SO_4~(2-)/M_xO_y固体超强酸及γ-Al_2O_3-NaOH-Na固体超强碱的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸碱催化是催化领域的一个重要组成部分,尤其是近年来兴起的固体超强酸与固体超强碱,因其具有很高的酸碱强度,催化效率高,无环境污染,不腐蚀设备以及可重复使用和再生等优点,日益受到广大科学工作者的关注。SO_4~(2-)/M_xO_y型固体超强酸和γ-Al_2O_3-NaOH-Na型固体超强碱是其中最具代表性、最有工业应用前景的催化剂,本文对两种催化剂及其在有机合成中的应用进行了研究。
     本文第一部分,对近年固体超强酸的发展进行了综述,在此基础上,对专利“一种颗粒型固体超强酸催化剂及制备方法”中提及的固体超强酸进行了酸强度、TEM、FT-IR、孔隙及比表面表征,测定了固体超强酸表面硫酸根分解产物,对固体超强酸的表面结构进行了推测,实验结果表明:该专利固体超强酸的酸强度H_0≤-16.04,为的10000倍以上(100%硫酸酸强度H_0=-11.99),粉末催化剂比表面为198m~2/g,平均孔径为36(?),颗粒催化剂比表面为224 m~2/g,平均孔径为82 (?),比表面均较原载体氧化铝有所减少,但SEM表征表明,该固体超强酸仍保留有较大的孔道结构。固体超强酸的催化活性是酸强度、晶型、比表面积、表面孔结构共同作用的结果,具备高酸强度、微晶结构,大比表面积以及孔容的SO_4~(2-)/M_xO_y型固体超强酸具有较好的催化活性;SO_4~(2-)/M_xO_y型固体超强酸存在桥式双配态和螯合双配态两种结构,其中桥式双配态结构分解时脱SO_3,螯合双配态结构分解时脱SO_2,低浓度硫酸(≤2.5mol/L)负载时,硫酸根主要以螯合双配位态形式存在,螯合双配位态结构对催化剂催化活性贡献较大。
     同时将该催化剂应用于合成多元醇缩酮、1,4-二氧六环、季戊四醇油酸酯的反应,该催化剂在上述反应中表现出了良好的催化活性:催化剂用量在原料总质量的6-8%之间,采用二甲苯或酮本身带水,在带水剂回流条件下,反应均能在3h内进行完全,反应收率均在90%以上,经GC/MS分析表明,副反应主要为醇自身环化脱水,因此控制一定的反应温度与醇酮摩尔比是必要的,本文合成了季戊四醇双缩环己酮、苯乙酮1,2-丙二醇缩酮、环己酮乙二醇缩酮、苯乙酮乙二醇缩酮四种多元醇缩酮化合物;以廉价二甘醇为原料,采用气相常压固定床催化,反应温度为260℃,进料速度为0.4ml/min条件下,1,4-二氧六环的最高产率可达到76.14%;以季戊四醇和高级脂肪酸为原料,采用三甲苯为带水剂,高级脂肪酸与季戊四醇的摩尔比为5.6:1,固体超强酸催化剂用量为原料总质量的0.90%,催化温度为180℃,反应4小时,季戊四醇高级脂肪酸酯的酯化率可达99.88%。固体超强酸催化工艺具有催化效率高、不腐蚀设备、无环境污染、催化剂可重复使用和再生的优点,是工业酸催化工艺的理想选择。
     本文第二部分,总结了固体超强碱类催化剂近年的发展,对固体超强碱类催化剂未能工业化的原因进行了解释,由于制备固体超强碱一般采用金属氢氧化物或碳酸盐分解的方法,无法得到较大的比表面和孔结构的催化剂,因此催化活性一般不高,增大固体超强碱催化剂的比表面积和有效孔径是对固体超强碱类催化剂进行改性的重要内容。在此基础上,对传统固体超强碱γ-Al_2O_3-NaOH-Na的制备工艺进行了改进,改变了固体超强碱传统制备工艺,即金属碳酸盐或氢氧化物分解的方法,采用成型的大孔容及比表面积的γ-Al_2O_3载体,将碱及碱金属负载于载体之上,优化制备条件,得到了具有优良催化活性的固体超强碱催化剂,同时用BET、IR、TEM以及XRD等多种表征方对新制备的固体超强碱催化剂进行表征,结果表明所制备的固体超强碱碱强度H_0≥37,与传统工艺制备的同类型固体超强碱相当,比表面积为142.52m~2.g~(-1),孔容为0.4ml/g,较原γ-Al_2O_3载体有所减少,但通过SEM与TEM表征说明该固体超强碱仍保留了原载体的孔道结构,其整体催化效果优于传统制备方法所制备的固体超强碱催化剂。
     将该固体超强碱催化剂应用于查尔酮、环己酮自缩合以及生物柴油的合成反应中,该改性固体超强碱催化剂表现出了良好的催化活性:以苯乙酮和苯甲醛为原料,反应温度为40℃,催化剂用量为反应物总质量的7.5%,苯甲醛与苯乙酮摩尔比为1:1.1,反应3h查尔酮产率可达96.88%;以环已酮为原料,催化剂用量为原料总质量的10%,反应温度为190℃,反应3h,二聚物的总收率可达85.66%;以动物油和甲醇为原料,醇油摩尔为9:1,催化剂用量为动物油质量的2%,反应温度为70℃,反应3h后,生物柴油的收率可达91.8%。固体超强碱催化工艺催化效率高、无环境污染、不腐蚀设备,具有一定的工业应用前景。
Acid-base catalysis is an important part of catalysis fields. Solid superacid and solid superbase, which are developed in resent years, attract close attention of many researchers, because of high acidic and basic strength, high catalysis efficiency, no pollution to environment, and no corrosion to equipments, reusable and renewable property. SO_4~(2-)/M_xO_y solid superacid andγ-Al_2O_3-NaOH-Na solid superbase are most representative and industrial valuable ones of acid-base catalysts. In this paper application of these two catalysts in organic synthesis was studied.
     The first part of this paper provides an overview of the development of solid superacid in resent years. The catalyst, which is involved in Chinese patent 'A granular solid superacid catalyst and the method of preparation', was characterized by the method of indicator, SEM, FT-IR and BET. The decomposition product of sulfate radical on the surface of catalyst was analyzed in order to determine the surface structure of solid superacid catalyst. The result of experiments shows that the acid strength H_0≤-16.04, 10000 times of 100% H_2SO_4 (H_0=-11.99), specific surface of powdery catalyst 198m~2/g and average pore radii 36℃, specific surface of granule catalyst 