马里亚纳前弧南部橄榄岩的地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对取自马里亚纳前弧南部的蛇纹石化橄榄岩进行了岩石学、矿物学和元素地球化学研究,其研究目的在于探讨马里亚纳前弧地幔所经历的部分熔融及熔体-地幔相互作用的历史,并试图揭示马里亚纳橄榄岩后期所经历的蛇纹石化作用过程及其影响。部分熔融模拟计算结果表明橄榄岩经历了15-25%的高程度部分熔融。橄榄岩相对较为平坦的PGE配分模式显示其可能遭受了与熔体的相互作用。
     马里亚纳前弧南部蛇纹石化橄榄岩的组成矿物主要为橄榄石、角闪石和尖晶石,以及蛇纹石、绿泥石和滑石。不完全的蛇纹石化作用导致了磁铁矿的缺乏,后期富SiO_2流体的加入导致了水镁石的缺失和滑石的形成。橄榄岩蛇纹石化初期、干燥、低渗透性和孔隙度,以及低温的环境条件导致了利蛇纹石的形成而纤蛇纹石和叶蛇纹石的缺失。
     样品中滑石主要有网脉和大脉状两种产出状态,滑石的低摩擦系数和固有稳定性可能对马里亚纳俯冲带逆冲型地震下界限的形成意义重大。铬铁矿具有明显的蚀变分带特征,其蚀变发生在蛇纹石化后期,在此过程中,Al和Mg扩散出铬铁矿颗粒,残留形成了铁铬铁矿(ferrian chromite)。D7和D8两个站位橄榄岩中铬铁矿化学分带的差异可能由流体-橄榄岩反应过程中流体-岩石比值的不同所致。
     橄榄岩的蛇纹石化会造成岩石中MgO和SiO_2的丢失,但对MgO和SiO_2的影响程度相似。此外,蛇纹石化也会造成橄榄岩中CaO的丢失。蛇纹石化对马里亚纳前弧南部橄榄岩微量元素的影响主要体现在Pb、Sr、Li这几个在流体中较活动(fliud-mobile)的元素上,而橄榄岩中U含量的增加则是橄榄岩与海水相互作用的结果。此外,橄榄岩的稀土元素组成具有明显的负Ce异常,可能指示了俯冲物质对马里亚纳地幔楔熔融源区的物质贡献。
Detailed petrology, mineral and geochemistry study was carried out on serpentinized peridotites dredged from the southern Mariana forearc. To study the histories of partial melting and melt-mantle interaction occurred in the Mariana forearc mantle, and to reveal the serpentinization process and its influence on peridotites. Melting model result suggests that all samples have undergone high degrees of melting (15-25%). The relatively flat PGE patterns indicate these peridotites may suffer interaction with melt.
     The constituent minerals of these southern Mariana forearc peridotites are olivine, amphibole and spinel, as well as serpentine, chlorite and talc. The absence of magnetite in the serpentinized peridotites is due to the incomplete serpentinization, the adding of later SiO_2-rich fluid leding to the lack of brucite and the occurrence of talc. Scarcity of H_2O, low porosity and permeability, as well as the actual situation of initial serpentinization and the low temperature in our study area, results in the absolute prevalence of lizardite over chrysotile and antigorite.
     Talcs mainly occur as meshwork veinlets and large veins, the sufficiently low frictional strength and inherently stable sliding behavior may have great significance on downdip limit of subduction thrust earthquakes. Chromites typically exhibit distinct chemical zones, the most reasonable mechanism for alteration of chromites should be the postserpentinization alteration, during which ferrian chromite leaves as chromite diffuse out A1 and Mg. The variability of chromtie zoning charater between sites D7 and D8 may be due to the difference in fluid-rock ratios.
     Serpentinization of the study peridotites resulted in the lost of MgO and SiO_2, and the influence degree on this two elements are similar. Besides, serpentinization could also lead to the lost of CaO in the peridotites. The influence of serpentinization on trace elements in the study peridotite mainly embodies the addition of fluid-mobile elements Pb, Sr and Li, while the concentration increase of U in the study samples is considered due to the interaction of peridotites with seawater. In addition, the Mariana forearc peridotites have distinct negative Ce anomaly, which may indicate the significant contribution of the subducted material to the melting source region of the Mariana wedge mantle.
引文
1.陈根文,夏斌,梅厚钧等.西藏路曲蛇绿岩地幔橄榄岩的贵金属元素地球化学特征,地球化学, 2002, 31 (6): 549-556.
    2.陈俊兵,曾志刚.马里亚纳南部前弧橄榄岩的岩石及矿物学:对弧下地幔楔交代作用的指示.海洋地质与第四纪地质, 2007, 27(1): 53-59.
    3.储雪蕾,孙敏,周美夫.化学地球动力学中的铂族元素地球化学.岩石学报, 2001, 17(1): 112-122.
    4.管涛,黄智龙,谢力华等.几种幔源岩石铂族元素赋存状态研究进展.矿物岩石地球化学通报, 2004, 23 (1): 68-73.
    5.何红蓼,吕彩芬,周肇茹等.锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金:Ⅱ.分析流程空白的降低.岩矿测试, 2002, 21(1): 7-11.
    6.何红蓼,吕彩芬,周肇茹等.锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金. I.分析流程的简化.岩矿测试, 2001, 20 (3): 191-194.
    7.黄珍玉,张勤,胡克等.等离子体质谱法直接测定地球化学样品中金铂钯.岩矿测试, 2001, 20 (1): 15-19.
    8.靳新娣,朱和平.电感耦合等离子体质谱法测定地质样品中铂、钯、钌、铑、铱和金.分析化学, 2001, 29 (6): 653-656.
    9.李春生,柴之芳,毛雪瑛等.化学溶解和电感耦合等离子体质谱法研究地质样品中铂族元素的物相分布.分析化学, 1998, 26 (3): 267-270.
    10.李华昌,周春山,符斌.铂族元素分离中的萃淋树脂技术.贵金属, 2001, 22 (4): 49-55.
    11.李中玺,周丽萍.流动注射在线分离富集-电热原子吸收法测定地球化学样品中的痕量金、铂、钯.分析试验室, 2003, 22(3): 8-12.
    12.林立,刘忠胜,周晓磊.树脂分离富集质谱法测定矿石中痕量铂、钯、金.吉林地质. 2005, 24 (3): 81-83.
    13.漆亮,胡静.等离子体质谱法快速测定地质样品中的痕量铂族元素和金.岩矿测, 1999, 18 (4): 267-270.
    14.漆亮,胡静.同位素稀释-等离子体质谱法快速测定铬铁矿中的铂族元素.矿物岩石地球化学通报, 2000, 19 (4): 414-415.
    15.邱士东,徐九华,谢玉玲.铂族元素分析新进展.冶金分析, 2006, 26 (3): 34-39.
    16.施燕支,贺闺娟,王娟等.敞口消解ICP-MS同时测定北京地区环境尘土样品中痕量铂、铑、钯的研究.光谱学与光谱分析, 2006, 26 (4): 741-746.
    17.孙亚莉,管希云,杜安道.锍试金富集贵金属元素I:等离子体质谱法测定地质样品中痕量铂族元素.岩矿测试, 1997, 16 (1): 12-17.
    18.王建新,柴之芳.一种Os和Ru的放射化学中子活化分析方法.核化学与放射化学, 1992, 14 (4): 239-245.
    19.王利,周祖翼.发震带试验( SEIZE).地球科学进展, 2005, 20(8): 823-832.
    20.许成,黄智龙,刘丛强等.铂族元素地球化学研究评述.地学前缘, 2003, 10 (4): 520-528.
