环己酮二聚物制备邻苯基苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯基苯酚是重要的新型精细化工产品和有机中间体,广泛应用于杀菌防腐、印染助剂和表面活性剂、合成新型塑料、树脂和高分子材料的稳定剂和阻燃剂、合成新型药物等领域。由于市场需求量的不断扩大,国内外的研究者纷纷进行研究。目前,多数研究者把重点放在环已酮缩合脱氢制备邻苯基苯酚的工艺上。
     本文以环已酮二聚物为原料,通过催化脱氢得到目标产物邻苯基苯酚,研究重点在于脱氢催化剂体系的选择与优化。催化剂性能的评价是在自建的固定床反应器中进行的。本文研究了三类助催化剂K_2SO_4和KOH、MgO、镁铝复合物对脱氢催化剂性能的影响,并且发现KOH和K_2SO_4改性的催化剂具有最高的脱氢活性,MgO和镁铝复合物改性的催化剂具有更好的稳定性,同时都可保证OPP的选择在80%以上。总体上来说,镁铝复合物对催化剂改性的制备工艺是最优的。
     本文研究了K_2SO_4和KOH的用量对催化剂性能的影响,得出随着碱用量的增加催化剂活性下降的规律。并且在高活性催化剂的基础上,本文通过调节停留时间和CS_2对催化剂预中毒的方式,在降低初始活性的基础上,提高了催化剂的稳定性,反应5hr后,OPP选择性仍可保持在81%以上。同时,本文还比较了过量浸渍与等体积浸渍两种不同制备方法对催化剂的影响,得出过量浸渍制备的催化剂具有更高的脱氢活性。本文还通过实验设计给出了该体系的反应网络。
     本文研究了MgO的用量对催化剂性能的影响,得出在w(Mg)=3.75%时,催化剂具有最好的选择性和稳定性。当镁铝复合物对催化剂改性时,得出w(Mg+Al)=3.22%,w(Mg):w(Al)=3.2:1时,催化剂具有更好的稳定性。
     本文还发现,Mg化合物改性的催化剂比K化合物改性的催化剂更有利于降低联苯的含量,这对于本反应体系是有利的。
Ortho-phenylphenol is an important new type of fine chemical product and organic intermediate, widely used in anti-corrosion sterilization, auxiliaries and surfactant, synthesis of new plastic, resin and polymer stabilizers and flame retardants, synthesis of new drugs, and other fields. Manufacturing Ortho-phenylphenol from cyclohexanone has been widely developed because of its cheapness, low pollution and high yield. But up to now, there is only a few domestic manufacturers producing this product. So it is very important for the investigation in the synthesis of Ortho-phenylphenol.
     In this paper Ortho-phenylphenol was prepared from cyclohexanone dimmers by catalytic dehydrogenation, and the research was focused on the chose of dehydrogenation catalyst and its optimization. The catalyst performance was evaluated with the self-built fixed-bed reactor. This paper studied the catalyst performance of three kinds of modifiers, i.e., K_2SO_4 and KOH, MgO, Mg-Al complex. It's proved that with the modification of K_2SO_4 and KOH the dehydrogenation catalysts had the highest activity, and with the modification of MgO, Mg-Al complex, the dehydrogenation catalysts had the best selectivity and stability. Generally speaking, with the modification of Mg-Al complex, the catalyst had the best performance.
     The impact of the amount of K_2SO_4 and KOH was studied, and it turned out with the increase of alkali, the activity of the catalyst declined. And through the change of residence time and pre-poisoned with CS_2, the stability of the catalyst was improved. 5 hr after the reaction, OPP selectivity can still maintain 81%. At the same time, by comparing the impact of excessive impregnation with same volume impregnation, it's proved that the catalyst prepared by excessive impregnation had higher dehydrogenation activity. And a reaction net-work was achieved under this catalyst system.
     The impact of the amount of MgO was also studied. It turned out with w (Mg) = 3.75%, the dehydrogenation catalysts had the best selectivity and stability, and with w (Mg+Al) = 3.22%, w (Mg): w (Al)= 3.2: 1, the same result was got.
     And in this paper it's also proved that with the modification of Mg-compounds, less by-product biphenyl was formed.
引文
[1]龙夏株.邻苯基苯酚合成工艺研究.硕士学位论文,浙江大学,2007.
    
    [2]王德堂,吴昊,王娣,匡玉青,杨成.苯基苯酚的生产及应用.科技资讯,2006(25):20-21.
    
    [3]佳文.邻苯基苯酚生产应用与技术进展.精细化工原料及中间体,2006(9):38-41.
    
    [4]卫延安,蔡春,吕春绪.邻苯基苯酚的合成工艺进展.精细与专用化学品,2003(1):13-15.
    
    [5]Stiffs P A,Thomas J.Process for Recovery of ortho-Phenylphenol.US3997615,1976.
    
    [6]Goto. Process for preparing o-phenylphenol. US4088702,1976.
    
    [7]卫延安.合成邻苯基苯酚的催化剂的制备及性能研究.博士学位论文,南京理工大学,2004.
    
    [8]Konrad F.M.,Freudewald J.E.Para-phenylphenol Preaparation.US3697606,1972.
    
    [9]Smith W.E,Potts J.I.W.Purification of p-Phenylphenol.US3993700,1976.
    
    [10]岳丽丽.邻苯基苯酚的化学合成.硕士学位论文,四川大学,2003.
    
    [11] Murakami N, Ishiyama S. Production of p-Phenylphenol.JP5415119,1979.
    
    [12]Goto. Process for preparing o-phenylphenol. US4060559,1976.
    
    [13] Imamura J, Chofu. Process for Production of o-Phenylphenol.US4080390,1978.
    
    [14]Elliott C S.Production of p-Phenylphenol from Cyclohexanone.US3980716,1976.
    