224m~2/g and average pore radii 82℃which is smaller than the carrier Al_2O_ 3. The catalyst, which has high, microcrystalline structure, large and specific pore volume, has high catalytic activity. There are two kinds of structures in SO_4~(2-)/M_xO_y solid superacid: the bridge type double co-ordinating structure and the chelate type double co-ordinating structure, the bridge type double co-ordinating structure giving SO_3, the chelate type double co-ordinating structure giving SO_2. The chelate type double co-ordinating structure plays more important part in catalytic activity.
     For the synthesis reaction of polylol ketal,1,4-dioxane, pentaerythritol fatty acid ester, SO_4~(2-)/M_xO_y solid superacid has a satisfactory catalytic activity. With the catalyst amount wt% of raw material, after 3 hour, the yields of all can be over 90%, and the side reaction is dehydratio of polyol. Four polylol ketal cyclohexanone pentaerythritol ketal, acetophenone 1,2-propanediol ketal, cylohexanone ethylene ketal, acetophenone ethylene ketal were synthesized in this paper. With diglycol as raw material, reaction temperature 260 ?, feed ratio 0.4ml/min, 1,4-dioxane was synthesized in fixed bed reactor, and the yield can be up to 76.14%. With pentaerythritol and fatty acid as raw materia, mole ratio of fatty acid and pentaerythritol 5.6:1, catalyst amount 0.90% wt% of totle material, catalysis temperature 180?, after four hours, yield of pentaerythritol fatty acid ester can be up to 99.88%. Because of high catalytic activity, no corrosion to equipments, no pollution to environment, reusable and renewable catalyst, the methodology of solid superacid is the optimal choice of acidic catalytic reaction.
     In the second part of this paper, the development of solid superbase was summerized. Based on traditional solid superbaseγ-Al_2O_3-NaOH-Na,γ-Al_2O_3 carrier with large specific surface and specific pore volume was introduced in order to improve traditional preparation methodology, which uses carbonate and hydroxide as precusor. The catalyst, which has high catalytic activity, was obtained and characterized by the method of BET, FT-IR, SEM, XRD and so on. The result shows that the catalyst has higher catalytic activity than traditional solid superbaseγ-Al_2O_3-NaOH-Na, H_0≥37, specific surface 142.52m~2.g~(-1), specific pore volume 0.4ml/g. For the synthesis reaction of chalcone, cyclohexanone aldolization and biodiesel,γ-Al_2O_3-NaOH-Na solid superacid has a satisfactory catalytic activity. With hypnone and phenylaldehyde as raw material, amount of catalyst 7.5% wt% of material, mole ratio of hypnone and phenylaldehyde 1:1.1, reaction temperature 40℃, after 3 hours, the yield of chalcone can be up to 96.88%. With cyclohexanone as raw material, amount of catalyst 10% wt% of material, reaction temperature 190℃, after 3 hours, dimmer of cyclohexanone can be up to 85.66%. With animal oil and mathanol as raw material, mole ratio of mathanol and oil 9:1, amount of catalyst 2% wt% of oil, reaction temperature 70℃, after 3 hours, the yield of biodiesel can be up to 91.8%. The methodology of solid superbase has some industrial prospects, because of high catalytic activity, no corrosion to equipments, and no pollution to environment.
引文
[1]田部浩三,野依良治.超强酸和超强碱[M].崔圣范译.北京:化学工业出版,1986.106.
    