    21.杨刚,杜安道,卢记仁等.金川镍-铜-铂矿床块状硫化物矿石的Re-Os (ICP-MS)定年,地球科学, 2005, 35 (3): 241-245.
    22.袁倬斌,吕元琦,张裕平等.电感耦合等离子体在铂族元素分析中的应用.冶金分析, 2003, 23 (2): 24-30.
    23. Ackerman L, Walker R J, Puchtel I S, et al. Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: A study of the upper mantle profile beneath Central Europe. Geochimica et Cosmochimica Acta, 2009, 73: 2400-2414.
    24. Alard O, Griffin W L, Lorand J P, et al. Non-chondritic distribution of the highly siderophile elements in mantle sulfides. Nature, 2000, 407: 891–894.
    25. Allan J F, Richard O S, Rodey B. Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern Pacific. American Mineralogist, 1988, 73: 741-753.
    26. Allen D E, Seyfried W E. Compositional controls on vent fluids from ultramafichosted hydrothermal systems at mid-ocean ridges: An experimental study at 400°C, 500 bars. Geochim. Cosmochim. Acta, 2003, 67: 1531-1542.
    27. Anderson R N, Uyeda S, Miyashiro A. Geophysical and geochemical constraints at converging plate boundaries—Part I: Dehydration in the downgoing slab. Geophys. J. Int. RAS, 1976, 44: 333-357.
    28. Andreani M, Escartín J, Hirth G, et al. Deformation mode of talc from subsurface to dehydration conditions: implications for the subducting oceanic lithosphere. Eos Trans. AGU, 2006, 87(52), Fall Meet. Suppl., Abstract V31C-0599.
    29. Arai S, Ishimaru S. Insights into Petrological Characteristics of the Lithosphere of Mantle Wedge beneath Arcs through Peridotite Xenoliths: a Review. Journal of Petrology, 2008, 49(4): 665-695.
    30. Asif M, Parry S J. Nickel sulphide fire assay for the collection of the platinum group elem ents and gold from chromitites using reduced bead size. Mineralogy and Petrology, 1990, 42(1-4): 321-326.
    31. Bach W, Garrido C J, Paulick H, et al. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N. Geochemistry, geophysics, geosystems (G3), 2004, 5(9): Q09F26.
    32. Bach W, Paulick H,Garrido C J, et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophysical Research Letters, 2006, 33, L13306. doi:10.1029/2006GL025681.
    33. Bailey S W. Structures and compositions of other trioctahedral 1:1 phyllosilicates. In: Hydrous phyllosilicates other than micas. Reviews in Mineralogy, 1988, 19: 169-188.
    34. Baker M B, Stolper E M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochimica et Cosmochimica Acta, 1994, 58: 2811–2827.
    35. Barefoot R R. Determination of the precious metals in geological materials by inductively coupled plasma mass spectrometry. J. Anal At. Spectrom., 1998, 13:1077-1084
    36. Barefoot R R. Van Loon J C. Recent advances in the determination of the platinum group elements and gold. Talanta, 1999, 49: 1-14.
    37. Barens S J. Chromite in Komatiites, II. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism. J Petrol, 2000, 41: 387-409.
    38. Barnes B J, Naldret A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geolgy, 1985, 53: 303-325.
    39. Barnes S J, Roeder P L. The range of spinel composition in terrestrial mafic and ultramafic rocks. J Petrol, 2001, 42, 2279-2302.
    40. Barnes S J. Unusual nickel and copper to noble-metal ratios from the Rana Layered Intrusion, Northern Norway. Norsk geol. Tidsskrift, 1987, 67: 215-32.
    41. Bartels K S, Kinzler R J, Grove T L. High pressure phase relations of primitive high alumina basalts from Medicine Lake volcano, northern California. Contributions to Mineralogy and Petrology, 1991, 108: 253-270.
    42. Bebout G E, Barton M D. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange—insights into the geochemical evolution of the slab–mantle interface. Chem. Geol., 2002, 187: 79-106.
    43. Beeson M, Jackson E D. Chemical compositions of altered chromites from the Stillwater Complex, Montana. Am Mineral, 1969, 54, 1084-1100.
    44. Benton L D, Ryan J G, Tera F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett., 2001, 187: 273-282.
    45. Benton L D. Origin and evolution of serpentine seamount fluids, Mariana and Izu–Bonin forearcs: implications for the recycling of subducted material Ph.D. dissert, Univ. Tulsa, 1997.
    46. Bideau D, Hébert R, Hékinian R, et al. Metamorphism of deep seated rocks from the Garrett ultrafast transform (East Pacific Rise near 13°25S). Journal of Geophysical Research, 1991, 96: 10079-10099.
    47. Bielski-Zyskind M, Wasserburg G J, Nixon P H. Sm-Nd and Rb-Sr systematics inthe ultramafic xenoliths from Malaita, Solomon Islands, and the nature of the Ontong Java Plateau. J. Geopys. Res., 1984, 89: 2415-2424.
    48. Bliss N W, MacLean W H. The paragenesis of zoned chromite from central Manitoba. Geochim Cosmochim Acta, 1975, 39: 973-990.
    49. Bloomer S H, Fisher R L. Petrology and geochemistry of igneous rocks from the Tonga trench, a non-accreting plate boundary. Journal of Geology, 1987, 95, 469-495.
    50. Bloomer S H, Hawkins J W. Gabbroic and ultramafic rocks from the Mariana trench: an island arc ophiolite. In: Hayes, D. E. (ed.) The Tectonic and Geological Evolution of the Southeast Asian Seas and Islands (Part 2). Geophysical Monograph, 1983, 27, 294-317.
    51. Bloomer S H. Distribution and origin of igneous rocks from the landward slopes of the Mariana trench: implications for its structure and evolution. Journal of Geophysical Research, 1983, 88: 7411-7428.
    52. Bloomer S H, Hawkins J W. Petrology and geochemistry of boninite series volcanic rocks from the Mariana Trench, Contrib. Mineral Petrol., 1987, 97: 361-377.
    53. Bockrath C, Ballhaus C, Holzheid A. Fractionation of the platinum-group elements during mantle melting. Science, 2004, 305: 1951-1953.
    54. Bogolepov V G. Problem of serpentinization of ultrabasic rocks. International Geology Review, 1970, 12: 421-432
    55. Bonatti E, Michael P J. Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters, 1989, 91: 297-311.
    56. Borisov A, Palme H. Solubility of Ir in silicate melts: new Data from experiments with Ir10Pt90 alloys. Geochim.Cosmochim. Acta, 1995, 59: 481-485.
    57. Borisov A, Palme H, Spettel B. Solubility of palladiumin silicate melts: implications for core formation in the Earth. Geochim. Cosmochim. Acta, 1994, 58: 705-716.
    58. Bowin C O, Nalwalk A J, Hersey J B. Serpentinized peridotites from the north wall of the Puerto Rico trench. Geological Society of America Bulletin, 1966, 77:257-270.
    59. Burkhard D J M. Accessory chromian spinels: their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta, 1993, 57: 1297-1306.
    60. Cann J R, Blackman D K, Smith D K, et al. Corrugated slip surfaces formed at North Atlantic ridgetransform intersections. Nature, 1997, 385: 329-332.
    61. Carlson R L. The abundance of ultramafic rocks in the Atlantic Ocean crust. Geophysical Journal Internationa, 2001, 144: 37-48.
    62. Carmichael I S E, Ghiorso M S. The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. In: Nicholls, J. and Russell, J. K. (eds) Reviews in Mineralogy, 1990, 24: 191-212.
