南岭南坡剥蚀速率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南岭在史地学者中久负盛名,南岭沿称五岭,查证古文献记载表明“五岭”概念较早出现在《淮南子》、《史记》中,“南岭”概念也许较早出现在唐代以来一些游学文人的作品中。南岭地质复杂,山势散乱,影响南北之水文、气候、土壤植被及人文地物等,是我国南方一条重要的自然地理界线。南岭剥蚀速率的研究,对于诠释南岭地貌演化及中国南方环境演变具有重要的意义。
     本文以南岭南坡为研究对象,运用东江流域、北江流域和桂江(包括贺江)流域实测的泥沙及水化学资料去反演流域内部发生的主要侵蚀过程,推算一定时段内的区域侵蚀速率并探讨了现代侵蚀速率的空间和时间分布规律,并着重探讨了气候与剥蚀之间的变化关系,得出如下结论:
     潮湿热带地区岩石的风化速率一般为0.025-0.050mm/a。湿热的南岭南坡总体平均机械剥蚀速率为0.063 mm/a,其中中段(0.065 mm/a)略高于东段(0.059mm/a)和西段(0.063 mm/a),流域上游大于下游;总体的平均溶蚀速率为0.037mm/a,从东向西溶蚀速率递增,其数值分别为0.021mm/a、0.039mm/a和0.049mm/a,溶蚀比重在全国(1~75%)和世界大河(1.64~98.76%)中处于中等位置;研究区总体剥蚀速率为0.100mm/a,与全国(0.090~1.426mm/a)和世界其他地区(0.020~1.400mm/a)相比,其数值是较低的。
The Nanling Mountains, also named Wuling, has long been well known among historians and geographers in China. The denomination of Wuling, which means five mountains in Chinese (in fact it is made up of five mountains: the Dayu mountain, the Qitian mountain, the Mengzhu mountain, the Dupang mountain and the Yuecheng mountain), appeared as early as in China's two great ancient works Huainanzi(179~122 B.C.) and Shichi (145~90 B.C.), whereas the denomination of Nanling might first appeared in some literatures of the geographers in the Tang dynasty (618~907A.D). Being an important latitudinal structural system in South China which is mostly made up of NNE strike mountains, its geologic settings complicated and mountains separated, the Nanling Mountains has a great impact on the the hydrology, climate, soil, vegetation and social customs of its both sides. Thus it makes an important geographic boundary in South China and the study on the dedundation rate for the Nanling Mountains is of great significance on the geomorphic evolution.
     This paper focuses on the denudation rates for the southern slope of the Naling Mountains(110°-116°E, 23°26′-26°20′N) in the past 50 years. Based on the hydrological and sedimentary data on the suspended and dissolved loads from the eastern part (the Dongjiang River valley), the middle part (the Beijiang River valley) and the western part (the Guijiang River and the Hejiang River valleys), we deduced the main erosion process within the river valleys, worked out the regional denudation rate in the past 50 years, and analysed the temporal-spatial variation and distribution of modern denudation rate for the southern slope of the Naling Mountains. Emphases were laid on the correlation between the climate and denudation. Conclusions were drawn as follows:
     Generally, the weathering rate in the warm-humid tropical zone is 0.025-0.050mm/a. The average of the overall mechanical denudation rates for the southern slope of the Naling Mountains is 0.063 mm/a, among which the mechanical denudation rate of the middle part (0.065 mm/a) is a little higher than those of the estern part (0.059 mm/a) and the western part (0.063 mm/a) and the mechanical denudation rate of the upper reaches is higher than that of the lower reaches; the dissolved rate is 0.021mm/a, 0.039mm/a and 0.049mm/a from the eastern part to the western part respectively with an average of 0.037mm/a., and the ratio of chemical denudation to total denudation is moderate compared with those of China (1~75%) and the world (1.64~98.76%); the average of the overall dedunation rates for the study area is 0.100mm/a and that is lower copared with those of China (0.090~1.426mm/a) and the world (0.020~1.400mm/a).