    [2] Jack T M. SO_4~(2-)/TiO_2-Al_2O_3 solid superacid catalysts[P]. US: 5012021, W.O.91/11417. 1999-05-26.
    
    [3]毛东森,卢冠忠,陈庆龄等.负载型氧化物固体超强酸催化剂的制备及应用[J].化学通报,2000(5):278-284.
    
    [4]蒋平平,季娴,王琪.固体超强酸SO_4~(2-)/ZrO_2动态行为及催化酯化活性[J].石油化工高等学校学报,1998,11(3):11-14.
    
    [5] Throat T S, Yadav V M, Yadav G D. Esterification phthalic anhydride with 2-ethylhexnol by solid superacid catalysts [J]. Apple Cataysis, 1992,90:73-96.
    
    [6] Arata K. Preparation of superacids by metal oxides for reactions of butanes and pentanes. Applied CatalysisA: General, 1996,14:3-32.
    
    [7]邝生鲁主编.现代精细化工:高新技术与产品合成工艺.北京:科学技术文献出版社,1997: 60-63.
    
    [8] Tsutomu Y. Recent progress in solid superacid. Applied Catalysis, 1990, 61:1-25.
    
    [9]高滋,陈建民,唐颐.SO_4~(2-)/ZrO_2超强酸体系形成过程的研究.高等学校化学学报,1992,12:1498-1502.
    
    [10]Toshjo O, Mutsuko K, Teruyaki N. A water-tolerant solid acid Cs2.5H0.5W12O40 for Hydrolysis of esters in water. Appilied CatalysisA: General, 1997, 155:9-13.
    
    [11] Shin T, Takuo H, Toshil O. Preparation process and catalysis activity of CsxH3-xW12O40. Chemistry Letter, 1984:865-868.
    
    [12]王庆昭,王公慰等.固体超强酸催化剂的发展与应用.石油化工,1990,10:667-671.
    
    [13]卢冠忠,江娴,王筠松.SO_4~(2-)/Ti-Ai-O固体超强酸的酸度及催化性能[J].催化学报,1 995,1 6(1):21-24.
    
    [14]夏勇德,华伟明,高滋.Al促进SO_4~(2-)/M_xO_y(M=Zr,Ti,Fe)固体超强酸的研究[J].化学学报,2000,58(1):86-91.
    
    [15]雷霆,华伟明.γ-Al_2O_3负载Cr促进SO_4~(2-)/ZrO_2固体超强酸研究[J].高等学校化学学报,2000,21(11):1697-1702.
    
    [16]廖德仲,何节玉.固体超强酸SO_4~(2-)/MoO_3-TiO_2的制备及其催化酯化性能[J].化学研究与应用,2001,13(3):290-291.
    
    [17]吴少林,李来生.SO_4~(2-)/Fe_3O_4-Dy_2O_3固体超强酸催α-萘乙酸甲酯[J].化学世界,1997,(4):184-185.
    
    [18]陈里,丁来欣,崔立燕.固体酸SO_4~(2-)/Ti-La-O的制备及催化酯化活性研究[J].化学物理学报,1997,1 0(1)84-88.
    
    [19]徐景士,陈慧宗.稀土固体超强酸催化合成羟基苯甲酸酯研究[J].江西师范大学学报,2000,24(4):144-146.
    
    [20]林进,刘华亭,王兰芝.稀土固体酸SO_4~(2-)/TiO_2-La~(3+)制备及其催化酯化作用[J].稀有金属材料与工程,2001,30(1):77-79.
    
    [21]郭锡坤,林绮纯,林维明.固体超强酸催化剂ZrO_2-Dy_2O_3/SO_4~(2-)-HZSM-5的制备及结构性能关系的研究[J].分子催化,2000,14(5):369-372.
    
    [22]Sommer J, Jost R. Carbenium and carbonium ions inliquid-and solid-superacid-catalyzedactivation of smaalkanes [J]. Pur Appl Chem, 2000,72 (12): 2309-2318.
    
    [23] Reddy J S, Sayari A. Nanoporous zirconium oxide pre-pared using the supermolecular templating approach [J]. Catal Lett, 1996, 38:219-223.
    
    [24] Huang Y, Sachtler W M H. Preparation of mesostruc-tured lamellar zirconia[J]. ChemCommon, 1977,(1):181-184.
    
    [25] Debra J M, Ronaald A K. Tailoring the pore size omesoporous sulfated zirconia[J]. MicropMesop Mater, 2000, 37: 281-289.
    
    [26]季山,廖世军,王乐夫.具有MSM-11结构的分子筛型SO_4~(2-)/Zr-ZSM-11超强酸的制备[J].分子催化,2001,15(3):228-230.
    
    [27]廖长喜,陈庆龄,高滋.SO_4~(2-)/ZrO_2超细粒子固体超强酸的研究[J].工业催化,1997,(4):26-30.
    
