究所.郯庐断裂.北京:地震出版社,1987,83~141.
    [109]国家地震局中国地震区划图编委会.中国及邻区地震震源机制图及说明书.北京:地震出版社,1991,2~11.
    [110]洪景鹏,宫田隆夫.马站盆地成因与晚白垩世郯庐断裂带的活动性.地质力学学报,1998,4(1):33~36.
    [111]胡受奚,徐金方.华北地台花岗岩和地层中金含量与金成矿的关系.高校地质学报,1998,4(2):121~126.
    [112]李锦轶,杨天南,陈文,等.中国东部东海地区超高压变质岩构造变形事件的40Ar/39Ar定年与超高压变质岩折返过程的重建.地质学报,2004,78(1):97~108.
    [113]李全忠,谢智,陈江峰,等.济南和邹平辉长岩的Pb-Sr-Nd同位素特征和岩浆源区中下地壳物质贡献.高校地质学报,2007,13(2):297~310.
    [114]李曙光,Jagoutz E,肖益林,等.大别山-苏鲁地体超高压变质年代学-Ⅰ.Sm-Nd同位素体系.中国科学(D辑),1996,26(3):249~257.
    [115]李曙光,聂永红,郑双根,等.俯冲陆壳与上地幔相互作用-Ⅰ.大别山同碰撞镁铁-超镁铁岩的主要元素和微量元素地球化学.中国科学(D),1997,27:488~493.
    [116]李忠,刘少峰,张金芳,等.燕山典型盆地充填序列及迁移特征:对中生代构造转折的响应.中国科学D辑,2003,33(10):931~940.
    [117]李开善.郯庐断裂带构造应力场初步探讨.中国地质科学院562综合大队集刊,1987,第6号,127~137.
    [118]李超文,郭锋,李晓勇.溧水盆地晚中生代基性火山岩成因与深部动力学过程探讨.地球化学,2004,33(4):361~371.
    [119]李学明,李彬贤,张巽.安徽管店岩体的同位素地质年龄和郯庐断裂带的动力学变质作用.中国科学技术大学学报,1985,(增刊):254~261.
    [120]凌文黎,谢先军,柳小明,等.鲁东中生代标准剖面青山群火山岩锆石U-Pb年龄及其构造意义.中国科学(D辑),2006,36(5):401~411.
    [121]刘福来,许志琴.南苏鲁超高压岩石含柯石英锆石中的流体包裹体.科学通报,2004,49(2):181~189.
    [122]刘国生,朱光,王道轩,等.郯庐断裂带张八岭隆起段走滑运动与合肥盆地的沉积响应.沉积学报,2002,20(2):267~273.
    [123]刘国生,宋传中,王道轩,等.郯庐断裂(K2-E)的伸展活动及其对合肥盆地的控制.合肥工业大学学报,2002,25(5):672~677.
    [124]刘洪,邱检生,罗清华,等.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,2002,31(2):129~140.
    [125]刘燊,胡瑞忠,赵军红,等.鲁西青山组火山岩形成的构造背景及其成因探讨:主元素和微量元素证据.地球化学,2003,32(4):306~316.
    [126]林中洋,蔡文伯,陈学波,等.青海门源至福建宁德地学断面.北京:地震出版社,1992.
    [127]刘茂强,杨丙中,邓俊国,等.伊通-舒兰地堑地质构造特征及其演化.北京:地质出版社,1993.
    [128]卢造勋,夏怀宽.内蒙古东乌珠穆沁旗至辽宁东沟地学断面.北京:地震出版社,1992.
    [129]路凤香,韩柱国,郑建平,等.辽宁复县地区古生代岩石圈地幔特征.地质科技情报,1991,10(增刊):2~20.
    [130]路凤香,郑建平,李伍平,等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型.地学前缘,2000,7(1):97~107.
    [131]马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D辑),2003,33(9):817~827.
    [132]马杏垣,刘昌铨,刘国栋.江苏响水至内蒙古满都拉地学断面.北京:地质出版社,1991.