引文
[1] Guo Z T, Ruddiman W F., Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J], Nature, 2002, 416:159-163
    [2] Cane, M. A, Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago[J], Nature, 2001, 411: 157-162
    [3] Burbank, D. W., Blythe, A. E., Putkonen, J., et. al, Decoupling of erosion and precipitation in the Himalayas[J], Nature, 2003, 426: 652-655
    [4] Reiners, P. W., Ehlers, T. A., Mitchell, S. G., Coupled spatial variations in recipitation and long-term erosion rates across the Washington Cascades[J], Nature, 2003, 426: 645-647
    [5] Molnar, P., England, P., Late Cenozonic Uplift of Mountain Ranges and Global Change, Chicken or Egg?[J], Nature, 1990, 357: 29-34
    [6] Gerhard Einsele, Lothar Ratschbacher, Andreas Wetzel, The Himalaya-Bengal Fan Denudation-Accumulation System during the past 20Ma. [J], The Journal of Geology, 1996, 104: 16-184
    [7] E. Fielding, B. Isacks, M. Barazangi, et al., How Flat isTibet?[J], Geology 1994, 22: 161-167
    [8] Dodson M. H., Closure temperature in cooling geochronological and petrological system[J], Contrib, Mineral, Petrol, 1973, 40: 259-274
    [9] Andrew Goudie, The Changing Earth-Rate of Geomorphological Process[M], Oxford-Cambridge: Blackwell, 1995. 49-61
    [10] 王国灿,杨巍然,地质晚近时期山脉地区隆升及剥露作用研究[J],地学前缘,1998,5(1-2):151-156
    [11] 王国灿,隆升幅度及隆升速率研究方法综述[J],地质科技情报,1995,14(2):17-22
    [12] 王岳军,范蔚茗,林舸,盆地沉积物示踪源区山脉隆升剥露的几种方法[J],地质科技情报,1999,18(2):85-89
    [13] Nishiizumi K, Kohl C P, Arnold J R, et al. Cosmic ray produced ~(10)Be and ~(26)Al in Antarctic rocks: Exposure and erosion history[J]. Earth and Planetary Science Letters, 1991, 104: 440-454.
    [14] Bierman P R. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution :A review from the geomorphic perspective[J]. Journal of Geophysical Research, 1994, 99 (B7): 13885-13896.
    [15] Browne E T, Stallard R F, Larsen M C, et al. Denudation rates determined from the accumulation of in situ-produced ~(10)Be in Luquillo Experimental Forest, Puerto Rico[J]. Earth and Planetary Science Letters, 1995, 129: 192-202.
    [16] Granger Darryl E, Kirchner James W. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic Nuclides in alluvial sediment[J]. Journal of Geology, 1996, 104: 249-257.
    [17] Granger D E, Muzikar P F. Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations[J]. Earth and Planetary Science Letters, 2001, 188: 269-281.
    [18] Schaller M, yon Blanckenburg F, Hovius N , et al. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments[J]. Earth and Planetary Science Letters, 2001, 188: 441-458.
    [19] 周厚云,朱照宇 地貌学定量研究的一个新方向 热带地貌1997,18(2):63-67
    [20] 周厚云 朱照宇 土壤和风化壳的宇成核素研究 热带地理,1999,19(4):365-370
    [21] 顾兆炎 刘东生D.Lal ~(10)Be和~(26)Al在地表形成和演化研究中的应用 第四纪研究,1997,(3):211-220
    [22] 王建,徐孝彬,地面测年技术——宇生同位素测年[J],地球科学进展,2000,15(2):237-240
    [23] 徐孝彬,王建等,地貌学与第四纪研究的新手段——陆地宇生核素研究[J],地理科学,2002,22(5):587-591
    [24] 孔屏,宇宙成因核素在地球科学中的应用[J],地学前缘,2002,9(3):41-48
    [25] 李储华 纪友亮 张世奇 赵俊青 应用宇宙成因核素~(10)Be和~(26)Al估算剥蚀面的暴露时间及剥蚀速率和剥蚀厚度 石油大学学报(自然科学版),2004,28(1):1-5
    [26] 郑洪波:黄湘通:向芳:朱利东 宇宙成因核素~(10)Be:估算长江流域侵蚀速率的新方法 同济大学学报(自然科学版) 2005,33(9):1160-1165