    [28]林德娟,沈水发,潘海波,等.纳米复合固体超强酸SO_4~(2-)/CoFe_2O_4的制备和表征[J].无机化学学报,2000,16(5):758-762.
    
    [29]常铮,郭灿雄,李峰,等.新型纳米固体酸催化剂ZrO_2/Fe_3O_4制备及表征[J].化学学报,2002,60(2):300-301.
    
    [30]郭锡坤,林绮纯,付丽华,等.焙烧温度对SO_4~(2-)改性锆交联粘土固体酸结构与催化活性的影响[J].分子催化,2002,16(4):263-265.
    
    [31]Canizares P,Valverde J L, Sun Kou M R, et al. Synthesis and characterization of PL ICs with single and mixed oxide pillars prepared from two different ben-tonites [J]. Microporous and Mesoporous Materials, 1999,29:267-281.
    
    [32]行春丽,成战胜.用磁性SO_4~(2-)/Fe~(2+)Fe~(3+)-ZrO_2固体超强酸催化合成柠檬酸三丁酯初探[J].精细石油化工,2004,5(3):4-5.
    
    [33]成战胜,行春丽.WO_3-TiO_2-SO_4~(2-)固体超强酸合成柠檬酸三丁酯[J].化工科技,2002,10(5):11-13.
    
    [34] Arata K. Preparation of superacids by metal oxides for reactions of butanes and pentanes[J]. Appl Catal, 1996,146:3-22.
    
    [35]缪长喜,谢在库,陈庆龄.固体酸强酸催化剂研究新进展[J].石油炼制与化工,1998,29(2):29-32.
    
    [36] Corma A, Fornes V, Juan-Rajadell M I. Influence of preparation conditions on the structureand catalytic properties of SO_4~(2-)/ZrO_2 supperacid catalysts[J]. Appl Catal A:General, 1994,116:151-156.
    
    [37]Okuhara T, Nishimura T, Watanabe H. Insoluble hete-ropoly compounds as highly activecatalysts for liquid phase reactions[J]. J Mol Catal, 1992, 74(1-3): 247-256.
    
    [38] Song X, Sayari A. Direct synthesis of isoalkanes through Fischer-Tropsch reaction onhybrid cataIysts[J].Appl Catal A,1994,110:121-136.
    
    [39] Corma A, Juan-Rajadell M I, Lopez-Nieto J M. A comparative study of SO_4~(2-)/ZrO_2 andzeolite beta as catalysts for the isomerization of n-butane and the alkylation of isobutene with2-butene[J]. Appl Catal A, 1994,111: 175-189.
    
    [40] Corma A, Martinez A, Martinez C. Influence of process variables on the continuousalkylation of isobutene with 2-butene on superacid sulfated zirconia catalysts[J]. J Catal, 1994,149(1):52-60.
    
    [41]Matsuhashi H, Motoi H, Arata K. Determination of acid strength of solid superacids bytemperature programmed desorption using pyridine[J]. Catal Lett, 1994, 26(3-4): 325-328.
    
    [42] Lin C H, Hsu C Y. Detection of superacidity on solid superacids: a new approach[J]. JChem Soc Chem Commun, 1992,20:1 479-1 480.
    
    [43]Umansky B, Engelhardt J, Hall W K. On the strength of solid acids[J]. J Catal,1991,127(l):128-140.
    
    [44] Umansky B S, Hall W K. A spectrophotometric study of the acidity of some solid acids[J].J??Catal,1990,124(1):97-108.
    
    [45]尹喜林.SO_4~(2-)/ZrO_2-TiO_2-SnO_2催化剂的制备及催化性能的研究石油化工[J],1994,23 (1) : 22.
    
    [46]日野诚.表面[J],1990,28(7):481.
    
    [47]Hino M, Arata K. Synthesis of esters from terephthalic and phthalic acids with n-octyl and 2-ethyl-hexyl alchol, acrylic acid with ethanol and salicylicacid with methanol catalysed by solid superacid [J]. Appl Catal, 1985,18: 4012404.
    
    [48]银小龙,王常有.固体超强酸催化剂研究进展[J].天然气化工,1994,19(1):4 3248.
    
    [49] Vijay S, Wolf E E. A highly active and stable platinum-modified sulfated zirconia catalyst 1.Preparation and activity for n-pentane isomerization[J]. Applied Catalysis A: General, 2004,264: 117-124.
    
    [50] Ahmad R, MelsheimerJ, Jentoft F C, et al. Isomerization of n-butane and of n-pentane inthe presence of sulfated zirconia: formation of surface deposits investigated by in situ UV visdiffuse reflectance spectroscopy[J].Journal of Catalysis, 2003, 218: 365 374.
    
    [51]Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions [J].Chem Rev, 1995,95(3):5972607.
    
    [52] Tanabe K,Kayo A,Yamaguchi T. Enhanced catalytic activity of specially prepared Fe_2O_3 forthe isomerization of but-1-ene and cyclopropane and the dehydration of butan-2-ol [J]. J. C. SChem Commun, 1981,12:6022603.
    