    63. Caruso L, Chernosky J V. The stability of lizardite. Canadian Mineralogist, 1979, 17: 757-769.
    64. Caruzo L, Chernosky J V. The stability of lizardite. Canadian Mineralogist, 1979, 17: 757-769.
    65. Charlou J L, Donval J P, Konn C, et al. High flux of hydrogen, abiogenic methane and heavier hydrocarbons from the slow-spreading Mid-Atlantic Ridge, EGU General Assembley. Journal of Geophysical Research. Abstr., 2008, 10: A-03883.
    66. Chen J B and Zeng Z G. Metasomatism of the peridotites from southern Mariana fore-arc: Trace element characteristics of clinopyroxene and amphibole. Science in China Series D: Earth Sciences. 2007, 50(7): 1005-1012
    67. Chernosky J V. Aggregate refractive indices and unit cell parameters of synthetic serpentine in the system MgO-Al2O3-SiO2-H2O. American Mineralogist, 1975, 60(3-4): 200–208.
    68. Chernosky J V, Day H W, Caruso L J. Equilibria in the system MgO-SiO2-H2O: Experimental determination of the stability of Mganthophyllite. Am. Mineral, 1985, 70, 223-236.
    69. Christensen N. Elasticity of ultrabasic rocks. Journal of Geophysical Research, 1966, 71: 5921-5931.
    70. Class C, le Roex A P. Ce anomalies in Gough Island lavas—Trace element characteristics of a recycled sediment component. Earth and Planetary ScienceLetters, 2008, 265: 475-486.
    71. Cogulu E, Laurent R. Mineralogical and chemical variations in chrysotile veins and peridotite host-rocks from the asbestos belt of southern Quebec. Canadian Mineralogist, 1984, 22(1): 173-183.
    72. Coleman R G, Keith T E. A Chemical Study of Serpentinization-Burro Mountain, California. Journal of Petrology, 1971, 12: 311-328.
    73. Colodner D C, Boyle E A, Edmond J M. Determination of Rhenium and Platinum in Natural Waters,and Iridium in Sediments by Flow Injection Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Anal Chem. 1993, 65 (10): 1419-1425.
    74. D’Antonio M, Kristensen M B. Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantle. Mineralogical Magazine, 2004, 68(6): 887-904. doi:10.1180/0026461046860229.
    75. Dai X, Christian Koeberl, Heinz Fr?schl. Determination of platinum group elements in impact breccias using neutron activation analysis and ultrasonic nebulization inductively coupled plasma mass spectrometry after anion exchange preconcentration. Analytica Chimica Acta, 2001, 436: 79-85.
    76. Davies J H, Bickle M J. A physical model for the volume and composition of melt produced by hydrous fluxing above subduction zones. Philosophical Transactions of the Royal Society of London, Series A, 1991, 335: 355-364.
    77. Davies J H, Stevenson D J. Physical model of source region of subduction zone volcanics. Journal of Geophysical Research, 1992, 97: 2037-2070.
    78. Dick H J B, Fisher R L. Mineralogic studies of the residues of mantle melting: abyssal and alpine-type peridotites. In: Kornprobst, J. (ed.) The Mantle and Crustal–Mantle Relationships—Mineralogical, Petrological, and Geodynamic Processes of the Third International Kimberlite Conference, 1984, Vol. II. New York: Elsevier, 295–308.
    79. Dick H J B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders, A. D. and Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42: 71-105.
    80. Dick H J B, Fisher R L, Bryan W B. Mineralogical variability of the uppermost mantle along mid-ocean ridges. Earth and Planetary Science Letters, 1984, 69: 88-106.
    81. Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotite and spatially associated lavas. Contrib. Mineral Petrol, 1984, 86, 54-76.
    82. Dixon T H, Batiza R. Petrology and chemistry of recent lavas in the northern Mariana: implications for the origin of island arc basalts. Contrib. Mineral Petrol., 1979, 70: 167-181.
    83. Djingova R, Heidenreich H, Kovacheva P, et a1. On the determination of platinum group elements in environm ental materials by inductively coupled plasma mass spectrometry and microwave digestion EJ3. Anal Chim Acta, 2003, 489: 245-251.
    84. D'Orazio M, Boschi C, Brunelli D. Talc-rich hydrothermal rocks from the St. Paul and Conrad fracture zones in the Atlantic Ocean. Eur. J. Mineral, 2004, 16: 73-83.
    85. Dyment J, Arkani-Hamed J, Ghods A. Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies . Geophysics Journal International, 1997, 129: 691-701.
    86. Dyment J, Arkani-Hamed J. Spreading-rate dependent magnetization of the oceanic lithosphere inferred from the anomalous skewness of marine magnetic anomalies. Geophysics Journal International, 1995, 121: 789-804.
    87. Elderfield H, Greaves M J. The rare earth elements in seawater. Nature, 1982, 296: 214-219.
    88. Elderfield H, Hawkesworth C J, Greaves M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediment. Geochim. Cosmochim. Acta, 1981, 45: 513-528.
    89. Elliott T, Plank T, Zindler A, et al. Element transport from subducted slab to juvenile crust at the Mariana Arc, J. Geophys. Res., 1997, 102: 14,991–15,019.
    90. Elthon D. Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. Journal of Geophysical Research, 1992, 97: 9015-9025.
    91. Escartín J, Hirth G, Evans B Strength of slightly serpentinizedperidotites: Implications for the tectonics of oceanic lithosphere. Geology, 2001, 29: 1023-1026.
    92. Escartín J, Hirth G, Evans B. Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults . Journal of Geophysical Research, 1997a, 102: 2897-2913.
    93. Escartín J, Hirth G, Evans B. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth and Planetary Science Letters, 1997b, 151: 181-189.
    94. Escartín J, Mével C, MacLeod C J, et al. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45′N. Geochem. Geophys. Geosyst., 2003, 4 (8): 1067, doi: 10. 1029/ 2002GC000472.
    95. Escartín J, Andreani M, Hirth G, Evans B. Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth and Planetary Science Letters, 2008, 268: 463-475.
    96. Evans B W, Johannes W, Oterdoom H, et al. Stability of chrysotile and antigorite in the serpentine multisystem. Schweiz. Mineral Petrogr. Mitt. 1976, 56: 79-93.
    97. Evans B W. The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 2004, 46: 479-506.
    98. Falloon T J, Green D H. Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kb: implications for the origin of primitive MORB glasses. Mineralogy and Petrology, 1987, 37: 181-219.
    99. Farahat E S. Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petrogenetic implications. Chemie der Erde, 2008, 68, 193-205.
    100.Fisher R L, Engel C G. Ultramafi c and basaltic rocks dredged from the nearshore fl ank of the Tonga Trench: Geological Society of America Bulletin, 1969, 80: 1373-1378, doi: 10.1130/0016-7606(1969)80[1373:UABR DF]2.0.CO;2
    101.Fleet A J. Aqueous and sedimentary geochemistry of the rare earth elements. In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam,1984, 343-373.
    102.Frost B R. On the stability of sulfides, oxides, and native metals in serpentine. Journal of Petrology, 1985, 26: 31-63.
    103.Frey F A, Suen C J, Stockman H W. The Ronda high temperature peridotite: geochemistry and petrogenesis, Geochimica et Cosmochimica Acta, 1985, 49: 2469-2491.
    104.Fryer P, Ambos E L, Hussong DM. Origin and emplacement of Mariana forearc seamounts. Geology, 1985, 13(11): 774-777.
    105.Fryer P, Saboda K L, Johnson L E, et al. Conical seamount: SeaMARC II, Alvin submersible, and seismic-reflection studies. Proceedings of the Ocean Drilling Program: Scientific Results, 1990, 125: 69-80.