    [27] 黄湘通:郑洪波:John Chappell:宇宙成因核素~(10)Be,~(26)Al:原理及其在地表过程中的应用 同济大学学报(自然科学版) 2005,33(9):1206-1212
    [28] 向东:汪越:武绍勇:仇九子:管永精:董克君:林敏:李世红:何明:吴伟明:姜山:Y.Nagashima:R.Seki:刘存富:灰岩侵蚀速率的研究 广西物理2005,(02):1-3
    [29] 许刘兵,周尚哲 宇宙成因核素测年方法及其在地球科学中的应用 冰川冻土2006,28(4):577-585
    [30] Ewald Hejl, Gert Sekyra, Gertrude Friedl, Fission-track dating of the south-eastern Bohemian massif (Waldviertel, Austria): thermochronology and long-term erosion[J], International Journal of Earth Sciences, 2003, 92(5): 677-690
    [31] 赵孟为,磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应用——以鄂尔多斯盆地为例[J],地球物理学报(增刊),1996,39:238-248
    [32] 王国灿,向树元,John I.等,东昆仑东段哈拉郭勒—哈图一带中生代的岩石隆升剥露——锆石和磷灰石裂变径迹年代学证据[J],地球科学,2003,28(6):645-652
    [33] 郑德文,王非,张培震等,磷灰石U-Th/He法——一种地温热年代计[J],地震地质,2000,22(4):427-435
    [34] 吴堑虹,刘厚昌,(U-Th)/He定年——地温热年代学研究的一种新技术[J],地球科学进展,2002,17(1):126-131
    [35] Crowley J. L., Ghent E. D. et al., An electron microprobe study of the U-Th-Pb systematics of metamorphic belt, southwest Japan: constraints from Chime monazite ages of gneisses and granitoids[J], Journal of Metamorphic Geology, 1998, 16:23-37
    [36] 宋忠宝,任有祥,李智佩等,U—Pb同位素测年法及其应用[J],西北地质,1998,19(1):68-71
    [37] 李学军,郭涛,王庆飞,电子探针化学测年方法[J],地学前缘,2003,10(2):411-414
    [38] 张玉泉,朱炳泉,谢应雯等,青藏高原西部的抬升速率:叶城—狮泉河花岗岩~(40)Ar/~(39)Ar年龄的地质解释[J],岩石学报,1998,14(1):11-21
    [39] 张丽萍,杨达源,朱大奎,长江三峡黄陵背斜段地质时期结晶岩风化剥蚀速率研究[J],中国科学(D辑),2003,33(1):81-88
    [40] 张丽萍 杨达源 朱大奎 母岩的风化剥蚀速率与土壤允许流失量的关系——以长江三峡坝区风化花岗岩土壤为例 长江流域资源与环境,2003,12(4):382-387
    [41] 马钦忠 李吉均 晚新生代青藏高原北缘构造变形和剥蚀变化及其与山脉隆升关系海洋地质与第四纪地质,2003,23(1):27-34
    [42] 马钦忠 李吉均 青藏高原北缘晚新生代的差异性隆起特征 地学前缘,2003,10(4):590-598
    [43] 靳长兴,论坡面侵蚀的临界坡度[J],地理学报,1995,50(2):234-239
    [44] 靳长兴,坡度在坡面侵蚀中的作用[J],地理研究,1996,15(3):57-64
    [45] Alnert F., Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins[J], American Journal of Science, 1970, 268: 243-263
    [46] Schumm, S. A. The fluvial system Wiley-Interscience; New York, 1977: 3-91
    [47] Milliman J D., Meade R H., World-wide delivery of river sediment to the ocean[J], Journal of Geology, 1983, 91: 1-21
    [48] Pinet P., Souriau M., Continental erosion and large-scale relief[J], Tectonics, 1988, 7(3): 563-582
    [49] Milliman, J. D. and J. P. M. Syvitski Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. Journal of Geology, 1992, 100: 525-544.
    [50] M. A. Summerfield, N. J. Hulton Natural controls of fluvial denudation rates in major world drainage basins JOURNAL OF GEOPHYSICAL RESEARCH, 1994, 99(B7): 13, 871-13, 884,
    [51] C. G. A Harrison, Rates of continental erosion and mountain building[J], Geol Rundsch, 1994, 83: 431-447
    [52] Ludwig W., Probst J L., River sediment discharge to the ocean: Prensent-day controls and gloabal budgets[J], American Journal of Science, 1998, 298: 265-295
    [53] C. G. A Harrison, What factors control mechanical erosion rates?[J], Int Journal Earth Sciences, 2000, 88: 752-763
    [54] 中国水利学会,河流泥沙国际学术会议论文集,1980,1-13
    [55] 尹国康 中国大地近代侵蚀速率 南京大学学报(地理学)1984,13-33
    [56] 尹国康 流域地貌系统[M].南京:南京大学出版社,1991
    [57] 任美锷编译 台维斯地貌学论文选 科学出版社1958.11
    [58] 舒良树,周新民,邓平,余心起,南岭构造带的基本地质特征,地质论评,2006,52(2):251-265
    [59] 李四光,地质力学概论,北京:科学出版社,1973:27-33
    [60] 陈述彭.南岭山地的自然基础[J].地理知识,1954(9):252-255.