    [15]季汉国.邻苯基苯酚的生产与用途.广东化工,2007,12:72-74.
    
    [16] #12
    
    [17]杨维慎,吴荣安,林励吾.丙烷在负载型催化剂上脱氢反应的研究.燃料化学学报,1991(4):312-314.
    
    [18]吴沛成.非酸性铂系脱氢催化剂的制备工艺.金陵石油化工,1989(1):33-35.
    
    [19]陈进富.K_2O对Pt-Sn/Al_2O_3催化剂表面酸性及MCH脱氢稳定性的影响.燃料化学学报,1998(6):544-547.
    
    [20]Lieske H, Lietz G, Spindler H. Reaction of Platinum in Oxygen-and Hydrogen-Treated Pt/γ-Al_2O_3 Catalysts. J Catal, 1983(81):8-16.
    
    [21]Ogasawara S,Cvetanovic R J.Effects of addn. of Alkali on Catalytic Propertiesof Al_2O_3 in Synthesis of Acetonitrile.J Catal,1963,2(1):45-52.
    
    [22]Stork W H J,Pott G T.Studies of Formation on Alkali/γ-Aluminum OxideCatalyst Systems Using Chromium 、 Iron and Manganese Luminescence.J PhysChem,1974,78(24): 2496-2505.
    
    [23]Gross.Production of orthphenylphenols.US4000203,1975.
    
    [24]蔡春,吕春绪.邻苯基苯酚的合成.南京理工大学学报,2001(4):436-439.
    
    [25]卫延安,蔡春,吕春绪.用于合成邻苯基苯酚的新型覆炭脱氢催化剂.石油化工,2004,33(2):109-112.
    
    [26]李彦鹏,刘大鹏,南军,刘晨光.用于邻苯基苯酚合成的Pt系脱氢催化剂的设计与研究.石油与天然气化工,2007:296-327.
    
    [27]李彦鹏,刘大鹏,南军,刘晨光.用于邻苯基苯酚合成的Pt/Al_2O_3催化剂改性研究.精细化工,2007,24(8):794-796.
    
    [28]Imafuku K,Oda J,Kenshi I.Dehydrogenation of 2-(1-cyclohexenyl)cyclohexa none with Palladium Catalyst.Bull Chem Sco Japan,1974(5):1201-1202.
    
    [29]蔡春,吕春绪.载钯ZSM-5分子筛催化脱氢合成邻苯基苯酚.应用化学,2001(2):167-138.
    
    [30]Heith G. Prearation of Unsaturated Cyclic Ketones. GB1480326,1977.
    
    [31]张建祥,关乃佳,李伟.Zn/ZSM-5分子筛晶粒大小和预处理条件对丙烷芳构化性能的影响.石油化工,2000,29(1):11-14.
    
    [32]朱波,周仁贤,罗孟飞.ZSM-5分子筛负载Pt/Pd催化剂上甲烷选择一氧化氮反应性能研究.环境污染与防备,1995,17(2):12-14.
    
    [33]孙慧勇,胡津仙,周敬来小晶粒Fe-ZSM-S分子筛的合成及其催化性能的研究.燃料化学学报,1999,27(2):121-125.
    
    [34]丁洁莲,曾崇余.制备邻苯基苯酚的Ni-Cu催化剂研究.现代化工,2006,26:213-216.
    
    [35] #12
    
    [36]冯月兰,张亮玫,孙晓金.从环己酮一步合成邻苯基苯酚.精细化工,1994,11(5):42-45.
    
    [37]Matsumura H,Imafuku K,Takano I. Rearrangements in the Palladium-Catalyzed Dehydrogenation of Cyclohexylphenols to Phenylphenols Bull.Chem.Soc. Japan,1971(44):567.
    
    [38] #12
    
    [39]冯望烟,陈诩,缪雪茹.环己酮二聚物脱氢制邻苯基苯酚反应及催化剂研究.石油化工,1990(19):238-245.
    
    [40]陈红艳,田志高,尹笃林.环己烯环己酮催化合成邻苯基苯酚的研究.化学试剂,2004(3):187-189.
    
    [41]Marczewski M,Malinowshi S. Acid-base and Catalytic Properties of Alumina gel treated with Different amounts of Sodium hydroxide.Bull Acad Polon Sci Ser Sci Chem,1976,24:1.
    
    [42]叶志良,碱金属离子对PtSn/Al_2O_3催化丙烷脱氢活性的影响.精细石油化工进展,2002,3(9):7-10。
    
    [43]王辉,谈世韶.K_2O修饰γ-Al_2O_3的表面性能研究.燃料化学学报,1996,24(4):303-306.
    
    [44]Mendez M,DupprezD,ApesteguiaC.Characterization of a Sulfided Platinumaluminum oxide Catalyst by Chemisorption and Titrations:Comparison of the Dynamic and Static Volumetric Methods.Catal Lett,1983,23(3-4):397-401.
    
    [45]张涛,徐竹生,王林胜.添加助剂对高分散负载Pt/Al_2O_3、Pt-Sn/Al_2O_3抗积炭性能的影响.石油化工,1990,19(2):77-82.
    
    [46]汪芳,蒋文伟.环己酮二聚体脱氢催化剂失活原因分析与改进措施.四川化工,2005,4(8):42-44.
    
    [47]陈筱金.Pd/C催化剂失活原因分析与改进措施.化学反应工程与工艺,2002,18(3):275-278.
    
    [48]孙桂大,闫福山.石油化工催化作用导论.中国石化出版社,2004,4.
    
    [49] Mikael L.Methods of studying coke formation .Gheborg, Sweden, Department of chemical Reaction Engineering ,Chalmers University of Technology.
    
    [50]李玉敏.工业催化原理.天津大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700