    106.Fryer P B, Salisbury M H. Leg 195 synthesis: Site 1200–Serpentinite seamounts of the Izu-Bonin/Mariana convergent plate margin (ODP Leg 125 and 195 drilling results). Proc. ODP, Sci. Results, 2006, 195: 1-30.
    107.Fryer P. Evolution of the Mariana Convergent Plate Margin System. Rev. Geophys., 1996, 34: 89-125.
    108.Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts: Geology, 1985, 13: 774-777. doi:10.1130/0091–7613(1985)13<774: OAEOMF>2.0 .CO;2.
    109.Fryer P, Mottl M. Lithology, mineralogy and origin of serpentine muds recovered from Conical and Torishima forearc seamounts, Results of Leg 125 drilling, Proc. Ocean Drill. Program Sci. Results, 1992, 125, 343-362.
    110.Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts. Geology, 1985, 13(11): 774-777.
    111.Fryer P, Saboda K L, Johnson L E, et al. Conical Seamount: SeaMARC II, Alvin submersible, and seismic refl ection studies, in Fryer, P., et al., Proceedings of Ocean Drilling Program, Scientific results, gram, Scientific results, 1990, 125: 373-385.
    112.Gahlan H A, Arai S, Ahmed A H, et al. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: Animplication for mobility of iron during serpentinization . Journal of African Earth Sciences, 2006, 46: 318-330.
    113.Gharib J, Fryer P, Ross K. Lithological and mineralogical analysis of serpentine mud samples from the Mariana Forearc, Eos Trans. AGU, 2002, 83 (47), Fall Meet. Suppl., Abstract T72A.
    114.Gill J. Orogenic Andesites and Plate Tectonics. Minerals and Rocks, 1981, 16: 390
    115.Gros M, Lorand J P, Luguet A. Analysis of platinum group elements and gold in geological materials using NiS fire assay and Te coprecipitation; the NiS dissolution step revisited. Chem. Geol., 2002, 185 (3-4): 179-190.
    116.Guggino S, Savov I P, Ryan J G, and ODP Leg 195 Scientific Party. Light element systematics of metamorphic clasts from ODP Legs 125 and 195, S. Chamorro and Conical Seamounts, Mariana forearc. Eos, Trans. Am. Geophys. Union, 2002, 83: V51A-08 (Abstract).
    117.Haggerty, J. A., and S. Chaudhuri (1992), Strontium isotopic composition of the interstitial waters from Leg 125: Mariana and Bonin forearcs, Proc. Ocean Drill. Program Sci. Results, 125, 397–400.
    118.Haggerty, J.A., Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc: Clues for emplacement of the seamounts and their relationship to forearc tectonics, Marine Geol., 102, 293-309, 1991.
    119.Hall G E M, Pelchat J C. Analysis of geological material for gold, platinum and palladium at low ppb levels by fire assay-ICP mass . Chem. Geol., 1994, 115(1-2): 61-72.
    120.Hamlyn P R, Keays R R, Warrington E C, et al. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulphur saturation in primary magmas. Geochimica et Cosmochimica Acta, 1985, 49: 1797-1811.
    121.Hanson G N. Rare Earth Elements in Petrogenetic Studies of Igneous Systems. Annual Review of Earth and Planetary Sciences, 1980, 8: 371-406.
    122.Hart S R, Zindler A. In search of bulk Earth composition. Chemical Geology, 1986, 57, 247-267.
    123.Hébert R, Adamson A C, Komor S C. Metamorphic petrology of ODP Leg 109, Hole 670A, serpentinized peridotites: serpentinization processes at a slow spreading ridge environmen. in: R. Detrick, J. Honnorez, W.B. Bryan, T. Juteau (Eds.), Proceedings ODP Scientific Results, 1990, Vols. 106-109, College Station, 103-113.
    124.Hellebrand E, Snow E, Dick H J B, et al. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 2001, 410: 677- 681.
    125.Heming R F, Rankin P C. Ce-anomalous lavas fromRabul caldera, Papua New Guinea. Geochim. Cosmochim. Acta, 1979, 43: 1351-1355.
    126.Hess H H. History of the ocean basins. In: Petrologic Studies, Buddington Volume, Geological Society of America, Boulder, CO, 1962, 599-620.
    127.Hickey R L, Frey F A. Geochemical characteristics of boninite series volcanics: Implications for their source, Geochim. Cosmochim. Acta, 1982, 45: 2099-2115.
    128.Hirauchi K-I, Yamaguchi H. Unique deformation processes involving the recrystallization of chrysotile within serpentinite: implications for aseismic slip events within subduction zones. Terra Nova, 2007, 19 (6): 454-461.
    129.Hirose K, Kushiro I. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 1993, 114: 477-489.
    130.Hirth G, Kohlstedt D L. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler, J. (Ed.), Inside the Subduction Factory. AGU Geophysical Monograph Series, 2004, 83-106.
    131.Hirth G, Kohlstedt D L. Water in the oceanic upper mantle; implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 1996, 144 (1-2): 93-108.
    132.Hochstaedter A, Gill J, Peters R, et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, Geochem. Geophys. Geosyst., 2001, 2 (7), doi:10.1029/2000GC000105.
    133.Hoffman M A, Walker D. Textural and chemical variations of olivine and chrome spinel in the East Dover ultramafic bodies, south-central Vermont. GeologicalSociety of America Bulletin, 1978, 89, 699-710.
    134.Hofmann A W. Mantle geochemistry: The message from oceanic volcanism, Nature, 1997, 385: 219-229.
    135.Hole M J, Saunders A D, Marriner G F, et al. Subduction of pelagic sediment: implications for the origin of Ce-anomalous basalts from the Mariana Islands. J. Geol. Soc.London, 1984, 141: 453-472.
    136.Honza E, Kagami H. A possible accretion accompanied by ophiolite in the Mariana trench: Journal of Geography, 1977, 86 (2): 80-91.
    137.Horen H, Zamora M, Dubuisson G. Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge. Geophysical Research Letters, 1996, 23: 9-12.
    138.Horine R L, Moore G F, Taylor B. Structure of the behavior of the outer Isu-Bonin forearc seismic reflection profiling and gravity modeling. Proceedings of the Ocean Drilling Program, Initial Reports, 1990, 125: 81-91.
    139.Hostetler P B, Coleman R. G, Mumpton F A, et al. Brucite in alpine serpentinites. American Mineralogist, 1966, 51: 75-98.
    140.Hussong D M, Uyeda S. Tectonic processes and the histroy of the Mariana arc: Asynthesis from results of DSDP Leg 60. Initial Reports of the Deep Sea Drilling Project, 1982, 60: 909-929.
    141.Hyndman R D, Peacock S M. Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 2003, 212: 417-432.
    142.Hyndman R D, Wang K. Thermal constrains on the zone of major thrust earthquake failure: The Cascadia subduction zone. Journal of Geophysical Research, 1993, 98: 2039-2060.
    143.Hyndman R D, Yamano M, Oleskevich D A. The seismogenic zone of subduction thrust faults, The Island Arc, 1997, 6: 244-260.
    144.Irvine T N. Chromian spinel as a petrogenetic indicator. Part I: Theory. Canadian Journal of Earth Science, 1965, 2, 648-672.
    145.Irving A J. A review of experimental studies of crystal/liquid trace element partitioning. Geochimica et Cosmochimica Acta, 1978, 42, 743-770.