    [133]牛漫兰,朱光,宋传中.郯庐断裂带中生代火山活动与深部过程.合肥工业大学学报.2001,24(2):147~153.
    [134]牛漫兰,朱光,宋传中,等.郯庐断裂带中南段新生代玄武岩源区地幔特征及其演化.现代地质,2001b,15(4):383~390.
    [135]牛漫兰,朱光,刘国生.郯庐断裂带中-南段中生代岩浆活动的构造背景与深部过程.地质科学,2002,37(4):393~404.
    [136]牛漫兰,朱光,刘国生.郯庐断裂带中-南段新生代火山活动与深部过程.地质科学,2005,40(3):390~403.
    [137]牛漫兰,朱光,宋传中,等.郯庐断裂带火山活动与深部地质过程的新认识.地质科技情报,2000,19(3):21~26.
    [138]牛漫兰.张八岭地区中生代岩体中黑云母的40Ar-39Ar年龄及其地质意义.地质科学,2006,41(2):217~225.
    [139]牛漫兰,谢成龙,宋传中,等.郯庐断裂带早白垩世火山岩的K-Ar年龄及其构造意义.地质科学,2007,42(2):382~387.
    [140]牛漫兰,朱光,谢成龙,等.郯庐断裂带张八岭隆起南段花岗岩LA-ICP MS锆石U-Pb年龄及其构造意义.岩石学报,2008,24(8):1839~1847.
    [141]牛耀龄.玄武岩浆起源和演化的一些基本概念以及对中国东部中-新生代基性火山岩成因的新思路.高校地质学报,2005,11:9~46.
    [142]彭子城,Kawk L.玄武岩中铅同位素和微量铀钍铅的测定.岩矿测试,1986,5(2):121~125.
    [143]裴福萍,许文良,王清海,等.鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约.高校地质学报,2004,10(1):88~97.
    [144]邱检生,王德滋,罗清华,等.鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年-五莲分岭山火山机构为例.高校地质学报,2001a,7(3):351~355.
    [145]邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因.地球科学,1996,21(5):46~552.
    [146]邱检生,王德滋,曾家湖,等.鲁西中生代富钾火山岩及煌斑岩微量元素和Nd-Sr同位素地球化学.高校地质学报,1997,3(4):385~396.
    [147]邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的40Ar-39Ar定年及源区示踪.科学通报,2001b,46(18):1500~1508.
    [148]邱检生,王德滋,刘洪,等.大别造山带北缘后碰撞富钾火山岩:地球化学与岩石成因.岩石学报,2002,18(3):319~330.
    [149]山东省地质矿产局.山东区域地质志.北京:地质出版社,1991.
    [150]邵济安,张履桥.华北北部中生代岩墙群.岩石学报,2002,18(3):312~318.
    [151]邵济安,路凤香,张履桥,等.辽西义县玄武岩捕虏晶的发现及其意义.岩石学报,2005,21(6):1547~1558.
    [152]商玉强,文琼英,张宝政,等.沂沭断裂带内部王氏组的沉积环境及构造意义.山东地质,1992,8(1):30~41.
    [153]孙武城,徐杰,杨主恩,等.上海奉贤至内蒙古阿拉善左旗地学断面.北京:地震出版社,1992.
    [154]汤家富,许卫.郯庐断裂带南段并无巨大平移-来自安徽境内的证据.地质论评,2002,48(5):449~456.
    [155]万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报,1996,2(1):l4~27.
    [156]王小凤,李中坚,陈柏林,等.郯庐走滑断裂系的形成演化及其地质意义.见:郑亚东等主编.第30届国际地质大会论文集.北京:地质出版社.1998,14:176~l96.
    [157]王小凤,李中坚,陈柏林,等.郯庐断裂带.北京:地质出版社,2000,320~321.
    [158]王锡亮.论山东地区燕山期地壳运动及其岩浆岩的形成时代.地质研究,1992,92(3):1~7.
    [159]王新社,郑亚东,张进江,等.呼和浩特变质核杂岩伸展运动学特征及剪切作用类型.地质通报,2002,21(4-5):238~245.