    [53]胡子君,凌立成,吕春祥等.SO_4~(2-)/ZrO_2对萘齐聚反应的催化效应.催化学报[J],1998,19 (3): 447.
    
    [54]于世涛,刘福胜,解从霞,李露.SO_4~(2-)/SiO_2-ZrO_2复合固体超强酸催化α-蒎烯水合反应.精细化工,2004,21(3):178-184.
    
    [55]高根之,李言信,赵斌,郑晓凤.SO_4~(2-)/M_xO_y固体超强酸催化合成哌嗪的研究.石油化工高等学校学报,2006,3:
    
    [56]李世勇,高根之.SO_4~(2-)/M_xO_y固体超强酸催化合成烷基吡嗪类化合物研究.化学研究与应用,2006,05:
    
    [57] M. Hoepp. EP 0700889 (05.08.1995) to degussa AG
    
    [58] J Ande et al. EP 0150 280(01.02.1984) to degussa AG
    
    [59]杨水金,白爱民,余协卿等.固体超强酸催化剂SO_4~(2-)/TiO_2-WO_3的制备及其催化性能研究.有机化学,2004,24(10):1262-1266.
    
    [60]高根之,赵斌,孙玉希.一种颗粒型固体超强酸催化剂及制备方法.ZL02151526.3,2005,2,16.
    
    [61]高根之,于世涛,杨锦宗.SO_4~(2-)/TiO_2-Al_2O_3-SnO_2催化剂的研制及其催化合成己二酸二辛酯[J].催化学报,1996,1,17(1):83-86.
    
    [62]高根之,李言信,赵斌等.SO_4~(2-)/ZrO_2-Al_2O_3催化合成脂肪酸季戊四醇酯的研究.工业催化,2007,15(4):45-47.
    
    [63]高根之,赵斌.一种用颗粒型固体超强酸催化合成1,4-二氧六环的方法.ZL03138961.9,2005,1,26.
    
    [64]高根之,李谚信,郑晓凤.一种用颗粒型固体超强酸催化合成四氢呋喃的方法.ZL200610042193.2,2008,1,2.
    
    [65]高根之;赵斌;李世勇.一种用颗粒型固体超强酸催化合成烷基吡嗪类化合物的方法.ZL 03138960.0,2005,1,26.
    
    [66]高鸿宾.实用有机化学辞典[M].北京:高等教育出版社,1997:281-282.
    
    [67]胡邵京,肖正云,林富钦.高分子固载化Lewis酸催化缩合环化合成γ-内酯[J].湘潭大 学自然科学学报,1992,14(4):47-51.
    
    [68]Marrian S F. The Chemical Reactions of Pentaerythritol and its derivatives[J].Chem.Rev, 1948,43: 149-198.
    
    [69] Wang C D, Xin Z, Xie R J. Synthesis of Diacetals of 2,2-bis(Hydroxymethyl)-1,3-Propanediol Under Microwave Irradiation[J]. Synth. Commun. 1997, 27(14): 2517-2520.
    
    [70] EL Ashry, EL Sayed H, EL Kilany, et al. Mode of formation of 1,3-dioxolanes during theirbenzylidenation[J]. J. Chem. Soc. 1988(2):139-144.
    
    [71] Robert P H, Myron L. Reaction of Epoxides and Carbonyl Compounds Catalyzed byAnhydrous Copper Sulfate [J].J. Org. Chem, 1978,43(3):438-440.
    
    [72]李叶芝,黄化民等.硫酸铁催化环己酮的缩合反应和缩醛(酮)反应[J].吉林大学自然 科学学报,1 989(2):113-116
    
    [73] Li T S, Li S H, Li J T, et al. Efficient and Convenient Procedures for the Formation and Cleavage of Steroid Acetals Catalyzed by Montmorillonite K 10. Chinese Chemical Letters, 1996,11(7):975-978.
    
    [74]高根之,赵斌,孙玉希.一种新型固体超强酸催化剂的制备方法[P].ZL 02151526.3,2005,2.
    
    [75]靳通收,张伏生,王开芳等.微波辐射条件下季戊四醇双缩醛和双缩酮化合物的合成 [J]有机化学,2004,24(11):1485-1488.
    