    146.Ishii T. Dredged samples fromtheOgasawara forearc seamount or‘Ogasawara Paleoland’–‘forearc ophiolite’. In: Nasu, N., Ko-bayashi, K., Uyeda, S., Kushiro, I. and Kagami, H. (eds) Formation of Active Ocean Margins. Tokyo: Terra, 1985, 307-342.
    147.Ishikawa T, Tera F. Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics, Geology, 1999, 27, 83-86.
    148.Iyer K, Austrheim H, John T, et al. Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway. Chemical Geology, 2008, 249: 66-90.
    149.Iyer K. Mechanisms of serpentinization and some geochemical effects [D]. Ph.D. thesis, Oslo, Department of Physics, University of Oslo, 2007
    150.Jagoutz E, Palme H, Blum H, et al. The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proceeding of 10th Lunar Planetary Science Conference. Geochimica et Cosmochimica Acta Supplement, 1979, 10: 2031-2051.
    151.Jakes P, Gill J B. Rare earth element and the island arc tholeiite series. Earth Planet. Sci. Lett., 1970, 9: 17-28.
    152.Jaques A L, Green D H. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 1980, 73: 287-310.
    153.Jarvis I, Totland M M, Jarvis K E. Determination of the platinum-group elements in geological materials by ICP-MS using microwave digestion alkali fusion and cation-exchange chromatography. Chemical Geology, 1997, 143(1-2): 27-42.
    154.Jenkins D M, Holland T J B, Clare A K. Experimental determination of the pressure–temperature stability field and thermochemical properties of synthetic tremolite. Am. Mineral, 1991,76: 458–469.
    155.Johnson K T M, Dick H J B, Shimizu N. Melting in the Oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Earth and Planetao' Science Letters, 1990, 95, 2661-2678.
    156.Johnson K T M, Dick H J B. Open system melting and the temporal and spatialvariation of peridotite and basalt compositions at the Atlantis II F. Z. Journal of Geophysical Research, 1992, 97, 9219-9241.
    157.Johnson L E. Mafic clasts in serpentine seamounts: petrology and geochemistry of a diverse crustal suite from the outer Mariana forearc. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 1992, 125: College Station, TX (Ocean Drilling Program), 401–413.
    158.Juvonen R, Lakomaa T, Soikkeli L. Determination of gold and the platinum group elements in geological samples by ICP-MS after nickel sulphide fire assay: difficulties encountered with different types of geological samples. Talanta, 2002, 58: 595-603.
    159.Kamimura A, Kasahara J, Shinohara M, et al. Crustal structure study at the Izu-Bonin subduction zone around 31°N: implications of serpentinized materials along the subduction plate boundary. Phys. Earth Planet. Inter., 2002: 132: 105-129. doi:10.1016/S0031- 9201(02)00047-X.
    160.Kapsiotis A, Tsikouras B, Grammatikopoulos T, et al. On the metamorphic modification of Cr-spinel compositions from the ultrabasic rocks of the Pindos ophiolite complex (NW Greece). Bulletin of the Geological Society of Greece, 2007, 37. Proceedings of the 11th International Congress, Athens.
    161.Karipi S, Tsikouras B, Hatzipanagiotou K, et al. Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece). Lithos, 2007, 99, 136-149.
    162.Kay R W, Kay S M. Crustal recycling and the Aleutian arc. Geochimica et Cosmochimica Acta, 1988, 52 (6): 1351-1359.
    163.Keays R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore-deposits. Lithos, 1995, 34: 1-18.
    164.Keleman P B, Dick H J B, Quick J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 1992, 358, 635-641.
    165.Keleman P B, Kinzler R J, Johnson K T, et al. High field strength element depletions in arc basalts due to mantle–magma interaction. Nature, 1990, 345: 521-524.
    166.Kelley D S, Früh-Green G L. Abiogenic methane in deepseated mid-ocean ridgeenvironments: insights from stable isotope analyses. Journal of Geophysical Research, 1999, 104: 10439-10460.
    167.Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annual Review of Earth and Planetary Sciences, 2002, 30, 385-491.
    168.Kimball K L, Spear F S, Dick H J B. High temperature alteration of abyssal ultramafics from the Islas Orcadas Fracture Zone, South Atlantic. Contrib. Mineral Petrol., 1985, 91: 307-320.
    169.Kimball K L. Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib Mineral Petrol, 1990, 105: 337-346.
    170.Kinzler R J, Grove T L. Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. Journal of Geophysical Research, 1992, 97, 6885-6906.
    171.Klaus A, Taylor B. Submarine canyon development in the Izu-Bonin forearc: A SeaMARC II and Seismic Survey of Aoga Shima, Marine Geophys. Res., 1991, 13: 131-152.
    172.Klein E, Langmuir C H. Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 1987, 92, 8089-8115.
    173.Komor S C, Elthon D, Casey J F. Serpentinization of Cumulate Ultramafic Rocks from the North Arm Mountain Massif of the Bay of Islands Ophiolite . Geochimica Et Cosmochimica Acta, 1985, 49: 2331-2338.
    174.Laurent R and Hebert Y. Paragenesis of serpentine assemblages in harzburgite tectonite and dunite cumulate from the Quebec Appalachians. Canadian Mineralogist, 1979, 17 (4): 857-869
    175.Le Gleuher, Livi M, Veblen K J T, et al. Serpentinization of Enstatite from Pernes, France: Reaction Microstructures and the Role of System Openness . American Mineralogist, 1990, 75: 813-824.
    176.Li X L, Ebihara M. Determination of all platinum-group elements in mantle-derived xenoliths by neutron activation analysis with NiS fire-assay preconcentration. Journal of Radioanalytical and Nuclear Chemistry, 2003, 255(1): 131-135.
    177.Loferski P J, Lipin B R. Exsolution in metamorphosed chromite from the Red Lodgc district, Montana. Am Mineral, 1983, 68, 777-789.
    178.Lorand J P, Pattou L, Gros M. Fractionation of Platinum-group Elements and Gold in the Upper Mantle: a Detailed Study in Pyrenean Orogenic Lherzolites. Journal of Petrology, 1999, 40 (6): 957-981.
    179.Ludden J N, Thompson G. An evaluation of the behavior of the rare earth elements during the weathering of sea-floor basalt. Earth and Planetary Science Letters, 1979, 43 (1): 85-92.
    180.Luguet A, Alard O, Lorand J P, et al. Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth Planet. Sci. Lett., 2001, 189, 285-294.
    181.Luguet A, Lorand J P, Alard O, et al. A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem. Geol. , 2004, 208, 175-194.
    182.Luguet A, Shirey S B, Lorand J P, et al. Residual platinum group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim. Cosmochim. Acta, 2007, 71: 3082-3097.
    183.MacDonald A H, Fyfe W S. Rates of serpentinization in seafloor environments. Tectonophysics, 1985, 116: 123-135.
    184.Maekawa H, Shimizu M, Ishii T, et al. Metamorphic rocks from the serpentinite seamounts in the Mariana and Izu-Ogasawara forearcs. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 1992, 125: College Station, TX (Ocean Drilling Program), 415-430.
    185.Maekawa H, Yamamoto K, Ueno T, et al. Signifi cance of serpentinites and related rocks in the high-pressure metamorphic terranes, circum-Pacifi c regions: International Geology Review, 2004, 46: 426–444, doi: 10.2747/0020- 6814.46. 5.426.
    186.Manning C E. Phase-equilibrium controls on SiO2 metasomatism by aqueous fluid in subduction zones: Reaction at constant pressure and temperature. Int. Geol. Rev., 1995, 37: 1039-1073.
    187.Masuda A, Nagasawa S. Rocks with negative cerium anomalies, dredged from Shatky Rise. Geochem J., 1975, 9: 227-233.