    [160]王勇生,朱光,宋传中,等.大别山东端郯庐断裂带由走滑向伸展运动转换的40Ar/39Ar年代学记录.地质科学,2006,41(2):242~255.
    [161]王元龙,张旗,王焰.宁芜火山岩的地球化学特征及其意义.岩石学报,2001,17(4):565~575.
    [162]王岳军,范蔚茗,郭锋.北淮阳晚中生代火山岩定年及火山砾石地球化学:对大别灰色片麻岩隆升和中生代地层格架的约束.科学通报,2002,47(20):1528~1534.
    [163]王岳军,范蔚茗,郭锋,等.北大别晚中生代火山岩的地球化学特征及对北大别构造属性的启示.地学前缘,2003,10(4):529~538.
    [164]吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,1999,29(4):313~317.
    [165]吴福元,孙德有,张广良,等.论燕山运动的深部地球动力学本质.高校地质学报,2000,6(3):379~388.
    [166]吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题.地学前缘,2003,10(3):51~60.
    [167]吴福元,徐义刚,高山,等.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报,2008,待发表.
    [168]肖文交,周垗秀,杨振宇,等.大别-郯庐-苏鲁造山带复合旋转拼贴作用.地球科学进展,2000,15(2):147~153.
    [169]谢智,陈江峰,张巽,等.北淮阳晓天盆地早白垩世玄武岩地球化学:富集地幔的证据.矿物岩石地球化学通报,2003,26(1):26~31.
    [170]谢智,李全忠,陈江峰,等.庐枞早白垩世火山岩的地球化学特征及其源区意义.高校地质学报,2007,13(2):235~249.
    [171]谢成龙,朱光,牛漫兰,等.滁州中生代火山岩LA-ICP MS锆石U-Pb年龄及其构造地质学意义.地质论评,2007,53(5):642~655.
    [172]徐义刚,林传勇,史兰斌,等.中国东部上地幔古地温及其地质意义.中国科学,1995,25:874~881.
    [173]徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄.矿物岩石地球化学通报,1999,18:1~5.
    [174]徐嘉炜,马国锋.郯庐断裂带研究的十年回顾.地质论评,1992,38(4):316~324.
    [175]许文良,王冬艳,王清海,等.华北地块中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar定年:对岩石圈减薄时间的制约.地球化学,2004a,33(3):221~231.
    [176]许文良,王清海,王冬艳,等.华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据.地学前缘,2004b,11(3):309~317.
    [177]许文良,杨承海,杨德彬,等.华北克拉通东部中生代高Mg闪长岩-对岩石圈减薄机制的制约.地学前缘,2006,13:120~129.
    [178]许志琴.郯庐裂谷系概述.构造地质论丛,1984,(3):39~46.
    [179]阎国翰,牟保垒,许保良,等.燕辽-阴山三叠纪碱性侵入岩年代学和Sr-Nd-Pb同位素特征及意义.中国科学D辑,2000,20(4):383~387.
    [180]闫峻,陈江峰,喻钢,等.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,2003b,9(2):195~206.
    [181]闫峻,陈江峰,谢智,等.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学,2005,34(5):455~469.
    [182]闫峻,陈江峰.鲁东青山组中性火山岩的地球化学特征:岩石成因和地质意义.2007,36(1):1~10.
    [183]杨承海,许文良,杨德彬,等.鲁西济南辉长岩的形成时代:锆石LA-ICP-MS U-Pb定年证据.地球学报,2005,26(4):32l~325.
    [184]杨承海,许文良,杨德彬,等.鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据.地球科学,2006,31(1):81~92.
    [185]杨德彬,许文良,裴福萍,等.蚌埠隆起区花岗岩形成时代及岩浆源区性质:锆石LA-ICPMS U-Pb定年与示踪.地球化学,2005,34(5):443~454.
    [186]杨文采,余长青.根据地球物理资料分析大别-苏鲁超高压变质带演化的运动学与动力学.地球物理学报,2001,44(3):346~359.