    [76]任立国,高文艺. 苯乙酮1,3-丙二醇缩酮的绿色催化合成.石油化工,2006,35(3):264-267
    
    [77]何坚,孙宝国.香料化学与工艺学.北京:化学工业出版社,1995,259-260
    
    [78]韩颖,邵作范,李明阳.SnCl_.5H_2O催化合成环己酮缩乙二醇.化学试剂,1 998,20(1):51-60
    
    [79]俞善信,彭红阳.三氯化铁催化合成缩醛(酮).现代化工,1994,14(12):29-30
    
    [80]张良兵,田志新,龚健等.铌酸催化缩酮反应.精细化工,2000,17(1):30-31
    
    [81]张晓丽,何淼,周海霞,刘春生,罗根祥.钒磷氧非均相催化合成苯乙酮乙二醇缩酮.日用化学工业.2005,35(6):406-408
    
    [82]杨水金,陈露春,梁永光等.TiSiW_(12)O_(40)/TiO_2催化合成环己酮1,2-丙二醇缩酮.精细化工,2002,19(10):600-602
    
    [83]任立国,高文艺.SO_4~(2-)/TiO-2固体超强酸催化合成环缩酮.精细化工,2002,1 9(5):276-277
    
    [84]龚菁,王云翔.稀土固体超强酸SO_4~(2-)-La~(3+)/TiO_2催化合成苯乙酮环乙二缩酮.石油化 工,2004,33(2):149-151
    
    [85]李述文,范如霖.实用有机化学手册[M].上海:上海科技出版社,1981:319.
    
    [86]朱清时.绿色化学[J].化学进展,2000,12(4):410-414.
    
    [87]王存德,钱文元.分子筛催化合成缩醛(酮)的研究[J].化学世界,1993(1):20-22.
    
    [88]梁学正,于心玉,彭惠琦,等.Hβ沸石催化合成缩醛(酮)[J].石油化工,2005,34(11): 1083-1085.
    
    [89]梁娅,魏荣宝,屠图,等.改性HZSM-5分子筛催化缩合醛(酮)反应的研究[J].南开 大学自然科学学报,1993(4):38-43.
    
    [90]李耀先,刘在群,徐文国,等.微波常压合成缩醛(酮)[J].吉林大学自然科学学报, 1996(3): 72-74.
    
    [91]欧阳玉祝,邹晓勇,彭清静.硅钨酸催化合成环己酮乙二醇缩酮[J].吉首大学学报(自 然科学版),2000,21(2):55-56.
    
    [92]张敏.活性炭负载磷钨酸催化合成环己酮缩乙二醇[J].化学研究,2001,12(3):43-45.
    
    [93]王存德,杨新华,钱文元.固体超强酸SO_4~(2-)/TiO_2催化合成缩醛(酮)[J].精细化工, 1992, 9(1): 4-6.
    
    [94]李家贵,陈渊,蔡桂金,等.新固体超强酸的制备及缩酮的合成[J].合成化学,2004, 12(3): 216-218, 221.
    
    [95]杨水金,白爱民,孙聚堂.SO_4~(2-)/TiO_2-MoO_3催化合成缩醛(酮)[J].石油化工,2003, 32(11): 944-947.
    
    [96]何坚,孙宝国编著.香料化学与工艺学-天然、合成、调和香料[M].北京:化学工业出版社,1995,259-260.
    
    [97]张晓丽,何淼,周海霞,等.钒磷氧非均相催化合成苯乙酮乙二醇缩酮[J].日用化学工业,2005,35(6):406 408.
    
    [98]但悠梦,米远祝.S_2O_8~(2-)/ZrO_2-Al_2O_3固体超强酸催化剂的研制与应用[J].应用化学,2001,18(10):840 842.
    
    [99]龚青,王云翔.稀土固体超强酸SO_4~(2-)-La~(3+)/TiO_2催化合成苯乙酮环乙二缩酮[J].石油化工,2004,33(2):149 151.
    
    [100]何节玉,廖德仲.硫酸钛的表面酸性及其催化缩酮活性[J].石油化??工,2003,32(1):278 280.
    
    [101]任立国,高文艺.SO_4~(2-)/TiO_2固体超强酸催化合成苯乙酮乙二醇缩酮[J].香料香精化妆品,2004,(5):13 16.
    
    [102]程能林,胡声闻.溶剂手册(上册)[M].北京:化学工业出版,1986,407-410.
    
    [103]章思规.精细有机化学品技术手册(上册)[M].北京:科学出版社,1993,802 -803.
    
    [104] Heuvelsland A J, Heikant Netherlands. Method for producing 1,4-dioxane. US,4764626. 1988.
    
    [105] Godfrey Norman B. Dioxane and Coproducts. US 4283339.1981.
    
    [106] Solodovnikov V V, Zadorshii V M, Minyailo Yu G, et al. 1,4-Dioxane.USSR 574447.1977.
    
    [107] Yoshihisa Inoue, Shokjchiro Deguchi and Tadoa Hakushi. A Convenient One-step Preparation of Oxacyclanes by Dehydration of Diols over Alumina[J].Bull Chem Soc Jpn,1980,53: 3031.
    
    [108] Yasuda Mitsuo, Imaizum Masao. P-Dioxane. JP 77-83472.1977.
    
    [109]冯文国,陈金龙,张全兴等.耐高温树脂固定床催化合成1,4-二氧六环[J].石油化工,1999,28(3):175.
    
    [110]刘俊峰.二甘醇用杂多酸盐催化合成二氧六环[J].化学试剂,1997,19(3):4.
    
    [111]李言信,高根之,赵斌,李修刚.SO_4~(2-)/M_xO_y固体超强酸催化合成1,4-二氧六环[J].山东化工,2006,35(6):4-8.
    