    188.Maury R C, Defant M J, Joron J L. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature, 1992, 360, 661-663.
    189.McCaffrey R. Estimates of modern arc-parallel strain rates in fore arcs, Geology, 1996, 24: 27-30.
    190.McDonough W F, Sun S S. The composition of the Earth, Chem. Geol., 1995, 120: 223-253.
    191.Mckenzie D. 230TH and 238U disequilibrium and the melting processes beneath ridge axes. Earth and Planetary Science Letters, 1985, 72, 149-157.
    192.McKenzie D P, Bickle M J. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 1988, 29: 625-679.
    193.McKenzie D P, O’Nions R K. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 1991, 32: 1021-1091.
    194.McKenzie D P. The generation and compaction of partially molten rock. Journal of Petrology, 1984, 25: 713-765.
    195.Mellini M, Rumori C, Viti C. Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of‘‘ferritchromit’’rims and chlorite aureoles. Contrib Mineral Petrol, 2005, 149: 266-275. DOI 10.1007/s00410-005-0654-y.
    196.Menzies M, Blanchard D, Jacobs J. Rare earth and trace element geochemistry of metabasalts from the Point Sal ophiolite, California. Earth and Planetary Science Letters, 1977, 37 (2): 203-215.
    197.Mével C, Stamoudi C. Hydrothermal alteration of the upper mantle section at Hess Deep, in: C. Mével, K. Gillis, J. Allan (Eds.), Proceedings ODP Scientific Results, 1996, 147: 293-309.
    198.Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geosciences, 2003, 335: 825-852.
    199.Michael P J, Bonatti E. Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 1985, 73, 91-l04.
    200.Michel G, Lorand J P, Luguet A. Analysis of platinum group elements and gold in geological materials using NiS fire assay and Te coprecipitation; the NiS dissolution step revisited . Chem. Geol., 2002, 185 (3-4): 179-190.
    201.Michibayashi K, Tasaka M, Ohara Y, et al. Variable microstructure of peridotite samples from the southern Mariana Trench: Evidence of a complex tectonic evolution. Tectonophysics, 2007, 444 (1-4): 111-118.
    202.Miller D J, Christensen N I. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, South of the Kane transform zone (MARK area). in: J.A. Karson, M. Cannat, D.J. Miller, D. Elthon (Eds.), Proc. ODP, Sci. Results, 1997, 153.
    203.Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and carnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim. Cosmochim. Acta, 1981, 45: 2425-2442.
    204.Mitra S, Pal T, Maity P K, et al. Ferritchromit and its opto-chemical behaviour. Mineralogical Journal, 1992, 16 (4), 173-186.
    205.Miyashiro A, Shido F, Ewing M. Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24 and 30°N. Contributions to Mineralogy and Petrology, 1969, 23: 117-127.
    206.Moody J B. Serpentinization: a review. Lithos, 1976, 9: 125-138.
    207.Moore D E, Lockner D A. Talc friction in the temperature range 25--400°C: Relevance for fault-zone weakening. Tectonophysics, 2008, 449:120-132.
    208.Moore D E, Lockner D A. Comparative deformation behavior of minerals in serpentinized ultramafic rock: Application to the slab–mantle interface in subduction zones. Int. Geol. Rev., 2007, 49: 401-415.
    209.Moore D E, Lockner D A, Summers R, et al. Strength of chrysotile-serpentinite gouge under hydrothermal conditions: can it explain a weak San Andreas fault? Geology, 1996, 24: 1041-1044.
    210.Moore D E, Lockner D A, Ma S, et al. Strengths of serpentinite gouges at elevated temperatures. J. Geophys. Res., 1997, 102: 14,787-14,801.
    211.Moore D E, Rymer M J. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 2007, 448: 795-797.
    212.Mottl M J. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: Evidence for volatiles from the subducting slab, Proc. Ocean Drill. Program Sci. Results, 1992, 125: 373-387.
    213.Mottl M J, Alt J C. Data report: Minor and trace element and sulfur isotopic composition of pore waters from Sites 778 through 786, Proc. Ocean Drill. Program Sci. Results, 1992,125: 683-688.
    214.Mottl M J, Komor S C, Fryer P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochem., Geophys., Geosyst., 2003, 4. doi:10.1029/2003GC000588.
    215.Murray R W, Brink B, Jones M R, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology 18, 1990, 268-271.
    216.Neal C R, Davidson J P. An unmetasomatized source for the Malaitan aln?ite (Solomon Islands): Petrogenesis involving zone refining, megacryst fractionation, and assimilation of oceanic lithosphere. Geochimica et Cosmochimica Acta, 1989,
    53 (8): 1975-1990. 217.Neal C R, Taylor L A. A negative Ce anomaly in a peridotite xenolith—evidence for crustal recycling into the mantle or mantle metasomatism. Geochim. Cosmochim. Acta, 1989, 53 (5): 1035-1040.
    218.Niemela M, Peramaki P, Piispanen J, et a1. Determination of platinum and rhodium in dust and plant samples using microwave-assisted sample digestion and ICP-MS. Ana1. Chim. Acta., 2004, 521 (2): 137-142.
    219.Niu Y. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean Ridges. Journal of Petrology, 2004, 45 (12): 2423-2458. doi:10.1093/petrology/egh068.
    220.Niu Y. Batiza R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: application for axis and off-axis (seamounts) melting. Journal of Geophysical Research, 1991, 96: 21753-21777.
    221.Niu Y, Hékinian R. Basaltic liquids and harzburgitic residues in the Garrett transform: a case study at fast-spreading ridges. Earth and Planetary Science Letters, 1997, 146: 243-258.
    222.Niu Y, Lesher C M. Hydrothermal alteration of mafic metavolcanic rocks and genesis of Fe-Zn-Cu sulfide deposits, Stone Hill district, Alabama. Economic Geology, 1991, 86: 983-1001.
    223.Niu Y, Langmuir C H, Kinzler R J. The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 1997, 152: 251-265.
    224.Normand C, Williams-Jones A E, Martin R F, et al. Hydrothermal alteration of olivine in a flow-through autoclave: Nucleation and growth of serpentine phases. American Mineralogist, 2002, 87: 1699-1709.
    225.O’Hanley D S, Wicks F J. Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia. Canadian Mineralogist, 1995, 33: 753-773.
    226.O’Hanley D S. Fault-related phenomena associated with hydration and serpentine recrystallization during serpentinization. Canadian Mineralogist, 1991, 29: 21-35.
    227.O’Hanley D S. Serpentinites: Records of tectonic and petrologic history. Oxford, UK, Oxford University Press, 1996, 277.
    228.O’Hanley D S. Solution to the volume problem in serpentinization. Geology, 1992, 20: 705-708.
    229.O'Hanley D S, Chernosky J V, Wicks F J. The stability of lizardite and chrysotile. Canadian Mineralogist, 1989, 27: 483-493.
    230.Oakley A J, Taylor B, Fryer P, et al. Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc: Geophysical Journal International, 2007, 170: 615-634.
    231.Oguri K, Shimoda G, Tatsumi Y. Quantitative determination of gold and the platinum-group elements in geological samples using improved NiS fire-assay and tellurium coprecipitation with inductively coupled plasma-mass spectrometry (ICP-MS). Chem. Geol., 1999,157 (3-4): 189-197.
    232.Ohara Y, Ishii T. Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge. The Island Arc, 1998,7 (3): 541- 558.
    233.O'hara M J. Importance of the 'shape' of the melting regime during partial melting of the mantle. Nature, 1985, 314, 58-62.