    [187]杨祝良,沈渭洲,谢芳贵,等.大别山北缘中生代火山-侵入岩铅同位素组成特征及其地质意义.高校地质学报,1999b,5(4):384~389.
    [188]杨祝良,沈加林,沈渭洲,等.大别山北缘中生代火山-侵入岩锶-钕同位素组成特征及其物质来源.岩石矿物学杂志,2002,21(3):223~230.
    [189]袁洪林,柳小明,刘勇胜,等.北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究.中国科学(D辑),2005,35(9):821~836.
    [190]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限.中国科学D辑,2003,33(10):913~920.
    [191]翟明国,樊祺诚,张宏福,等.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用.2005,21(0):1509~1526.
    [192]张宏福,英基丰,徐平,等.华北中生代玄武岩中地幔橄榄石捕虏晶:对岩石圈地幔置换过程的启示.科学通报,2004,49:784~789.
    [193]张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式.地学前缘,2006,13(2):65~75.
    [194]张增奇,刘明渭.山东省岩石地层.武汉:中国地质大学出版社,1996,202~239.
    [195]张青,朱光,刘国生,等.郯庐断裂带张八岭隆起北段的左旋走滑挤压变形及其40Ar/39Ar定年.地学前缘,2008,15(3):234~249.
    [196]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面.北京:地质出版社,1998.
    [197]张岳桥,赵越,董树文,等.中国东部及邻区早白垩世裂陷盆地构造演化阶段.地学前缘,2004,11(3):123~133.
    [198]赵越,杨振宇,马醒华.东亚大地构造发展的重要转折.地质科学,1994,29(2):105~119.
    [199]郑建平,路风香,O’Reilly,等.华北地台东部古生代与新生代岩石圈地幔特征及其演化.地质学报,1999,73:47~56.
    [200]郑建平.中国东部地幔置换作用与中新生代岩石圈减薄.武汉:中国地质大学出版社,1999.
    [201]郑建平,路凤香,Griffin W L,等.华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用.地学前缘,2006,13(2):76~85.
    [202]郑建平,路凤香,O’Reilly SY,等.华北东部地幔改造作用和置换作用:单斜辉石激光探针分析.中国科学D辑,2000,30(4):373~382.
    [203]周建波,胡克,申宁华,等.郯庐断裂中段石场-中楼拉分盆地的确定.地质科学,1999,34(1):18~28.
    [204]周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄.高校地质学报,2003,9(2):185~194.
    [205]朱光,刘国生,Dunlap WJ,et al.郯庐断裂带同造山走滑运动的40Ar/39Ar年代学证据.科学通报,2004a,49(2):190~198.
    [206]朱光,牛漫兰,刘国生,等.郯庐断裂带肥东段走滑运动的40Ar/39Ar法定年.地质学报,2005b,79(3):303~316.
    [207]朱光,牛漫兰,宋传中,等.郯庐断裂带新生代的上地幔剪切作用与火山活动.安徽地质,2001a,11(2):106~112.
    [208]朱光,宋传中,牛漫兰,等.郯庐断裂带的岩石圈结构及其成因分析.高校地质学报,2002a,8(3):248~256.
    [209]朱光,宋传中,王道轩,等.郯庐断裂带走滑时代的40Ar/39Ar年代学研究及其构造意义.中国科学D辑,2001b,31(3):250~256.
    [210]朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景.地质科学,2001c,36(3):269~278.
    [211]朱光,王勇生,牛漫兰,等.郯庐断裂带的同造山运动.地学前缘,2004b,11(3):169~182.
    [212]朱光,谢成龙,王勇生,等.郯庐高压走滑韧性剪切带特征及其40Ar/39Ar定年.岩石学报,2005a,21(6):1687~1702.
    [213]朱光,徐佑德,刘国生,等.郯庐断裂带中-南段走滑构造特征与变形规律.地质科学,2006,41(2):226~241.
    [214]朱光,徐嘉炜,孙世群.郯庐断裂带平移时代的同位素年龄证据.地质论评,1995,41(5):452~456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700