    [112]高根之,赵斌.一种用颗粒型固体超强酸催化合成1,4-二氧六环的方法[P].ZL03138961.9,2005, 1.
    
    [113]梁治齐.润滑剂生产及应用,化学工业出版社,294
    
    [114]冯克权,可生物降解的润滑剂[J],合成润滑材料,1996,(2):22-27
    
    [115]官仕龙,陈金芳,李伟等.无溶剂条件下合成润滑剂基础油脂肪酸季戊四醇酯[J],江西化工,2004,6:55-59
    
    [1]陈庆龄.新型催化材料的开发动向与新进展(下).化工进展,1990,3:5-7.
    
    [2]肖晓明.固体超强碱催化剂及其在有机合成中的应用.石油化工,1994,23(5):342-344.
    
    [3]孙履厚.精细化工新材料与技术[M]北京:中国石化出版社,1998,4
    
    [4]田部浩三.触媒,1985,27(3):198
    
    [5]Tanabe K,Yoshij N,Nattori H. Preparation of solid superbase Cs_2O. J Chem Soc ChemCommun,1971 ,464
    
    [6] Kijensti J,Malinowshi. J Chem Soc Farady Trans,1978,7 4:250
    
    [7] Tsuneo M,Jun T,Mobuatsu H,etal. Bull Chem Soc JPN,1982,55(4):990
    
    [8]袁传敏;王亚明.固体超强碱催化剂的研究进展及应用.云南化工,2000,27(2):20-22
    
    [9] Kijensti J, Malinowshi. Influence of soldium on the physico-chemical and catalyticproperties of magnesium. J Chem Soc Faraday Trans 1,1978, 74:250-256.
    
    [10]Tsuheo M. Properties of magnesium oxide prepared from various salts and their catalyticactivation in 1-butane isomerization, Bull Chem Soc Jpn, 1982, 55: 990-994.
    
    [11] G Suzukamo, M Fukao, M Minobe. Preparation of new solid superbase and its catalyticactivity. Chem Letter, 1987,585.
    
    [12]江德恩,赵璧英,谢有畅.硝酸镁在γ-A1203上的热分解及MgO/γ-A1203的碱性.物理化学学报,2000,2:105-110.
    
    [13]王英,淳远,朱建华.MgO在沸石上的分散及其催化性能,催化学报,1999,4:409-414.
    
    [14]朱建华,王英,淳远.环境友好新材料的开发:微波法研制固体超强碱及其在油品脱硫醇的应用,无机化学学报,2000,3:432-433.
    
    [15]朱建华.新固体强碱和固体超强碱催化材料.江苏化工,1997,10:9-12.
    
    [16]泽正彦,丹羽干,村上雄一 触媒,1989,31(6):485
    
    [17] Hidalgo C V,Laoh H. Characterization of solid superbase using CO_2-TPD. J Cataly, 1989,31(6):485
    
    [18]欧阳杰,盛长文,丁元生等.固体超强碱催化剂在β-蒎烯异构化反应中的应用研究.化??工科技,1999,7(1):18-21
    
    [19] Baba T, Hattori H. Ono Y. Superbase character of alumina Loaded with Potassium byimpregnation from Ammomiacal solution, J C S, Faraday Trans, 1994, 90:187-190.
    
    [20] Matsuhashi H, Hattori H. Double-bond migration of 2-propenyl Ether to 1-propenyletherover solid base catalyats, J Catal, 1984, 85:457-465.
    
    [21] Hattori A, Hattori H, Tanabe K. Double-bond migration of allylamine to enamine overbasic oxide catalysts. J Catal, 1980, 65:245-252.
    
    [22] lmizu Y, Sato K, Hattori H. Hydrogenation of conjugated dienes over ZrO2 by H2 andcydohexadiene. J Catal, 1982, 80:307-314.
    
    [23] Pines H, Mark V. Cabanions addition in the reaction of armatic hydrocarbon withmonoolefine. J Am Chem Soc, 1956,78:4316-4322.
    
    [24] T,Yamaguchi, J.W.Hightower. Hydrogenation of 1,3-butadiene with 1,3-cryclohexdieneand D2 over Zr02 catalysts. J Am Chem Soc.99,4201,1977.
    
    [25]Nakano Y, Hattori H. Addition of amine to conjugated dienes catalyzed by solid basecatalysts. J Catal, 1984, 85:509-518.
    
    [26] J H Clark, D G Cork, M S Roberton. Fluoride ion Catalyzed Michael reaction. Chem Letter,1983:1145-1148.
    
    [27] T Ando, S J Brown, J H Clark. Alumina-supported Fluoride Reagent for Organic Synthesis:Optimisation of Reagent Preparation and Elucidation of the active species. J C S Perkin Trans2,1986,2:1133-1139.
    
    [28] T Ando, J H Clark, D G Cork. Fluoride to alumina reaction: the active basic species.Tetrahedron Lett, 1987,13: 1421-1424.
    