    234.Ottonello G, Joron J L, Piccardo G B. Rare earth and 3d transition element geochemistry of peridotitic rocks: I Peridotites from the Western Alps. Journal of Petrology, 1984, 25: 343-372.
    235.Oufi O, Cannat M, Horen H. Magnetic properties of variably serpentinized abyssal peridotites. Journal of Geophysical Research, 2002, 107: 1–19.
    236.Pacheco J F, Sykes L R, Scholz C H. Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research, 1993, 98: 14133-14159.
    237.Pariso J E, Rommevaux C, SempéréJ C. Three dimensional inversion of marine magnetic anomalies: implications for crustal accretion along the Mid-Atlantic Ridge (28°- 31°30′N) . Marine Geophysical Researches, 1996, 18: 85-101.
    238.Parkinson I J, Pearce J A. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125); evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 1998, 39: 1577-1618.
    239.Parkinson I J, Pearce J A, Thirlwall M F, et al. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. Proc. ODP, Sci. Results, 1992, 125: 487-506, doi:10.2973/odp.proc.sr.125.183.1992.
    240.Pattan J N, Rao CM, Higgs N C, et al. Distribution of major, trace and rare-earth elements in surface sediments of the Wharton Basin, Indian Ocean. Chem. Geol., 1995, 121: 201-215.
    241.Paukert T, Rubeska I. Effects of fusion charge composition on the determination of platinum group elements using collection into a minimized nickel sulphide button. Anal Chim. Acta, 1993, 278 (1-2): 125-136.
    242.Pawley A R. Wood B J. The high-pressure stability of talc and 10 ? phase: potential storage sites for H2O in subduction zones. Am. Mineral 1995, 80: 998-1003.
    243.Peach C L, Mathez E A, Keays R R, et al. Experimentally determined sulphide melt–silicate melt partition coefficients for Ir and Pd. Chemical Geology, 1994, 117: 361-377.
    244.Peacock S M. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contrib. Mineral Petrol., 1987, 95: 55-70.
    245.Peacock S M, Hyndman R D. Hydrous minerals in the mantle wedge and the aximum depth of subduction thrust earthquakes. Geophys. Res. Lett., 1999, 26: 2517-2520, doi:10.1029/1999GL900558.
    246.Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 1979, 69, 33-47.
    247.Pearce J A, Peate D W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 1995, 23: 251-285. doi:10.1146/annurev.ea.23.050195.001343.
    248.Pearce J A, Parkinson I J. Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard,H.M., Alabaster, T., Harris, N. B. W. and Neary, C. R. (eds) Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publication, 1993, 76: 373-403.
    249.Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar, B. P. and Howells, M. F. (eds) Marginal Basin Geology. Geological Society, London, Special Publication, 1984, 16: 77-94.
    250.Pearce J A, Van Der Laan S R, Arculus R J, et al. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction, in Proceedings of the Ocean Drilling Program, edited by P. Fryer, J.A. Pearce, I.J. Stokking, et al., 1992, 623-659, College Station.
    251.Pearson D G, Woodland S J. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru ) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chemical Geology, 2000, 165: 87-107.
    252.Phipps S P, Ballotti D. Rheology of Serpentine Muds in the Mariana-Izu-Bonin forearc. Proc. ODP, Sci. Results, 1990, 125: 363-372.
    253.Plank T, Langmuir C H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 1988, 90:349-370.
    254.Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 1993, 362: 739-742.
    255.Prichard H M. A petrographic study of the process of serpentinization in ophiolites and the ocean crust. Contributions to Mineralogy and Petrology, 1979, 68: 231-241.
    256.Prinzhofer A, Allègre C J. Residual peridotites and the mechanisms of partial melting. Earth and Planetary Science Letters, 1985, 74: 251-265.
    257.Proenza J, SoléJ, Melgarejo J C. Uvarovite in podiform chromitite: the Moa-Baracoa ophiolitic massif, Cuba. Can Mineral, 1999, 37, 679-690.
    258.Qi L, Zhou M F. Determination of Platinum-Group Elements in OPY-1: Comparison of Results using Different Digestion Techniques. Geostandards and Geoanalytical Research, 2008, 32 (3): 377-387.
    259.Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 2000, 51: 507-513.
    260.Ranero C R, Morgan J P. McIntosh K. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 2003, 425: 367-373.
    261.Ravizza G, Pyle D. PGE and Os isotopic analyses of single sample aliquots with NiS fire assay preconcen-tration. Chem Geol, 1997, 141: 251-268.
    262.Ray G L, Shimizu N, Hart S R. An ion microprobe study of the partitioning of trace elements between clinopyroxene and liquid in the system diopside-albite-anorthite. Geochimica et Cosmochimica Acta, 1983, 47, 2131-2140.
    263.Reddi G S, Rao C R M, Rao T A S, et al. Nickel sulphide fire assay—ICPMS method for the determination of platinum group elements: a detailed study on the recovery and losses at different stages. Fresenius' Journal of Analytical Chemistry, 1994, 348 (5-6): 350-352.
    264.Reinen L A. Seismic and aseismic slip indicators in serpentinite gouge. Geology, 2000, 28: 135-138.
    265.Rehk?mper M, Wentz R F, Halliday A N. Low-blank digestion of geologicalsamples for platinum-group element analysis using a modified Carius Tube design. Fresenius J. Anal Chem., 1998, 361: 217-219.
    266.Rosenbaum J M, Wilson M, Condliffe E. Partial melts of subducted phosphatic sediments in the mantle. Geology, 1997, 25 (1): 77-80.
    267.Sanford R F. Mineralogical and chemical effects of hydration reactions and applications to serpentinization. American Mineralogist, 1981, 66: 290-297.
    268.Sato T, Ishimura C, Kasahara J, et al. The seismicity and structure of Izu-Bonin arc mantle wedge at 31°N revealed by ocean bottom seismographic observation. Physics of The Earth and Planetary Interiors, 2004, 146 (3-4): 551-562, doi:10.1016/j.pepi.2004.06.003.
    269.Savov I P. Petrology and geochemistry of subductionrelated rocks from the Mariana arc-basin system, Ph.D. dissertation, Univ. of S. Fla., Tampa. 2004.
    270.Savov I P, Ryan J G, Chan L H, et al. Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana Forearc—Implications for recycling at subduction zones, Geochim. Cosmochim. Acta., 2002, 66, Abstract 670.
    271.Savov I P, Guggino S, Ryan J G, et al. Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778– 770, South Chamorro and Conical seamounts, Proc. Ocean Drill. Program, Sci. Results, 2005a, 195: 1-49.
    272.Savov I P, Ryan J G, D’Antonio M, et al. Geochemistry of serpentinized peridotites from the Mariana forearc conical seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst., 2005b, 6, Q04J15, doi:10.1029/2004GC000777.
    273.Savov I P, Ryan J G, Mattie P, et al. Fluid-mobile element systematics of ultramafic xenoliths from the Izu-Bonin-Mariana forearc: implications for the chemical cycling in subduction zones. Eos, Trans. Am. Geophys. Union, 2000, 81:V-21C-02.
    274.Schreiber H D, Lauer H V, Thitinant T. The redox state of cerium in basaltic magmas: an experimental study of iron–cerium interactions in silicate melts. Geochim. Cosmochim. Acta, 1980, 44: 1599-1612.
    275.Schroeder T, John B, Frost B R. Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges. Geology, 2002, 30: 367-370.
    276.Schroeder T, John B E. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst., 2004, 5: Q11007, doi:10.1029/2004GC000728.