    [61] 李合敏.南岭[J].地球,2002(4):23-25.
    [62] 庞茂鑫 斯公望 我国东南部地形对降水量分布的气候影响 热带气象学报[J]1993年11月9(4):370-374
    [63] 周凌云 南岭山区气候屏障作用的初步分析 华南师范大学硕士论文2006.6
    [64] 陈国达 萌渚岭西侧湘粤水系间的争夺及其对南岭地区新构造运动的意义《陈国达地洼学说文选》中南工业大学出版社1986.7
    [65] 刘厚培,朱景郊.南岭山区自然资源开发利用[M].北京:科学出版社,1992:8-10.
    [66] 陈灵芝 中国的生物多样性现状及其保护对策[M]北京:科学出版社,1993
    [67] 陈涛,张宏达.南岭植物区系地理学研究Ⅰ.植物区系的组成和特点[J].热带亚热带植 物学报,1994,2(1):10-23.
    [68] 张宏达.南岭山地的种子植物区系研究[A].In:《广东南岭国家级自然保护区生物多样性研究》编辑委员会.《广东南岭国家级自然保护区生物多样性研究》[M].广州:广东科技出版社,2003:98-121.
    [69] Strakhov, N.M., 1967, Principles of Lithogenesis, Consultants Bureau, N.Y.,Oliver and Boyd, London
    [70] Peltier, L.C., 1950, The geographical cycle in periglacial regions as it is related to climatic geomorphology, Annals Association of American Geographers, 40:214(2)-236
    [71] 许炯心.我国不同自然带的化学剥蚀过程[J].地理科学,1994,14(4):306-314.
    [72] 许炯心 中国不同自然带的河流过程[M] 1996:111-132
    [73] 沈承德,刘东生CO~2全球循环及其同位素示踪研究第四纪研究1995,(1):53-62
    [74] Berner R A, Lasaga A C, Garrels R M The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years American Journal of Science, 1983, 283:641-683
    [75] Meybeck M Global chemical weathering of surficial rocks estimated from river dissolved loads American Journal of Science, 1987, 287:401-428
    [76] Amiotte Suchet P, Probst J. L, Kump L R. Modelling of atmospheric CO~2 consumption by chemical weathering of rocks: application to the Garonne, Congo and Amazon basins Chemical geology 1993, 107:205-210
    [77] 陆中臣,贾绍凤,黄克断等,流域地貌系统[M],大连:大连出版社,1991,238-243
    [78] 孙然好 祁连山北部地区侵蚀速率与地貌演化研究 兰州大学硕士学位论文2005.05
    [79] 李勇:黎兵:周荣军:张毅:A.L.Densmore:M.A.Ellis:剥蚀-沉积体系中剥蚀量与沉积通量的定量对比研究——以岷江流域为例[J] 地质学报,2007,81(3):332-343
    [80] 梁亮、夏正楷,瀍河流域的河谷地貌结构及近万年以来土壤侵蚀量的估算[J],水土保持研究,2003,10(3):77-79
    [81] 何太蓉,姜洪涛,杨达源等,长江三峡库区现代坡地剥蚀速率研究[J],地理科学,2004,24(1):89-93
    [82] 马俊杰,牛建军,黑河水库汇流区土壤侵蚀评判方法研究[J],水土保持通报,2003,23(4):24-27
    [83] 卓慕宁,李定强,吴志峰,刘平,邓南荣 广东坡地持续利用中的土壤侵蚀问题,资源科学,2004,增刊(26):125-131
    [84] 乐嘉祥,王德春.中国河流水化学特征.地理学报,1963,29(1):1-13
    [85] 章申 化学地理研究的回顾,近期进展和展望 地理学报,1983,49(增刊):577
    [86] 中国科学院《中国自然地理》编辑委员会,中国自然地理(地表水),北京:科学出版社,1981
    [87] Hu. M, Stallard, R. F., and Edmond, J. M. Major ion chemistry of some large Chinese rivers. Nature 1982, 298: 550-553