    [29] Hajime K, Hideto T. Tadashi S, Hideshi, H. Michael addition of nitromethane toa,p-unsaturated carbonyl compounds over solid base catalysts. J Mole Catal A: Chemical, 2000,15:23-29.
    
    [30] Russell S D, Krzysztof J. Strong solid base reagent and catalysts besed on carbonaceoussupports. J C S Perkin Trans 1, 1996, 67:927-930.
    
    [31] Kim, H. J Kang B S , Kim M J et al. Transesterification of vegetable oil to biodiesel usingheterogeneous base catalyst. Cafa/ysis Today, 2004,93-95, (1), 315 320.
    
    [32]朱华平,吴宗斌,陈元雄等.固体超强碱氧化钙催化制备生物柴油及其精制工艺.催化学报,2006,27(5):391-396
    
    [33]项东升.有机膦酸钡负载的新型固体超强碱催化合成γ-十一内酯的研究.应用化工,2006, 35(2): 133-135
    
    [34]周建平,李先红,刘榛榛.固体超强碱催化合成蔗糖硬脂酸酯.应用化工,2005,34(7):452-454
    
    [35]张宝旭,贾凤兰,阮明等.查尔酮在制备治疗肝炎以及治疗胃癌的药物中的用途[P]CN:200410004510.2,2005-12-21.
    
    [36]Laliberte R, Anthelmintic activihes of chalconesand related compounds [J]. Can J Pharm Sci, 1967,2 (2): 37-43.
    
    [37]何克勤,程桂芳,奚凤德等.查耳酮类化合物对过敏性慢反应物质拮抗作用的构效关系[J].药学学报,1996,11:878-880.
    
    [38] De Vincenzo R, Ferlini C, Distefano M et al. In vitro evaluation of newly developed chalcone analogues in human cancer cells[J]. Cancer Chemother Pharmacol, 2000,46(4):305-312.
    
    [39]郭宏雄,臧庶声,陈万木等. 查耳酮的制备Ⅱ[J]. 兰州医学院学报,1998,24(2):12-13.
    
    [40]胡志国,刘军,李工安等.SOCl_2/EtOH催化查尔酮的合成[J].化学研究与应用,2 004,16(4):583-584.
    
    [41]李良助,赵志刚,袁晋芳等.应用芳基锂合成查尔酮[J].高等学校化学学报,1992,13(8):1071-1074
    
    [42]吴春,刘宝殿,吴艳华.有机锡试剂在查耳酮合成中的应用[J].黑龙江商学院学报:自然科学版,1994,10(3)52-57.
    
    [43] Formentin P., Garcia H. and Leyva A. Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalysed reactions: Case of Knoevenagel and Claisen-Schmidt reactions[J]. J of Molecular Catalysis A: Chemmical, 2004(214):137-142.
    
    [44]陆文兴,颜朝国,顾惠芬. 查尔酮的KF-Al_2O_3催化合成[J].化学试剂,1995,17(4):253.
    
    [45]铃鸭刚夫.固体超强碱催化剂在有机合成中的应用.触媒,1990,32(4):230-235.
    
    [46] Imizu Y, Sato K and Hattori H. A mechanistic study of hydrogenation of conjugated dienes over a lanthanum oxide catalyst [J]. J Catal, 1982, 76: 65
    
    [47]项东升.有机膦酸钡负载的新型固体超强碱催化合成γ-十一内酯的研究[J].应用化工,2006,35(2):133-135
    
    [48] Kim H-J, Kang B-S, Kim M-J, et al. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst [J]. Catalysis Today, 2004,93-95(1):315-320
    
    [49]章思规.精细有机化学品技术手册.北京:科学出版社,1991:160
    
    [50]岳丽丽,蒋文伟,牟莉娟等.合成化学,2003,11:147-149
    
    [51]Naresh B S. Cross-dimerization of α-methylstyrene with isoamylene and aldol condensation of cyclohexanone using a cation-exchange resin and acid-treated clay catalysts. Reactive Polymer, 1994,22:19-34
    
    [52] Elliott. US 3980716,1976
    
    [53]King L R. US 1466 133.1976
    
    [54]Thoma J.ZA 7600 231.1977
    
    [55]陈红艳,尹笃林,胡伟武.环己酮酸催化合成环己烯环己酮的研究.襄樊学院学报,2001,22(5):45-48
    
    [56]Glycerol transesterification with methyl stearate over solid basic catalysts: I. Relationship between activity and basicity[J]. Applied Catalysis, 2001,218:1-11
    
    [57]Naomi Shibasaki-Kitakawa, HirokiHonda, HomareKuribayashi, et al. Bioresource Technology, 2007,98(2):416-421
    
    [58]李为民,郑晓林,徐春明等.固体碱法制备生物柴油及其性能[J],化工学报.2005,56(4):711-716.
    
    [59]崔士贞,刘纯山.固体碱催化大豆油酯交换反应的研究.工业催化,2005,(7):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700