    277.Seitz H M, Keays R R. Platinum group element segregation and mineralization in a noritic ring complex formed in Proterozoic siliceous high magnesium basalt magmas in the Vestfold Hill, Antarctica. Journal of Petrology, 1997, 38: 703-725.
    278.Seno T. Variation of downdip limit of the seismogenic zone near the Japanese islands: Implications for the serpentinization mechanism of the forearc mantle wedge. Earth and Planetary Science Letters, 2005, 231: 249-262.
    279.Shaw D M. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 1970, 34: 237-243.
    280.Shcherbakov S A, Savel’yeva G N. Structures of ultramafic rocks of the Mariana Trench and the Owen Fracture Zone. Geotectonics, 1984, 18: 159-167.
    281.Shen P, Hwang S L, Chu H T, et al. STEM study of "ferritchromit" from the Heng-Chun chromitite. Am Mineral, 1988, 73: 383-388.
    282.Shervais J W, Kolesar P, Andreasen K. A field and chemical study of serpentinization-Stonyford, California: Chemical flux and mass balance . International Geology Review, 2005, 47: 1-23.
    283.Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 1982, 59: 101-118.
    284.Shimamoto T. The origin of large or great thrusttype earthquakes along subducting plate boundaries: Tectonophysics, 1985, 119: 37-65, doi: 10.1016/0040-1951(85)90032-0.
    285.Shimamoto T, Seno T, Uyeda S. A simple rheological framework for comparative subductology, in Aki, K., and Dmowska, R., eds., Relating geophysical structures and processes: The Jeffreys Volume: American Geophysical Union Geophysical Monograph, 1993, 76: 39-52.
    286.Shimanoto T, Seno T, Uyeda S. A simple rheological framework for comparative subductology. Geophysical Monograph Serise, 1993, 76: 39-52.
    287.Shimizu H, Sawatari H, Kawata Y, et al. Ce and Nd isotope geochemistry on island arc volcanic rocks with negative Ce anomaly: existence of sources with concave REE patterns in the mantle beneath the Solomon and Bonin island arcs. Contrib Mineral Petrol, 1992, 110: 242-252.
    288.Snow J E, Dick H J B. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 1995, 59: 4219-4235.
    289.Snyder G T, Savov I P, Muramatsu Y. Iodine and boron in Mariana serpentinite mud volcanoes (ODP Legs 125 and 195): Implications for forearc processes and subduction recycling, Proc. Ocean Drill. Program Sci. Results. 2005.
    290.Spandenberg K. Die chromitlaagerstatte von tampedal in Zobten. Z Prakt Geol, 1943, 51: 13-35.
    291.Spiegelman M. McKenzie D P. Simple 2-D models for melt segregation at mid-ocean ridges and island arcs. Earth and Planetary Science Letters, 1987, 83: 137-152.
    292.Spiegelman M. Physics of melt extraction: theory, implications and applications. Philosophical Transactions of the Royal Society of London, Series A, 1993, 342: 23-41.
    293.Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler J. eds. Inside the Subduction Factory, Geophysical Monograph, 2003, 138: 175-223
    294.Stern R J. Subduction zones, Rev. Geophys., 40 (4), 1012, doi:10.1029/ 2001RG000108, 2002.
    295.Stern R J, Smoot N C. A bathymetric overview of the Mariana forearc, The Island Arc, 7, 525-540, 1998.
    296.Stern R J, Bloomer S H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California, Geol. Soc. Am. Bull., 1992, 104: 1621-1636.
    297.Stevens R E. Compodition of some chromites of the western hemisphere. Am.Mineral, 1944, 29: 1-34.
    298.Stolper E M, Newman S. The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters, 1994, 121: 293-325.
    299.Taira A, Tokuyama H, Suyehiro K, et al. Nature and growth rate of the northern Izu-Bonin (Ogasawara) arc crust and their implications for continental crust formation. The Island Arc, 1998, 7: 395–407. doi:10.1111/j.1440-1738.1998. 00198.x
    300.Takahashi N, Suyehiro K, Shinohara M. Implications from the seismic crustal structure of the northern Izu-Bonin arc. The Island Arc, 1998, 7: 383–394.
    301.Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc: Geology, 2007, 35: 203-206, doi:10.1130/ G23212A.1.
    302.Toft P B, Hamed J A, Haggerty S E. The effects of serpentinization on density and magnetic susceptibility: A petrophysical model. Physics of the Earth and Planetary Interiors, 1990, 65 (1-2): 137-157.
    303.Toh H. Electrical conductivity structure of the Izu-Bonin arc revealed by seafloor electromagnetic observations [D.Sc. thesis]: Tokyo, University of Tokyo, 1993, 111 p.
    304.Totland M M, Jarvis I, Jarvis K E. Microwave digestion and alkali fusion procedures for the determination of the platinum-group elements and gold in geological materials by ICP-MS . Chem. Geol., 1995, 124 (1-2): 21-36.
    305.Uehara S, Shirozu H. Variations in chemical compositions and structural properties of antigorite. Mineralogical Journal, 1985, 12: 299-318.
    306.Ulmer G C. Alteration of chromite during serpentinization in the Pennsylvania-Maryland district. Am Mineral, 1974, 59: 1236- 1241.
    307.Viti C, Mellini M, Rumori C. Exsolution and hydration of pyroxenes from partially serpentinized harzburgites. Mineralogical Magazine, 2005, 69: 491-507.
    308.Fyfe W S, McBirney A R. Subduction and the structure of andesitic volcanic belts, Am. J. Sci., 1975, 275-A: 285- 297.
    309.Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies. In: P.Henderson, Editor, Rare Earth Element Geochemistry, Elsevier, Amsterdam, 1984: 63-114.
    310.Wang Y L, Liu Y G, Schmitt R A. Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My. Geochimica et Cosmochimica Acta, 1986, 50 (7): 1337-1355.
    311.Watanbe T, Oguri H, Yano H, et al. Compressional and shear wave velocities in serpentinized peridotites. American Geophysical Union, Fall Meeting (Abstract), San Francisco, Ref. 2007, 671.
    312.Watson S, McKenzie D P. Melt generation by plumes: a study of Hawaiian volcanism. Journal of Petrology, 1991, 32, 501–537.
    313.Wenner D B, Taylor H P. Temperatures of serpentinization of ultramafic rocks based on 18O/16O fractionation between coexisting serpentine and magnetite. Contrib. Mineral Petrol, 1971, 32: 165-185.
    314.White W M, Patchett P J. Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust–mantle evolution. Earth Planet. Sci. Lett., 1984, 67, 167-185.
    315.Wicks F J, Plant A G. Electron-microprobe and X-ray microbeam studies of serpentine textures. Canadian Mineralogist, 1979, 17: 785-830.
    316.Wicks F J, Whittaker E J W. A reappraisal of the structure of serpentine minerals. Canadian Mineralogist, 1975, 13: 227-243.
    317.Wicks F J, Whittaker E J W. Serpentine textures and serpentinization. Canadian Mineralogist, 1977, 15: 459-488.
    318.Williams R W, Gill J B. Effects of partial melting on the uranium decay series. Geochimica et Cosmochimica Acta, 1989, 53, 1607-1619.
    319.Wood B J, Bryndzia L T, Johnson K E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science, 1990, 248, 337-345.
    320.Woodland S J, Pearson D G, Thirlwall M F. A Platinum Group Element and Re-Os Isotope Investigation of Siderophile Element Recycling in Subduction Zones: Comparison of Grenada, Lesser Antilles Arc, and the Izu-Bonin Arc. Journal of Petrology, 2002, 43 (1): 171-198.
    321.Workmana R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 2005, 231: 53-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700