    [88] 许越先 中国入海离子径流量的初步估算及影响因素分析地理科学1984,4(3):213-217
    [89] Chen J S, Li Y H, et al. Physical and chemical denudation of the river drainage areas in China[J]Chinese Science Bulletin, 1985,30(6):791-796
    [90] 陈静生 李远辉 乐嘉祥 王德春 我国河流的物理与化学侵蚀作用 科学通报,1984,(15):932-936
    [91] 张立成 董文江 我国东部河水的化学地理特征 地理研究,1990,9(2):67-75
    [92] 刘培桐,王华东 岱海盆地的水文化学地理 地理学报,1965,31(1):36-61
    [93] 朱启疆 滹沱河和滏阳河水文化学特征 北京师范大学学报(自然科学版),1963,(3):89-108
    [94] 朱颜明 佘中盛 富德义等 长白山天池水化学 地理科学,1981,1(1):58-65、
    [95] 蒲健辰 王平 皇翠兰 长江江源地区冰川冰、雪、水的化学特征 环境科学,1988,9(4):14-19
    [96] 邓伟 长江河源区水化学基本特征的研究 地理科学,1988,8(4):363-369、
    [97] 刘亚传 石羊河流域的水文化学特征分布规律及演变 地理科学,1986,6(4):348-356
    [98] 过常龄 黄河流域河流水化学特征初步分析 地理研究,1987,6(3):65-73
    [99] 张立成 赵桂久 董文江 李健 曾北危 湘江水系河水的地球化学特征 地理学报,1987,42(3):243-251
    [100] 李景保 湘江流域的自然环境条件与水化学特征 湖南师范大学学报(自然科学版),1988,11(3)
    [101] 李景保 洞庭湖水系离子径流与化学剥蚀的研究 地理科学,1989,9(3):242-251
    [102] 陈静生,陈梅 海南岛河流主要离子化学特征和起源 热带地理1992,12(3):242-251
    [103] 陈静生,谢贵柏,李远辉 海南岛现代侵蚀作用及其与台湾岛和夏威夷岛的比较 第四纪研究,1991,(4):289-298
    [104] 陈静生,陈梅等 海南岛、台湾岛河流水化学比较研究 地理学报,1992,47(5):403-409
    [105] 陈静生 何大伟 珠江水系河水主要离子化学特征及成因 北京大学学报(自然科学版),1999,35(6):786-793
    [106] 高全洲,珠江流域河流碳通量初步研究 中国科学院广州地球化学研究所博士后研究 报告1998
    [107] 高全洲 沈承德 河流碳通量与陆地侵蚀研究 地球科学进展1998,13(4):369-375
    [108] 高全洲,沈承德,孙彦敏,易惟熙 西江流域的有机碳侵蚀通量 沉积学报2000,18(4):639-645
    [109] 高全洲,沈承德,孙彦敏,易惟熙 北江流域有机碳侵蚀通量的初步研究 环境科学2001,22(2):12-18
    [110] 高全洲,沈承德,孙彦敏,易惟熙,邢长平,陶贞 珠江流域的化学侵蚀 地球化学2001,30(3):223-230
    [111] 魏秀国 珠江流域河流碳通量与流域侵蚀研究 中国科学院研究生院(广州地球化学研究所)博士学位论文2003
    [112] 吴正,地貌学导论[M],广州:广东高等教育出版社,1999。
    [113] 郑红星,刘昌明.黄河源区径流年内分配变化规律分析.地理科学进展,2003,22(6):585-590.
    [114] 汤奇成,程天文,李秀云.中国河川月径流的集中度和集中期的初步研究.地理学报,1982,37(4):383-393.
    [115] 杨远东.河川径流年内分配的计算方法.地理学报,1984,39(2):218-227.
    [116] Gaillardet J., Dupre' B., Louvat P., and Alle gre C. J. Global silicate weathering and CO~2 consumption rates deduced from the chemistry of large rivers. Chem. Geol, 1999, 159, 3-30.
    [117] Ronald J. Gibbs, Mechanisms Controlling World Water Chemistry, Science 1970 Vol. 170. no. 3962, pp. 1088-1090

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700